584 research outputs found

    Belief Revision with Uncertain Inputs in the Possibilistic Setting

    Full text link
    This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996

    Managing different sources of uncertainty in a BDI framework in a principled way with tractable fragments

    Get PDF
    The Belief-Desire-Intention (BDI) architecture is a practical approach for modelling large-scale intelligent systems. In the BDI setting, a complex system is represented as a network of interacting agents – or components – each one modelled based on its beliefs, desires and intentions. However, current BDI implementations are not well-suited for modelling more realistic intelligent systems which operate in environments pervaded by different types of uncertainty. Furthermore, existing approaches for dealing with uncertainty typically do not offer syntactical or tractable ways of reasoning about uncertainty. This complicates their integration with BDI implementations, which heavily rely on fast and reactive decisions. In this paper, we advance the state-of-the-art w.r.t. handling different types of uncertainty in BDI agents. The contributions of this paper are, first, a new way of modelling the beliefs of an agent as a set of epistemic states. Each epistemic state can use a distinct underlying uncertainty theory and revision strategy, and commensurability between epistemic states is achieved through a stratification approach. Second, we present a novel syntactic approach to revising beliefs given unreliable input. We prove that this syntactic approach agrees with the semantic definition, and we identify expressive fragments that are particularly useful for resource-bounded agents. Third, we introduce full operational semantics that extend Can, a popular semantics for BDI, to establish how reasoning about uncertainty can be tightly integrated into the BDI framework. Fourth, we provide comprehensive experimental results to highlight the usefulness and feasibility of our approach, and explain how the generic epistemic state can be instantiated into various representations

    Hybrid Possibilistic Conditioning for Revision under Weighted Inputs

    Get PDF
    International audienceWe propose and investigate new operators in the possi-bilistic belief revision setting, obtained as different combinations of the conditioning operators on models and countermodels, as well as of how weighted inputs are interpreted. We obtain a family of eight operators that essentially obey the basic postulates of revision, with a few slight differences. These operators show an interesting variety of behaviors, making them suitable to representing changes in the beliefs of an agent in different contexts

    Syntactic Computation of Hybrid Possibilistic Conditioning under Uncertain Inputs

    Get PDF
    International audienceWe extend hybrid possibilistic conditioning to deal with inputs consisting of a set of triplets composed of propositional formulas, the level at which the formulas should be accepted, and the way in which their models should be revised. We characterize such conditioning using elementary operations on possibility distributions. We then solve a difficult issue that concerns the syntactic computation of the revision of possibilistic knowledge bases, made of weighted formulas, using hybrid conditioning. An important result is that there is no extra computational cost in using hybrid possibilistic conditioning and in particular the size of the revised possibilistic base is polynomial with respect to the size of the initial base and the input

    CAN(PLAN)+: Extending the Operational Semantics of the BDI Architecture to deal with Uncertain Information

    Get PDF
    The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of CAN(PLAN) into CAN(PLAN)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of look ahead planning.This research is supported by the UK EPSRC project EP/J012149/1.Peer Reviewe

    07351 Abstracts Collection -- Formal Models of Belief Change in Rational Agents

    Get PDF
    From 26.08. to 30.08.2007, the Dagstuhl Seminar 07351 ``Formal Models of Belief Change in Rational Agents\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Logic and the Foundations of Game and Decision Theory (LOFT 7)

    Get PDF
    This volume collects together revised papers originally presented at the 7th Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2006). LOFT is a key venue for presenting research at the intersection of logic, economics and computer science, and the present collection gives a lively and wide-ranging view of an exciting and rapidly growing area

    An Architectural Approach to Ensuring Consistency in Hierarchical Execution

    Full text link
    Hierarchical task decomposition is a method used in many agent systems to organize agent knowledge. This work shows how the combination of a hierarchy and persistent assertions of knowledge can lead to difficulty in maintaining logical consistency in asserted knowledge. We explore the problematic consequences of persistent assumptions in the reasoning process and introduce novel potential solutions. Having implemented one of the possible solutions, Dynamic Hierarchical Justification, its effectiveness is demonstrated with an empirical analysis

    The Basic Principles of Uncertain Information Fusion. An organized review of merging rules in different representation frameworks

    Get PDF
    We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings
    • …
    corecore