
Managing Different Sources of Uncertainty in a BDI
Framework in a Principled Way with Tractable Fragments

Kim Bauters k.bauters@qub.ac.uk
Kevin McAreavey kevin.mcareavey@qub.ac.uk
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast,
Computer Science Building, 18 Malone Road, BT9 5BN Belfast, United Kingdom

Weiru Liu wl14805@bristol.ac.uk
Merchant Venturers School of Engineering, University of Bristol,
75 Woodland Road, BS8 1UB Bristol, United Kingdom

Jun Hong jun.hong@uwe.ac.uk
Department of Computer Science and Creative Technologies, University of the West of England,
Coldharbour Lane, BS16 1QY Bristol, United Kingdom

Llúıs Godo godo@iiia.csic.es

Carles Sierra sierra@iiia.csic.es

Institut d’Investigació en Intel·ligència Artificial, Consejo Superior de Investigaciones Cient́ıficos,

Campus de la UAB, E-08193 Bellaterra, Spain

Abstract

The Belief-Desire-Intention (BDI) architecture is a practical approach for modelling
large-scale intelligent systems. In the BDI setting, a complex system is represented as
a network of interacting agents – or components – each one modelled based on its be-
liefs, desires and intentions. However, current BDI implementations are not well-suited
for modelling more realistic intelligent systems which operate in environments pervaded
by different types of uncertainty. Furthermore, existing approaches for dealing with uncer-
tainty typically do not offer syntactical or tractable ways of reasoning about uncertainty.
This complicates their integration with BDI implementations, which heavily rely on fast
and reactive decisions. In this paper, we advance the state-of-the-art w.r.t. handling dif-
ferent types of uncertainty in BDI agents. The contributions of this paper are, first, a
new way of modelling the beliefs of an agent as a set of epistemic states. Each epistemic
state can use a distinct underlying uncertainty theory and revision strategy, and commen-
surability between epistemic states is achieved through a stratification approach. Second,
we present a novel syntactic approach to revising beliefs given unreliable input. We prove
that this syntactic approach agrees with the semantic definition, and we identify expressive
fragments that are particularly useful for resource-bounded agents. Third, we introduce
full operational semantics that extend Can, a popular semantics for BDI, to establish how
reasoning about uncertainty can be tightly integrated into the BDI framework. Fourth, we
provide comprehensive experimental results to highlight the usefulness and feasibility of
our approach, and explain how the generic epistemic state can be instantiated into various
representations.

1. Introduction

In large-scale intelligent systems, dynamic knowledge and beliefs play a crucial role. Archi-
tectures such as the Belief-Desire-Intention architecture (BDI) (?) allow these notions to

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323893848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be explicitly modelled by decomposing a complex intelligent system into a set of simpler
autonomous and interacting agents. The beliefs model the agent’s understanding of the
environment, the desires are those states that the agent wishes to bring about, and the
intentions are the desires the agent has chosen to act upon. Over the years, many agent-
based programming languages based on the BDI architecture have been proposed in the
literature, including PRS (?), AgentSpeak (?), and 2APL (?). These languages have been
used with some success to model for example modern SCADA (Supervisory Control and
Data Acquisition) systems (?, ?).

An important challenge is that current BDI implementations are not well-suited to
model the next generation of SCADA systems as they cannot model (or reason about)
uncertain information. In realistic settings, however, the beliefs of an agent tend to be
uncertain (e.g. due to sensor noise, incomplete information etc.). This problem is further
aggravated due to the typical computational complexity of uncertainty theories. While
BDI implementations rely on reactive behaviour, most theories of uncertainty do not take
tractability into account. Therefore, there is a mismatch between theory and practice.

An additional complication in dealing with uncertainty is that an uncertain input can
be treated in different ways: either the input acts as a constraint that must be satisfied
after belief revision, or the input is treated as a new belief with an associated strength (?).
The latter is representative of a multi-agent environment, where new information from
various sources does not necessarily cancel out existing beliefs, but may strengthen or
weaken them.1 Frameworks for dealing with uncertainty in this way have been proposed (?)
but rely on semantic belief change operators, which restricts their usefulness for practical
applications due to their computational cost. Syntactical approaches to belief revision have
also been suggested in the literature, but most deal with classical inputs and are based
on the AGM style of revision, see (?, ?). Syntactic operators that are able to deal with
iterated belief revision are far less common. One popular semantic approach to define such
epistemic states are Ordinal Conditional Functions (OCF) (?). A syntactic representation
for OCF, along with the conditions that such a representation has to satisfy, was presented
in (?). However, since OCF are not built as a general framework, they can be more difficult
to instantiate into other theories of uncertainty such as possibility theory (?) or probability
theory (?).

To address these shortcomings, we present in this paper an extension of the Can frame-
work in which the uncertain beliefs of an agent can be accurately modelled irrespective of
the underlying cause of uncertainty. These uncertain beliefs can in turn be used and com-
bined to derive new conclusions, and can be cast into a syntactic and tractable framework
when certain restrictions are imposed. For example, an agent can have beliefs about his
office hours, the fuel left in his car, and whether it is raining outside. These three pieces
of uncertain information are to some degree irrelevant to each other, e.g. whether it rains
outside does not have an effect on the level of fuel in the car. Also, these beliefs can be
represented by different uncertainty theories, each revised using different strategies. Re-
gardless, the information will need to be combined (e.g. taking the bus when it is raining

1. Treating uncertain inputs as beliefs with associated strengths has some connections with belief merging.
However, since this topic is out of the scope of this paper, we do not discuss this to keep the paper more
compact. Interested readers can read more on this topic from e.g. (?).

2

because fuel in the car is low) and revised (e.g. I need to leave early when it is raining to
avoid being stuck in traffic).

The contributions of the paper are as follows:

First, we introduce a technique for modelling the beliefs of an agent as a set of epis-
temic states. Each epistemic state represents part of the beliefs held by an agent,
and each state can use a distinct underlying uncertainty theory (e.g. possibilities
or infinitesimal probabilities) with its own revision strategy. A set of epistemic
states, referred to as the Global Uncertain Belief set or GUB for short, then rep-
resents all beliefs of the agent. The GUB provides commensurability among the
different epistemic states, and ensures that its local epistemic states are correctly
revised when new information is made available (even though only some of that
information may apply to any specific local epistemic state).

Second, we introduce a syntactic operator for revising with an uncertain input. This way,
we can avoid the exponential space requirements associated with the semantic
operator. We prove that the syntactic operator corresponds to the semantic op-
erator defined in (?), and we illustrate how to instantiate it to a given theory
of uncertainty. In particular, we instantiate it to both probability theory and
possibility theory.

Third, we introduce a tractable syntactic approach for revising with an uncertain input.
We do this by identifying a fragment of the language that allows for tractable
revision with uncertain inputs. It turns out that this fragment is sufficiently
expressive and agrees with the restrictions often imposed on languages such as
AgentSpeak(L) (?), and even extends beyond it.

Fourth, all the aforementioned ideas are integrated into the BDI setting through an ex-
tension of the operational semantics of Can.

Fifth, we provide an experimental evaluation of our framework to demonstrate its feasibility
and to highlight its usefulness.

The paper is structured as follows. Some necessary preliminary notions about epistemic
states are reviewed in Section 2. In Section 3 we introduce a novel framework for modelling
and revising uncertain beliefs, and reasoning about such beliefs. While at first we focus
on a single source of uncertainty in this section, we also show how the environment can
be factored into different components, each potentially represented using its own theory of
uncertainty. A full syntactic treatment of the belief revision is presented in Section 4, and
a tractable subset of the language is identified in Section 5. In Section 6 we discuss how
the tractable approach can be instantiated into possibility theory and probability theory.
For possibility theory in particular, we also give an account of the full syntactical language.
Some required preliminaries on the Can semantics are provided in Section 7, after which
full operational semantics to integrate BDI with reasoning under uncertainty are given.

This paper combines and extends our earlier work (?, ?). Proofs for all propositions
are produced in this paper, and many proofs have been rewritten to improve readability.

3

This extended version furthermore introduces the actual instantiations to probability and
possibility theory, and provides their tractable syntactic counterparts. This paper also
introduces the full syntactic version of the possibility theory instantiation. Finally, the
paper offers an intricate scenario evaluation, which features our implementation of these
ideas and supports the applicability of our proposed framework.

2. Background on Ma & Liu’s Epistemic States

We start from a finite set of atoms At. We use Lit to denote the set of literals that can be
constructed from At, i.e. Lit = {a | a ∈ At} ∪ {¬a | a ∈ At}. For a literal l ∈ Lit we use l∗

to denote the underlying atom, i.e. l∗ = a when l = a or l = ¬a. The language L constructed
over At is defined in Backus-Naur Form (BNF) as ϕ ::= a | ¬a | (ϕ1∧ϕ2) | (ϕ1∨ϕ2), i.e. all
formulas are in Negation Normal Form (NNF) which is used for its syntactic convenience
(indeed, any arbitrary propositional formula can be efficiently converted into an equiva-
lent proposition in NNF). For a formula ϕ ∈ L, we use lit(ϕ) to denote the set of liter-
als in ϕ. A possible world ω, or interpretation, is a function that maps At onto {0, 1}.
The set of all possible worlds is denoted by Ω. Hence for e.g. At = {a, b} we have
Ω = {{a, b} , {a,¬b} {¬a, b} , {¬a,¬b}}. We use the notation ω to denote the conjunc-
tion of literals that the possible world ω makes true, e.g. ω = a ∧ ¬b for ω = {a,¬b}.
A possible world ω is a model of a propositional formula ϕ iff the possible world ω makes
ϕ true, denoted as ω |= ϕ. The set of all models of ϕ is denoted as Mod(ϕ).

We are now ready to look at the definition of an epistemic state.

Definition 1. (from (?)) Let Ω be the set of possible worlds. An epistemic state Φ is a
mapping Φ : Ω→ Z ∪ {−∞,+∞}.

Throughout the paper we denote epistemic states using capital Greek letters. An epis-
temic state Φ is used to represent the mental state of an agent, where the value Φ(ω)
represents the degree of belief in a possible world ω and is called the weight of ω. When
Φ(ω) =∞ (resp. −∞) the agent believes ω to be fully plausible (resp. not at all plausible)
while Φ(ω) = 0 indicates that the agent is totally ignorant about ω. For ω, ω′ ∈ Ω and
Φ(ω) > Φ(ω′) the intuition is that ω is more plausible than ω′.

It is important to clarify that the definition of an epistemic state given in Definition 1
allows for the construction of a general framework for dealing with uncertain beliefs. Indeed,
this definition does not impose any restrictions on the values associated with the possible
worlds. Other representations for epistemic states, which attach more specific meaning to
the values, have been shown to be equivalent to the one from Definition 1. Specifically,
Definition 1 induces an Ordinal Conditional Function (OCF) (?, ?)2, which in turn can be
transformed into other representations, e.g. those based on infinitesimal probabilities (?)
and possibility theory (?). The representation from Definition 1 can thus be instantiated
using any of the other representations to best suit the nature of the uncertainty and we will
consider the specifics of some such instantiations in Section 6. Furthermore, an epistemic
state as in Definition 1 is often easier to work with as it relies on integers (and not e.g. ordinal
numbers), and does not need a normalisation step (e.g. as needed in OCF).

2. In addition, in (?) it has been shown that revising an epistemic state with an uncertain input is equivalent
to combining the two corresponding OCFs using the combination operator suggested in (?).

4

New information, which we want to incorporate into our existing beliefs, consists of a
proposition ϕ ∈ L and an associated weight m ∈ (Z ∪ {−∞,+∞}). This new information,
or input (ϕ,m), is represented as an epistemic state Φin such that Φin(ω) = m when ω |= ϕ
and Φin(ω) = 0 otherwise. Such an epistemic state is also often referred to as a simple
epistemic state, as it only encodes information from a single piece of input. Other than
that, a simple epistemic state does not differ in any way from other epistemic states and the
notation Φin is therefore only used as a visual aid. The operator introduced in (?) to revise
an epistemic state Φ by Φ′, denoted as Φ◦Φ′, is defined as ∀ω ∈ Ω, (Φ◦Φ′)(ω) = Φ(ω)+Φ′(ω)
with + the addition operator 3. Since an input corresponds to a simple epistemic state, we
often simply write Φ◦(ϕ,m). We will also use Φ◦I with I = 〈i1, ..., in〉 a sequence of inputs
to denote Φ ◦ i1 ◦ ... ◦ in. Notice that unlike AGM-style revision we have that the ◦ revision
operator is both commutative and associative, which are desirable properties when dealing
with revision based on uncertain inputs.

Example 1. Let At = {a, b, c}. Consider the epistemic state Φ such that Φ({a, b, c}) =
Φ({a,¬b, c}) = Φ({a, b,¬c}) = Φ({a,¬b,¬c}) = 3 and Φ(ω) = 0 for all other possible
worlds ω. Intuitively, this models an agent that believes ‘a’ to be more plausible than ‘¬a’.
Indeed, exactly those possible worlds that model ‘a’ have a higher weight than the others.
We say that the agent believes ‘a’ with a strength of 3 and is ignorant about the other literals
in Lit. Now consider the input (c, 2). This input corresponds to the simple epistemic state Φ′

for which Φ′({a, b, c}) = Φ′({a,¬b, c}) = Φ′({¬a, b, c}) = Φ′({¬a,¬b, c}) = 2 while for all
other worlds ω we have that Φ′(ω) = 0. The result of revising Φ given the input, denoted as
Ψ = Φ ◦ (c, 2), is given by Ψ such that:

Ψ({a, b, c}) = 5 Ψ({¬a, b, c}) = 2

Ψ({a,¬b, c}) = 5 Ψ({¬a,¬b, c}) = 2

Ψ({a, b,¬c}) = 3 Ψ({¬a, b,¬c}) = 0

Ψ({a,¬b,¬c}) = 3 Ψ({¬a,¬b,¬c}) = 0

In other words: the agent most strongly believes that both ‘a’ and ‘c’ are true in the real
world, as expected, while still being ignorant as to whether ‘b’ is true or false.

The belief set, i.e. the sentences that an agent is committed to believe, is defined as the
set that has all the most plausible worlds as its models. To define this set, we first recall
the notion of a preorder. A preorder ≤ on a set A is a reflexive and transitive relation over
A×A. We say that ≤ is total iff for all a, b ∈ A we have that either a ≤ b or b ≤ a. Then:

Definition 2. (from (?), Definition 4) Let Φ be an epistemic state. The belief set of Φ is
Bel(Φ) = {ϕ ∈ L | ω |= ϕ for all ω ∈ min(Ω,≤)}. Here ≤ is a total preorder relation over
Ω such that ω ≤ ω′ iff Φ(ω) ≥ Φ(ω′) and min(Ω,≤) denotes the set of minimal elements of
Ω according to ≤.4

3. Since −∞ and +∞ denote falsehood and truth, respectively, revising a world Φ(ω) =∞ with −∞ (and
vice versa) is considered an inconsistency and not supported.

4. Preorder on models are also closely related to the notion of faithful assignment introduced by Katsuno
& Mendelzon in (?) to characterise revision operators obeying AGM postulates.

5

While Bel(Φ) is defined above as a set of propositions, we can equivalently say that
Bel(Φ) is the strongest (i.e. having the least number of models) proposition ϕ such that
Mod(ϕ) = min(Ω,≤). This proposition ϕ is, of course, only unique up to logical equivalence.

Example 2. Consider Ψ from Example 1. The models with the highest weight are given
by min(Ω,≤) = {{a, b, c} , {a,¬b, c}} and thus {a ∧ b ∧ c, a ∧ ¬b ∧ c} ⊆ Bel(Ψ) or, equiva-
lently, Bel(Ψ) = a∧c. We can easily verify that the agent believes that ‘a’ must be true, since
a∧ c |= a. Similarly, the agent does not believe that ‘b’ must also be true since a∧ c 6|= a∧ b.
This is as expected, given that the agent is ignorant about the actual truth value of ‘b’.

3. Modelling and Reasoning about Uncertain Beliefs

In this section we expand on the classical idea of an epistemic state Φ by also taking those
possible worlds into account that are not considered in the belief set Bel(Φ). The possible
worlds not considered in Bel(Φ) constitute the uncertain information, i.e. they define the
preferences the agent has over the outcomes that are currently not believed to be true.
To reason about these beliefs, we introduce a new language LAt≥ that expands upon L.

A well-formed formula ϕ ∈ LAt≥ over At is defined in BNF as:

ψ ::= a | ¬a | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

ϕ ::= a | ¬a | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ψ1 ≥ ψ2 | ψ1 > ψ2 | not ψ

with a ∈ At. Whenever At is clear from the context, we also simply write L≥. The intuition
of (ψ1 > ψ2) is that ψ1 is strictly more strongly believed (has a higher weight) than ψ2,
whereas not ψ reads as “ψ is assumed not to hold”, i.e. negation-as-failure. Throughout the
paper we also use ¬ϕ with ϕ ∈ L≥ as a shorthand for the NNF (Negation Normal Form)
notation of ϕ. In particular, formulas of the form ¬(ψ1 > ψ2) are rewritten as ψ2 ≥ ψ1,
¬(ψ1 ≥ ψ2) is rewritten as ψ2 > ψ1, and ¬ψ is rewritten as ψ > ¬ψ (see Definition 3).
Notice that the NNF of any formula ϕ is again an expression in L≥.

The semantics of the language L≥ are defined in terms of a mapping λ, which maps arbitrary
formulas ϕ ∈ L≥ onto Z ∪ {−∞,+∞}. Intuitively, the value λ(ϕ) associated with the
formula ϕ reflects how strongly the agent believes ϕ to be true. When the formula ϕ is a
propositional statement, i.e. ϕ ∈ L, this can be directly determined by finding the models
of ϕ and assigning to λ(ϕ) the highest weight, i.e. λ(ϕ) = max {Φ(ω) | ω |= ϕ}. In general,
however, the formula is not a propositional statement (i.e. ϕ ∈ L≥, but not ϕ ∈ L) and we
need to pare it down until we can determine its λ-value directly. We have:

6

Definition 3. Let ϕ ∈ L≥. Whenever ϕ ∈ L we define λ(ϕ) = max {Φ(ω) | ω |= ϕ} with
max(∅) = −∞. Otherwise, we define λ(ϕ) = λ(pare(ϕ)) with pare defined as:

pare(ϕ⊕ ψ) = check(ϕ)⊕ check(ψ) ⊕ ∈ {∨,∧}

pare(ϕ ≥ ψ) =

{
> if λ(¬ϕ) ≤ λ(¬ψ)
⊥ otherwise

pare(ϕ > ψ) =

{
> if λ(¬ϕ) < λ(¬ψ)
⊥ otherwise

pare(not ϕ) =

{
> if ϕ ∈ L and λ(¬ϕ) ≥ λ(ϕ)
⊥ otherwise

check(ϕ) =

{
ϕ if ϕ ∈ L
pare(ϕ) otherwise

with > (resp. ⊥) a tautology of L (resp. a contradiction of L).

For the operators ∧ and ∨ we thus verify whether the operands are expressions in the
language L. Otherwise, we need to further pare it down to a propositional formula. When
the operator is >, we define it as an ordering with an expression such as ϕ > ψ read as “ϕ is
more certain than ψ” or, alternatively, “we have more reason to believe ¬ψ than ¬ϕ” (and
equivalently for ≥).5 When the operator is not, we verify whether the classical negation of
the formula is more strongly believed than the formula itself.

A close relation exists between λ and possibility measures (?) for propositional state-
ments ϕ,ψ ∈ L. From this relationship, some interesting properties can readily be de-
rived: λ(ϕ ∨ ψ) = max(λ(ϕ), λ(ψ)), λ(ϕ ∧ ψ) ≥ min(λ(ϕ), λ(ψ)), and λ(⊥) = −∞. If we
use maxΦ = max {Φ(ω) | ω ∈ Ω} to denote the weight associated with the possible world(s)
with the strongest belief, we also have that λ(>) = maxΦ,6 and max(λ(ϕ), λ(¬ϕ)) = maxΦ.
As we will see in Section 6.2, this close relation between the λ-value and possibility mea-
sures will also allow us to instantiate an epistemic state as a possibility distribution in a
rather straightforward way. Also notice that, due to the lack of normalisation, λ(>) can
have different values in different epistemic states.

It should be noted at this stage that negation-as-failure and qualitative operators such
as ≥ only make sense when each operand ϕ is a classical formula, i.e. ϕ ∈ L. Formulas where
this is not the case are not allowed in L≥, and default to ⊥ when evaluated semantically.

We now give some examples of the λ-value of well-formed formulas ϕ ∈ L≥.

Example 3. Consider λ of Ψ from Example 1 where maxΨ = 5. We have:

λ(a ∧ c) = maxΨ λ(¬a ∧ c) = 2 λ(a ∧ ¬a) = −∞
λ
(
(¬a ∧ c) > (¬a ∧ ¬c)

)
= λ(>) = maxΨ λ(c ≥ ¬c) = maxΨ λ(b > ¬b) = −∞

For example, λ(a∧c) = maxΨ since Ψ({a, b, c}) = maxΨ and {a, b, c} |= a∧c. An expression
such as (¬a ∧ c) > (¬a ∧ ¬c), which is also believed to be true, states that the agent, even
if a would be false, still believes c over ¬c.

5. In terms of possibility theory: we want N(ϕ) ≥ N(ψ), i.e. Π(¬ϕ) ≤ Π(¬ψ).
6. Importantly, maxΦ corresponds with a possibility of 1 as this is the λ-value at which the agent believes

formulas to be true. Hence, > always evaluates to true as it always has λ(>) = maxΦ.

7

Using the λ-mapping we next define when a formula ϕ is entailed:

Definition 4. Let Φ be an epistemic state and ϕ a formula in L≥. We say that ϕ is entailed
by Φ, written as Φ |= ϕ, if and only if λ(ϕ) > λ(¬ϕ).

Note that for a proposition ψ simply requiring that λ(ψ) = maxΦ is not enough to imply
that Φ |= ψ. Indeed, for b ∈ At we could have that λ(b) = λ(¬b) = maxΦ, which occurs
when we are ignorant about the value of b. As such, we need to ensure that both expressions
are mapped onto strictly distinct values. Only this notion of entailment (assuming ψ ∈ L)
corresponds exactly to those formulas that can be derived from the belief base Bel(Φ).

Proposition 1. Let ϕ ∈ L be a propositional formula, Φ be an epistemic state with do-
main Ω and λ be the mapping over Ω as defined in Definition 3. We have Φ |= ϕ iff for all
ω ∈ Ω such that λ(ω) = maxΦ we have ω |= ϕ, i.e. Bel(Φ) |= ϕ.

Proof. [(Φ |= ϕ) ⇒ (Bel(Φ) |= ϕ)] We know from Definition 4 that Φ |= ϕ implies that
λ(ϕ) > λ(¬ϕ), or, due to Definition 3, that max {Φ(ω) | ω |= ϕ} > max {Φ(ω) | ω |= ¬ϕ}.
It readily follows that for all ω such that λ(ω) = maxΦ we must have that ω |= ϕ. Indeed,
assume that λ(ω′) = maxΦ and ω′ 6|= ϕ, i.e. ω′ |= ¬ϕ. This implies that λ(ϕ) ≤ λ(¬ϕ) and
thus Φ 6|= ϕ, a contradiction.

[(Φ |= ϕ) ⇐ (Bel(Φ) |= ϕ)] Bel(Φ) |= ϕ is equivalent to stating that for all ω ∈ Ω such
that λ(ω) = maxΦ we have that ω |= ϕ. Assume that Φ 6|= ϕ, i.e. λ(ϕ) ≤ λ(¬ϕ). This
implies that there must be an ω′ such that λ(ω′) = maxΦ for which ω′ |= ¬ϕ, which is a
contradiction.

Extending to multiple epistemic states

Usually an agent will have a number of epistemic states to represent its beliefs. This
can be for complexity purposes, i.e. when certain subsets of beliefs do not influence each
other they can be kept in separate epistemic states to reduce the (exponential) size of each
epistemic state involved. It can also be for practical purposes, where the agent wants to use
a different theory of uncertainty and/or different revision rules for every epistemic state.
To accommodate multiple epistemic states, we introduce the concept of a global uncertain
belief set, or GUB for short.

Definition 5. A GUB denoted as G is a set {Φ1, ...,Φn} where each Φi is an epistemic
state over the domain Ai ⊆ At such that {A1, ..., An} is a partition of At.

Each local (or isolated) epistemic state Φi thus models beliefs that are semantically related,
e.g. the colour of a traffic light or the current battery level, and that are governed by the
same form of uncertainty. A GUB groups a set of such local epistemic states, and is therefore
a representation of the overall beliefs of an agent. However, a GUB is not itself an epistemic
state. This has a number of benefits and consequences. First, it simplifies the exponential
representation of an epistemic state by partitioning the beliefs. Second, it allows for a
general framework where each local epistemic state can use a different representation, as
we will see in more detail later on. Third, it does not include a revision strategy (as each
local epistemic state can have a distinct revision strategy).

8

Despite these differences, we can use a GUB to determine if a context ϕ – the pre-
condition for a plan in a BDI setting – is true according to the agent’s collective beliefs.
Intuitively, ϕ can be evaluated directly if it applies to a single local epistemic state Φi,
i.e. we can verify whether Φi |= ϕ. Otherwise, we need to break ϕ apart up to the point
where we can evaluate it directly. Whether or not this is possible depends on the connective.
An expression can trivially be split when the connective is either ∧ or ∨ as these connectives
allow both operands to be evaluated independently. However, for the connectives ≥ or >
an evaluation is only possible when both operands are from the same local epistemic state.
Indeed, in general, stratifications of different formulas in different local epistemic states are
incomparable due to the varying underlying structures. To make this explicit, we define
the language to be used on the GUB level as LG . We have that every ϕ ∈ LAi≥ over Ai with
i ∈ [1, k] is also a well-formed formula in LG . Furthermore, for ϕ1, ϕ2 ∈ LG we also have
that ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 are valid formulas in LG .

We now formalise the evaluation of a formula ϕ ∈ LG in the context of a GUB. A for-
mula ϕ is broken apart by simplifying it, which returns the evaluation of ϕ by evaluating the
operands (or it returns ⊥ if the connective is ≥ or > and both operands are incomparable).
We can then define valGUB (ϕ) as7:

valGUB (ϕ) =

> if ϕ ∈ LAi≥ ,Φi |= ϕ

⊥ if ϕ ∈ LAi≥ ,Φi 6|= ϕ

simplify(ϕ) otherwise

simplify(ϕ⊗ ψ) = valGUB (ϕ)⊗ valGUB (ψ) ⊗ ∈ {∧,∨}

Definition 6. Let G be a GUB and ϕ be a formula in LG. We say that ϕ is entailed by G,
written as G |= ϕ, if and only if valGUB (ϕ) ≡ >.

Finally, we look at the revision of a GUB G with an input, or uncertain belief, b = (ϕ,m)
and ϕ ∈ L, denoted as G ◦ b.8 While the notation suggests that G is treated as an epistemic
state, which would be theoretically feasible by regarding it as the Cartesian product of its
local epistemic states, such a transformation would be overly computationally expensive.
Instead, we define the revision process of a GUB as a marginalisation of the propositional
formula ϕ before revising the desired local epistemic state(s). Intuitively, the marginali-
sation involves splitting off those models of the input b relevant to a given local epistemic
state. The resulting proposition is by definition a proposition in the correct language, thus
allowing us to revise the local epistemic state Φi directly. Each Φi can then use the revision
rules that are relevant for the chosen representation of the epistemic state.

Definition 7. Let G be a GUB, b = (ϕ,m) an input, and Ain = {l∗ | l ∈ lit(ϕ)} (i.e. the
set of atoms used in ϕ). For every local epistemic state Φi ∈ G we define refine(b,Φi) as:

refine(b,Φi) =

{
forget(b,Φi) if Ain ∩Ai 6= ∅
〈〉 otherwise

7. Notice that the semantics will evaluate some formulas that are syntactically invalid. In all of these cases,
however, the formulas will evaluate to ⊥.

8. There may very well be a difference of magnitudes between the weights used in the different local
epistemic states of a GUB. To accommodate for this, we simply need to adopt the revision strategy
associated with each local epistemic state to correctly scale the input weight.

9

where forget(b,Φi) = 〈(α,m) | ω ∈ Mod(ϕ), α = ω ∩ lit(Ai)〉 is a sequence of inputs.

Whenever the set of atoms Ai used in the epistemic state Φi and the set of atoms Ain used
in the input b do not overlap, we have that refine(b,Φi) = 〈〉. In other words: the input b
does not affect Φi. However, when Ain∩Ai 6= ∅, i.e. when some of the atoms in the input are
found in Φi, then (b,m) is broken up into a sequence of inputs that apply to Φi. To clarify
this, consider the following example:

Example 4. Let At = {c, d, e}, G = {Φ1,Φ2}, and A1 = {c}, A2 = {d, e}. Consider the
input b = ((c∧d)∨e,m), which is a propositional formula over the set of atoms At. We have
that Mod(ϕ) = {{c, d, e} , {c, d,¬e} , {c,¬d, e} , {¬c, d, e} , {¬c,¬d, e}}. Then:

forget(b, A1) = 〈(c,m), (c,m), (c,m), (¬c,m), (¬c,m)〉
forget(b, A2) = 〈(d ∧ e,m), (d ∧ ¬e,m), (¬d ∧ e,m), (d ∧ e,m), (¬d ∧ e,m)〉

Importantly, as can be seen in the example, forget derives the sequence of inputs relevant
to a local epistemic state Φi based on the models of the propositional formula ϕ, which
ensures that the principle of the irrelevance of syntax is fulfilled.

Once an input b is broken down into a sequence of inputs refine(b,Φi) for each epistemic
state Φi, this sequence can be used to directly update the local epistemic state Φi. Indeed,
each input (α′,m) in the sequence refine(b,Φi) corresponds to a simple epistemic state
from (?), i.e. to an epistemic state Φin with the domain 2Ai such that Φin(ω) = µ iff ω |= α′

and Φin(ω) = 0 otherwise. Since any epistemic state Φ can be revised by a simple epistemic
state Φ′ with the same domain Ω, the revision becomes an iterated revision of every Φi ∈ G
using the corresponding simple epistemic states from refine(b,Φi).

Definition 8. Let G be a GUB and b an input. We have G ◦ b = {Φi ◦ refine(b,Φi) | Φi ∈ G}
with ◦ a revision operator associated with Φi.

The final output of this iterated revision is unique regardless of the order in which we revise
Φi with simple epistemic states Φin in forget(b,Φi) based on postulates B5 and B6 in (?)
(i.e. weights are cumulative and the order of revising does not affect the result).9 Thus,
more accurately, forget(·, ·) and refine(·, ·) are multisets instead of sequences. A special case
is furthermore when Ain ⊆ Ai, in which case the refine-and-forget strategy is equivalent to
Φi ◦ b, as desired. A visual summary of revising a GUB is given in Figure 1.

4. Full Syntactic Approach to Model/Revise with Uncertain Inputs

So far we have focussed on the semantic representation of beliefs as epistemic states, and
how we can reason about uncertain beliefs based on these epistemic states. Of course,
for practical purposes, the exponential representation of an epistemic state is prohibitive
(i.e. EXPSPACE). In this section we therefore develop a general syntactic approach to be-
lief change with uncertain inputs, agreeing with the semantic notions, but better suited for
practical applications (the solution we will propose is an NP-complete approach). Two com-
peting sources of complexity will play an important role in the development of our syntactic
approach. On the one hand, an agent will need to revise its beliefs when new information

9. Postulate B5 states Φ◦(ϕ,m)◦(ϕ, n) = Φ◦(ϕ,m+n), and B6 that Φ◦(ϕ,m)◦(ψ, n) = Φ◦(ψ, n)◦(ϕ,m).

10

uncertain
input b G ◦ b

GUB G

Φ1
Φ2

Φ3
Φ′1

Φ′2

Φ′3

Φ′
1 = Φ1 ◦ Φin,1

Φ′
2 = Φ2 ◦ Φin,2

Φ′
3 = Φ3 ◦ Φin,3

Φin,1 = forget(b,Φ1)

Φin,2 = forget(b,Φ2)

Φin,3 = forget(b,Φ3)

G |= ϕ

GUB G

simplify(ϕ)
recombine

Φ1
Φ2

Φ3

Φ1 |= ϕ1

Φ2 |= ϕ2

Φ3 |= ϕ3

Figure 1: A visual representation of revising (left)/entailment (right) in a typical GUB.

is made available. On the other hand, an agent needs efficient ways of deciding belief
entailment, i.e. whether Φ |= ϕ with ϕ ∈ L≥.

The first step is to decide on a syntactic representation of the beliefs currently held by
an agent. A common way of syntactically representing an epistemic state Φ is by means
of a finite set of weighted formulas (ψ,m) with m the weight of formula ψ, see e.g. (?,
?). However, such a representation would make it complex to verify if a belief is entailed
when considering uncertain input. Indeed, the weight of a possible world ω in the semantic
representation might be dependent on the weight of some or all of the formulas in the
syntactic representation. Instead, we propose a syntactic representation that is closer to
the semantic one by requiring that no two weighted formulas are pairwise satisfiable:

Definition 9. A weighted belief base B is a set of formulas of the form (ψ,m) with ψ ∈ L
and m ∈ Z so that there does not exist (ψi,mi), (ψj ,mj) ∈ B for which ψi∧ψj is satisfiable.

On a semantic level, this definition enforces that Mod(ψi) ∩Mod(ψj) = ∅, i.e. none of the
formulas in B have models in common. While this representation might at first appear
restrictive, it is important to note that on the semantic level the possible worlds adhere to
this exact same restriction. Intuitively, in a weighted belief base B each formula (ψ,m) ∈ B
corresponds to the set of possible worlds Mod(ψ), all having the weight m.

Example 5. Consider the epistemic states Φ and Ψ from Example 1. We can compactly
represent Φ using the weighted belief base {(a, 3)}. Similarly, we can represent Ψ using the
weighted belief base {(a ∧ c, 5), (¬a ∧ c, 2), (a ∧ ¬c, 3)}.

We now formalise the intuition from the previous example and define how a weighted belief
base B can be used to retrieve the corresponding semantic representation:

Definition 10. Let B be a weighted belief base. The epistemic state ΦB defined as

ΦB(ω) =

{
m if there exists a (ψ,m) ∈ B such that ω |= ψ
0 otherwise

is the (semantic) epistemic state induced by B.

11

The above definition formalises the intuition that every formula (ϕ,m) in B corresponds
to a set of models Mod(ϕ) such that for every ω ∈ Mod(ϕ) we have that ΦB(ω) = m. Hence,
as desired, a weighted belief base is a compact representation of a semantic epistemic state.
Furthermore, every epistemic state can be represented as a compact weighted belief base.
Indeed, for ω ∈ Ω we can define the equivalence class [ω] = {ω′ ∈ Ω | Φ(ω) = Φ(ω′)}, i.e. all
possible worlds with the same weight. For each equivalence class [ω] of Φ we then have
that (ϕω,Φ(ω)) ∈ B with ϕω a proposition such that Mod(ϕω) = [ω]. So, ϕω is a proposi-
tion that has as its models exactly those possible worlds that are in the equivalence class
[ω], i.e. models with the same weight. It then readily follows from Definition 10 that Φ = ΦB.

Using a weighted belief base, it is straightforward to determine the weight associated with
any arbitrary formula:

Proposition 2. Let B be a weighted belief base and ϕ ∈ L a formula. We have that
λ(ϕ) = mi 6= 0 iff there exists a (ψi,mi) ∈ B such that ψi ∧ ϕ is satisfiable and there does
not exist a (ψj ,mj) ∈ B with mj > mi such that ψj ∧ ϕ is satisfiable.

Proof. This readily follows from the Definition 3 stating that λ(ϕ) = maxω|=ϕ ΦB(ω) and
from Definition 10. Indeed, since every formula in B is a compact representation of a set of
possible worlds ω and since none of the classical formulas in B share models, the definition
of λ(ϕ) reduces to finding the formula (ψi,mi) in B with the highest weight mi such that
it shares models with ϕ, i.e. such that ω |= ϕ or ϕ ∧ ψi is satisfiable. Otherwise, from
Definition 10, we know that λ(ϕ) = 0.

Proposition 3. Let B be a weighted belief base, ϕ ∈ L a formula and m ∈ Z a weight.
Determining whether λ(ϕ) = m is NP-complete.

Proof. It readily follows that this decision problem is in NP due to Proposition 2, i.e. veri-
fying whether λ(ϕ) = m requires |B| satisfiability checks, which in itself is an NP-complete
problem. To prove NP-hardness, we reduce the satisfiability problem, i.e. verifying whether
a given formula ψ is satisfiable, to the problem of verifiying whether λ(ϕ) = m. Without
loss of generality, we can assume that ψ is in NNF. Let B = {(ψ, 1)} and ϕ = a† ∨¬a† with
a† a fresh atom, i.e. ϕ is a tautology. We have that ψ is satisfiable iff λ(ϕ) = 1. Indeed, we
know from Proposition 2 that determining λ(ϕ) = 1 is equivalent to verifying that ψ ∧ ϕ is
satisfiable or, equivalently, that ψ is satisfiable since ϕ is a tautology.

So far we have seen that a weighted belief base offers a practical representation of
an epistemic state. While the representation appears restrictive at first, it has the same
expressive power as an epistemic state. Furthermore, any epistemic state can be represented
as a weighted belief base and each weighted belief base corresponds to exactly one epistemic
state. Furthermore, a weighted belief base allows for a convenient way of determining the
weight associated with any arbitrary formula, a problem shown to be NP-complete.

Clearly, a weighted belief base is a good representation for belief entailment. Indeed,
information can efficiently be entailed from it (i.e. both entailment from a weighted belief
base and a classical propositional belief base sit on the same level of the polynomial hier-
archy), and a weighted belief base allows us to represent an epistemic state while avoiding
its exponential space requirements.

12

We furthermore need to verify that a weighted belief base is a good representation for
belief revision. In particular, we now need to verify whether there exists an actual syntactic
revision operator that can transform a weighted belief base into another set of formulas
given an arbitrary input. This new set of formulas then has to:

R1 agree with the definition of a weighted belief base (see Lemma 1); and

R2 correspond with belief change on a semantic level (see Proposition 4).

Before defining the syntactic revision operator, let B∗ for a weighted belief base B denote
the underlying classical set of formulas, i.e. B∗ = {ψi | (ψi,mi) ∈ B} is the set of formulas
stripped of their associated weights. This allows us to come to the following definition.

Definition 11. Let B be a weighted belief base and (ϕ, µ) a non-trivial input, i.e. µ 6= 0.
The syntactic revision ◦s is given by B◦s (ϕ, µ) = B′∪

((
ϕ ∧ ¬

∨
(B∗ϕ)

)
, µ
)

with B′ given by:

B′ = {(ψ ∧ ϕ,m+ µ), (ψ ∧ ¬ϕ,m) | (ψ,m) ∈ Bϕ} ∪ B \ Bϕ

for Bϕ = {(ψ,m) | (ψ,m) ∈ B and ψ ∧ ϕ is consistent}. Whenever ψ ∧ ¬ϕ is inconsistent
we simply omit it from B′ as it conveys no information.

Note that (ψ∧ϕ) describes the models shared between ψ and ϕ, (ψ∧¬ϕ) are those models
in ψ but not in ϕ and (ϕ ∧ ¬

∨
(B∗ϕ)) are those models in ϕ that are not yet in B∗ϕ (with

Bϕ as defined in Definition 11, and B∗ as defined right before Definition 11). This makes the
intuition of the syntactic operator clear: we change the weight of formulas in B with shared
models, we leave the formulas that do not share models untouched, and we introduce a new
formula with weight µ that encompasses those models that did not yet occur in B.

Example 6. Let B0 = {} be an empty weighted belief base. We subsequently revise B0

with (a, 3) and (c, 2). We trivially have that B1 = B0 ◦s (a, 3) = {(a, 3)} since B0 is empty.
We find that B2 = B1◦s (c, 2) = B′1∪(ϕ∧¬

∨
(B∗1,ϕ)) = {(a ∧ c, 5), (a ∧ ¬c, 3)}∪{(c ∧ ¬a, 2)}

= {(a ∧ c, 5), (a ∧ ¬c, 3), (c ∧ ¬a, 2)}. Using Definition 10 we can verify that Bel(B2) = a∧c.
Notice that the inputs coincide with Example 1, as does the resulting belief set. Furthermore,
the results coincide with the intuition expressed in Example 5.

It is easy to see that the syntactic operator only grows B in polynomial space. Indeed,
after each revision with an input the number of new weighted formulas is bounded by
O(2 · |B| + 1) with |B| the number of weighted formulas in B. Indeed, we know from
Definition 11 that the resulting weighted belief base B ◦s (ϕ, µ) will contain at most two
pairs for every weighted belief (ψ,m) in the original belief base B, i.e. (ψ ∧ ϕ,m + µ) and
(ψ ∧ ϕ,m). Furthermore, again from Definition 11, we know that every time we revise a
weighted belief base with a given input we may add one additional pair to the resulting
weighted belief base, i.e. B ◦s (ϕ, µ), i.e.

(
ϕ ∧ ¬

∨
(B∗ϕ)

)
.

Interestingly, a weighted belief base never contains more formulas than possible worlds,
i.e. |B| ≤ |Ω|.10 This follows by definition due to the pairwise inconsistency. Indeed, since
the revision operator ◦s transforms weighted belief bases into weighted belief bases, even for
small At we never have more formulas in the syntactic representation than possible worlds.

10. Indeed, a weighted belief base essentially assign weights to members of a partition of Ω.

13

This is particularly interesting for relative small epistemic states, where the number of
possible worlds is quite limited. Even in those cases, the syntactic representation is an
efficient one.

We now verify R1, which we set out earlier: the syntactic revision needs to ensure that
the set of classical formulas after revision remain pairwise inconsistent, i.e. the result is a
weighted belief base.

Lemma 1. Let B be a weighted belief base, (ϕ,m) an input, and B′′ = B◦s (ψ,m). We have
that for all (ψ′′i ,m

′′
i), (ψ

′′
j ,m

′′
j) ∈ B′′ it holds that ψ′′i ∧ ψ′′j is not satisfiable, i.e. ψ′′i and ψ′′j

are pairwise inconsistent.

Proof. We start with some basic properties that will be used throughout this proof: for a sat-
isfiable arbitrary propositional formula ρ we have that Mod(ρ) 6= ∅, Mod(ρ) ∩Mod(¬ρ) = ∅
(i.e. a formula and its negation do not share models), and Mod(ρ) ∪Mod(¬ρ) = Ω (i.e. mod-
els of a formula and its negation span all possible worlds).

We first show that modifying the existing weighted formulas in B does not violate their
pairwise unsatisfiability. By definition, we know that all formulas (ψ,m) ∈ Bϕ, with Bϕ as
defined in Definition 11, are consistent with ϕ. Alternatively, we can say that ψ ∧ϕ is con-
sistent, or, that Mod(ψ) ∩Mod(ϕ) 6= ∅. Since Mod(ψ) ⊆ Ω with Ω = (Mod(ϕ) ∪Mod(¬ϕ))
and since Mod(ϕ) ∩Mod(¬ϕ) = ∅ we can rewrite Mod(ψ) as Mod(ψ ∧ ϕ) ∪Mod(ψ ∧ ¬ϕ)
with Mod(ψ ∧ ϕ) ∩Mod(ψ ∧ ¬ϕ) = ∅. Hence, we know that the conjunction of (ψ ∧ϕ) and
(ψ ∧ ¬ϕ) is not satisfiable. Indeed, we just concluded that these formulas do not share
models. In addition, for every weighted formula (ψ′,m) ∈ B \ Bϕ the condition holds by
assumption of B and since Mod(ψ′) ∩Mod(ϕ) = ∅. We have thus shown that all formulas
in B′, with B′ as defined in Definition 11, are indeed pairwise unsatisfiable.

It remains to be checked whether ((ϕ ∧ ¬
∨

(B∗ϕ)),m) upholds the condition. Since
Mod(ρ) ∩Mod(¬ρ) = ∅ and Mod(ρ) ∪Mod(¬ρ) = Ω with ρ =

∨
(B∗ϕ) we know that we can

rewrite Mod(ϕ) as Mod(ϕ∧
∨

(B∗ϕ))∪Mod(ϕ∧¬
∨

(B∗ϕ)) where all models in Mod(ϕ∧
∨

(B∗ϕ))
are considered in the case discussed above and, trivially, Mod(ϕ ∧ ¬

∨
(B∗ϕ)) ∩Mod(ψ) = ∅

for all (ψ,m) ∈ B since no models are shared with the negation of a formula.

The verification of R2 requires us to show that the revision result obtained using the
syntactic revision operator corresponds to the result obtained using the semantic revision
operator. By relying on Lemma 1, which shows that none of the weighted formulas in a
belief base B share any models, we can simplify this requirement. Indeed, it suffices to
verify that the weight associated with each formula in the syntactic approach corresponds
exactly with the weight associated with its models (i.e. possible worlds) in the semantic
approach. In other words, we need to verify that Φ(ω) = m with ω ∈ Mod(ψ) iff (ψ,m) ∈ B
and otherwise Φ(ω) = 0. Similar as to the semantic case, we will use the notation B ◦s I
with I = 〈i1, ..., in〉 to denote the revision with a sequence of inputs, i.e. B ◦s i1 ◦s ... ◦s in.

Proposition 4. Let I be a finite sequence of inputs. Let Φ0 be the epistemic state such
that ∀ω ∈ Ω we have that Φ0(ω) = 0. Let B0 = {} and let Φn = Φ0 ◦ I and Bn = B0 ◦s I.
We have that (ψ,m) ∈ Bn iff Φn(ω) = m for every ω ∈ Mod(ψ).

Proof. We prove this by induction on the number of inputs in I. The base cases are trivial.
When I = 〈〉 there is nothing to do and the proposition holds vacantly. When I contains

14

only a single element, i.e. I = 〈(ψ1,m1)〉, then we trivially obtain that B1 = {(ψ1,m1)}
while Φ1(ω) = m1 iff ω |= ψ1 and Φ1(ω) = 0 otherwise. This is exactly the epistemic state
induced by B1 according to Definition 10.

Now assume that for a sequence of inputs I of size n with Bn = B0 ◦s I and Φn = Φ0 ◦ I
we have that Φn(ω) = m with ω ∈ Mod(ψ) iff (ψ,m) ∈ Bn. Equivalently, we thus have that
∀ω ∈ Ω · Φn(ω) = Ψn(ω) with Ψn the epistemic state induced by Bn in Definition 10. We
show that this equivalence is upheld after revising with the (n+1)-th input in = (ϕn+1, µn+1)
where Φn+1 = Φn ◦ in and Bn+1 = Bn ◦s in.

By definition of a simple epistemic state and the semantic revision operator we know
that Φn+1(ω) = Φn(ω) for all ω such that ω 6|= ϕn+1. Similarly, in Bn+1 we have the
formulas Bn \ (Bn)ϕn+1

and the formulas (ψ ∧ ¬ϕn+1,m) for those (ψ,m) ∈ Bn such that
ψ ∧ ϕn+1 is consistent. In other words: the weight of formulas that do not have models in
common with ϕn+1 as well as the weight of the models of ψ ∧ ¬ϕn+1 (those models of ψ
that are not models of ϕn+1) is unchanged.

For all ω such that ω |= ϕn+1 we know that Φn+1(ω) = Φn(ω) + µn+1. Similarly, in
Bn+1 we have the formulas (ψ ∧ ϕn+1,m+ µn+1) for those (ψ,m) ∈ Bn such that ψ ∧ ϕn+1

is consistent. However, there may be models in Mod(ϕn+1) that are not yet in Bn. Indeed,
these models are exactly the models of the formula ϕn+1 ∧ ¬

∨
((Bn)∗ϕ) to which we assign

the weight µn+1. Once again, it is easy to verify from Definition 10 that we thus find
∀ω ∈ Ω · Φn+1(ω) = Ψn+1(ω) with Ψn+1 the epistemic state induced by Bn+1.

We have thus shown that the syntactic revision operator introduced in Definition 11
behaves as expected. Indeed, given an input (ψ,m) it transforms an existing weighted belief
base B into the weighted belief base B′′, such that Φ ◦ (ψ,m) = ΦB′′ with B′′ = B ◦s (ψ,m).
Given that the syntactic revision operator relies on satisfiability checks, NP complexity is
trivially derived. As such, we have attained our goal of balancing the complexity of both
belief entailment and belief revision. This shows that a weighted belief base is a good
representation for belief revision. Indeed, a successively updated weighted belief base only
grows polynomially in size, and never grows larger than the corresponding epistemic state.

Up until now we only considered formulas of the form ϕ ∈ L. It is, however, straightfor-
ward to extend our approach to formulas in the language L≥. Indeed, since we know how
to determine the weight associated with a formula ϕ ∈ L, we can readily apply pare(ϕ ≥ ψ)
from Definition 3. Verifying whether ϕ ≥ ψ holds only requires |B|+ 1 satisfiability checks
when B is sorted based on the weight of its formulas. Once we find the highest weight µ
for ϕ, we only need to verify if ψ ∧ ψ′ is satisfiable for (ψ′, µ′) ∈ B with µ′ ≤ µ. Reason-
ing about the relationship of the plausibility of two formulas ϕ ∈ L can thus be done as
efficiently as determining the weight of a formula ϕ ∈ L.

5. Tractable Syntactic Approach to Model/Revise with Uncertain Inputs

In the previous section we introduced the first syntactic operator capable of dealing with
arbitrary unreliable inputs. From a BDI perspective, however, the NP-hardness of the
syntactic operator might still turn out to be prohibitive. This is particularly relevant
to resource-bounded agents or agents for which reactiveness is of paramount importance.
For this reason, we now develop a tractable approach to belief change with unreliable

15

inputs. As we will see, this tractable approach is surprisingly powerful, and extends upon
the language allowed in AgentSpeak(L) (?). Of course, tractability does come at the cost of
additional restrictions over the full syntactic version. One very common restriction in the
literature, which we will also adopt, is to only consider literals as inputs (e.g. (?)). For our

purposes, this implies that we only keep track of the weights
+
µ and

−
µ associated with each

atom a ∈ At, with
+
µ and

−
µ the weight of resp. a and ¬a.

Definition 12. A compact epistemic state W is a mapping W : At→ (Z ∪ {−∞,+∞})2

such that W(a) = (
+
µ,
−
µ), i.e. the weights associated with resp. a and ¬a.

The epistemic state ΦW associated with a compact epistemic state W is defined next.

We denote the weight of a literal l ∈ Lit given a compact epistemic state W as wW(l) =
+
µ

if l = a and wW(l) =
−
µ if l = ¬a with W(a) = (

+
µ,
−
µ).

Definition 13. Let W be a compact epistemic state. We have that ΦW , defined as

ΦW(ω) =
∑
ω|=l

wW(l)

is the corresponding (semantic) epistemic state.

This definition is similar to Definition 10 from the previous section, where we now only use
a set of literals (which can share models) as a compact representation of an epistemic state.
Given the way we defined a compact epistemic state, and since we only allow (weighted)
literals as input, a tractable belief change operator only has to change the weight of the
literal given in the input.

Definition 14. Let W be a compact epistemic state. Let (l, µ) be an input with l ∈ Lit and
µ ∈ Z ∪ {−∞,+∞}. We define W ′ =W ◦t (l, µ) as:

W ′(a) =

(
+
µ + µ,

−
µ) if l = a

(
+
µ,
−
µ + µ) if l = ¬a

W(a) otherwise

with W(a) = (
+
µ,
−
µ).

Proposition 5. Revising a compact epistemic state can be implemented using an algorithm
with O(log2 |At|) complexity.

Proof. A compact epistemic state can be implemented as a sorted map with each element
being a pair (a, V). The atom ‘a’ is used as the key and V is a pair of values. Belief revision
involves a binary search over the keys requiring at most log2(|At|) steps and a constant
time revision – which is a simple addition – of the respective value.

Example 7. Consider an agent who has received no prior input, i.e.W(a) = (0, 0) for every
a ∈ At. Assume we change W with the inputs 〈(¬c, 2), (a, 4), (b,−3), (a, 1), (c, 2), (¬a, 4)〉.
We obtain W ′ with:

W ′(a) = (5, 4) W ′(b) = (−3, 0) W ′(c) = (2, 2).

16

Now assume that W ′′ = W ′ ◦t (¬b, 4). From Definition 14 we know that we only have to
change the ordered pair associated with b, i.e. we haveW ′′(b) = (−3, 4), W ′′(a) = (5, 4), and
W ′′(c) = (2, 2). The epistemic state ΦW corresponding with W ′′ according to Definition 13:

ΦW({a, b, c}) =4 ΦW({¬a, b, c}) =3

ΦW({a, b,¬c}) =4 ΦW({¬a, b,¬c}) =3

ΦW({a,¬b, c}) =11 ΦW({¬a,¬b, c}) =10

ΦW({a,¬b,¬c}) =11 ΦW({¬a,¬b,¬c}) =10

We now prove the correctness of the operator ◦t introduced in Definition 14. As before,
we use B ◦t I with I = 〈i1, ..., in〉 a sequence of inputs, each of the form (l, µ) with l ∈ Lit
and µ ∈ Z, to denote B ◦t i1 ◦t ... ◦t in.

Proposition 6. Let I be a finite sequence of inputs. Let Φ0 be an epistemic state such that
∀ω ∈ Ω we have that Φ0(ω) = 0. Let W0 be a compact epistemic state with W0(a) = (0, 0)
for all a ∈ At and let Φn = Φ0 ◦ I and Wn = W0 ◦t I. We have that Φn(ω) = ΦWn(ω) for
all ω ∈ Ω with ΦWn as defined in Definition 13.

Proof. We prove this by induction on the number of inputs in I. When I = 〈〉 the propo-
sition holds trivially. When I = 〈(l1, µ1)〉 we have Φ1(ω) = µ1 iff ω |= l1 and Φ1(ω) = 0
otherwise. This corresponds exactly with ΦW1 since wW1(l1) = µ1 and wW1(l) = 0 for all
other l ∈ Lit. Now assume that Φn−1(ω) = ΦWn−1(ω) for I a sequence of n − 1 inputs.
We show that the equivalence is upheld after revising with the n-th input in = (ln, µn).

Note that Φn−1(ω) 6= Φn(ω) only if ω |= ln. In particular, we have that Φn(ω) =
Φn−1(ω) + µn. Similarly, ΦWn−1(ω) 6= ΦWn(ω) only if ω |= ln. We have that wWn−1 =
wWn +µn from Definition 14 and thus, due to Definition 13, that ΦWn−1(ω) = ΦWn(ω)+µn.
Hence Φn(ω) = ΦWn(ω) due to the induction hypotheses and since both are modified with
the weight µn only if ω |= ln.

Clearly, restricting ourselves to literals as inputs makes it possible to use a simpler represen-
tation that allows for a very efficient belief change operator; yet it is proven to be equivalent
to the revision of corresponding epistemic states. That is, this simpler form of revision does
not lose the generality of belief modelling and revision of this new framework.

Of course, belief revision is only part of the problem, and we also require efficient
techniques for belief entailment. Defining the belief set can easily be done. We have
Bel(W) =

∧
{l ∈ Lit | wW(l) > wW(¬l)} with W a compact epistemic state. It is then

straightforward to verify, for an arbitrary compact epistemic state W, that Bel(W) =
Bel(ΦW) with ΦW the epistemic state induced by W. Furthermore, since Bel(W) is a
conjunction of literals, evaluating whether a formula ϕ ∈ L is true according to the belief
set of the agent simply consists of verifying whether ϕ is true after replacing all occurrences
of literals from Bel(W) in ϕ by > and all others by ⊥.

While determining whether a formula is true or false given Bel(W) is straightforward,
the problem of reasoning about the uncertainty in a compact epistemic state – i.e. deter-
mining the λ-value of formulas – is more involved. To do so efficiently, we need to restrict
the language of the formulas. In particular, we will look at a fragment of the language for
which it is easy to determine those literals for which the weight is known, called the bounded

17

literals. We will clarify the intuition by reconsidering Example 7 where At = {a, b, c}. To
determine the λ-value of the formula ¬a ∧ c, we are forced to use the weights associated
with ¬a and c, i.e. the set of bounded literals is {¬a, c}, while ‘b’ is unbounded. It readily
follows that the possible worlds satisfying the formula ¬a∧ c are {¬a, b, c} and {¬a,¬b, c}.
The weight of the formula is then the highest weight associated with either of these pos-
sible worlds. From Definition 13 we know that Φ({¬a, b, c}) = 4 + (−3) + 2 = 3 whereas
Φ({¬a,¬b, c}) = 4 + 4 + 2 = 10. In other words: to determine the weight of the formula
we have to use the weight associated with the bounded literals (i.e. ¬a and c) while we
can freely take the maximum weight associated with either the positive or negative atom
‘b’, since ‘b’ is unbounded. Thus, λ(¬a ∧ c) = 4 + max{−3, 4} + 2 = 10. As long as the
fragment of the language we consider makes it easy and unambiguous to determine the set
of bounded literals, determining the λ-value of a formula is a tractable problem.

We define the fragment Lt ⊆ L in BNF as:11

disj ::= a | ¬a | disj 1 ∨ disj 2

conj ::= a | ¬a | conj 1 ∧ conj 2

ϕ ::= a | ¬a | disj ∧ conj | ϕ1 ∨ ϕ2

Intuitively, the language Lt ensures that whenever a conjunction occurs, one of the branches
will be composed of only conjunctions while the other branch will only contain disjunctions.
Notice that the fragment Lt is quite expressive as it is a superset of all DNF formulas.

We now define the weight associated with a formula in Lt. To simplify this definition,
we introduce the new notation TW =

∑
a∈At maxW(a), i.e. the total of all maximum

weights associated with each atom (or: the maximum weight when no literals are bounded).
Importantly, the value TW can be computed as a byproduct of belief change. Indeed, for
W ′ =W ◦t (l, µ) we have that TW ′ = TW −maxW(l∗) + maxW ′(l∗).

Example 8. Consider W ′ from Example 7, i.e. W ′(a) = (5, 4), W ′(b) = (−3, 0), and
W ′(c) = (2, 2). We have that TW ′ = 7. Furthermore, consider W ′′ = W ′ ◦t (¬b, 4) from
Example 7. We have that maxW ′(b∗) = 0, maxW ′′(b∗) = 4 since W ′′(a) = (5, 4), W ′′(b) =
(−3, 4), and W ′′(c) = (2, 2), and therefore that TW ′′ = 7− 0 + 4 = 11.

The definition of the weight associated with a formula in Lt is then as follows:

Definition 15. Let W be a compact epistemic state and ϕ ∈ Lt. Let L be a set of literals.
We recursively define λt(ϕ,L) as:

λt(ϕ1 ∨ ϕ2, L) = max(λt(ϕ1, L), λt(ϕ2, L))

λt(disj ∧ conj , L) = λt(disj , L ∪ lit(conj))

λt(l, L) =

{
−∞ if inconsistent(L ∪ {l})
maxTW (l, L) otherwise

with inconsistent(S) true whenever ∃a ∈ At · {a,¬a} ⊆ S, and we define maxTW (l, L) =

TW −
∑

l′∈L∪{l}

∣∣wW(l′)−maxW(l′∗)
∣∣.

11. While the language does not explicitly allow formulas of the form conj ∧ disj in ϕ, any such formula can
trivially be written as disj ∧ conj due to the commutativity of the conjunction.

18

The definition reflects the intuition we described earlier in the section. To evaluate a
formula, we need to keep track of the bounded literals. A conjunction bounds variables
(i.e. it expresses which literals must be true) while a disjunction takes the maximum of
the values of both operands without altering the set of bounded literals. A formula that
is (reduced to) just a literal l, is evaluated by considering the set L ∪ {l}, i.e. all literals
bounded so far including l. When L∪ {l} is inconsistent the weight is −∞. Otherwise, the
weight is determined by starting from TW , i.e. the weight of an unbounded formula, and
removing from it the maximum weight associated with its bounded literals. To obtain the
λ-value of the formula we add back the correct, bounded, weight of each bounded literal.

Example 9. Consider the formula ϕ = (a∨¬c)∧(c∧b) and W ′′ from Example 7. We have:

λt(ϕ, ∅) = λt((a ∨ ¬c) ∧ (c ∧ b), ∅)
= λt(a ∨ ¬c, {b, c})
= max {λt(a, {b, c}), λt(¬c, {b, c})}
= max {λt(a, {b, c}),−∞}

(since {c,¬c} ⊂ ({b, c} ∪ {¬c}))
= λt(a, {b, c})
= TW − (|5− 5|+ |(−3)− 4|+ |2− 2|)
= 11− (0 + 7 + 0) = 4

Next, we prove the correspondence between λt(ϕ, ∅) and λ(ϕ):

Proposition 7. Let W be a compact epistemic state and ΦW the epistemic state induced
by W. We have that λt(ϕ, ∅) = λ(ϕ) with λt as in Definition 15.

Proof. We first consider formulas without conjunction. Since the weight of a disjunction is
the maximum of the weight of its constituents, we only need to verify that λt(l, ∅) = λ(l).
By definition, TW is the highest weight associated with any (set of) possible world(s).
Either l is entailed by a world with the highest weight, in which case wW(l) ≥ wW(¬l),
i.e. TW −maxW(l∗) + wW(l). Otherwise, wW(l) < wW(¬l) and the possible world ω such
that ω |= l is the one that entails all other literals with highest associated weight. As such,
the weight of ω is(∑

a∈At\{l∗}

maxW(a)
)

+ wW(l),with
∑

a∈At\{l∗}

maxW(a) = TW −maxW(l∗)

by definition of TW and Definition 13.
We now consider the evaluation of a formula of the form c ∧ d or, equivalently, (ϕ1 ∧

...∧ϕn)∧ (ψ1 ∨ ...∨ ψm). Using the distributive law, we can rewrite this as (ϕ1 ∧ ...∧ϕn ∧
ψ1) ∨ ... ∨ (ϕ1 ∧ ... ∧ ϕn ∧ ψm). We thus need to verify whether the weight of a formula of
the form ξ = (ϕ1 ∧ ... ∧ ϕn ∧ ψi) is correctly determined. The possible world ω such that
ω |= ξ with the highest associated weight is the one that entails all literals not found in ξ
with the maximum associated weight. We have that the weight of ω is given by∑

a∈At\lit∗(ξ)

maxW(a) +
∑

l∈lit(ξ)

wW(l), with
∑

a∈At\lit∗(ξ)

maxW(a) = TW −
∑

l∈lit(ξ)

maxW(l∗)

19

where lit∗(ξ) = {l∗ | l ∈ lit(ξ)}. Finally, we consider the situation where lit(ξ) is inconsis-
tent, i.e. there exists an a ∈ At such that {a,¬a} ⊆ lit(ξ). We then have λ(ξ) = −∞ and,
correspondingly, Definition 15 returns −∞.

Proposition 8. Computing the λ-value of a formula ϕ ∈ Lt using a compact epistemic
state can be implemented using an algorithm with O(k · log2 |At|) complexity where k is the
number of literals in ϕ.

Proof. An algorithm can straightforwardly be devised based on Definition 15 that traverses
a given formula tree and collects the bounded literals in each conjunctive branch. Such
a traversal is linear in the size of the formula. Once the set of bounded literals has been
determined, the λ-value can be computed by retrieving the n distinct literals found in the
bounded branch. Assuming that the compact epistemic state is encoded as sorted dictionary
and a binary search algorithm is used, retrieving the value of each literal is O(log2 |At|). In
the worst case, the value of all literals in the formula need to be determined. We thus need
to retrieve at most k values where k is the number of literals in ϕ.

Similar to the previous section, we can extend the language Lt to a language L≥t for
which it is easy to evaluate formulas of the form ϕ ≥ ψ or ϕ > ψ. We have seen that
evaluating a formula ϕ ∈ Lt is tractable. Once we know the value λ(ϕ) of a formula ϕ, we
can readily apply pare(ϕ ≥ ψ) from Definition 3. As such, we define L≥t in BNF as:

disj ::= a | ¬a | disj 1 ∨ disj 2

conj ::= a | ¬a | conj 1 ∧ conj 2

ϕ ::= a | ¬a | disj ∧ conj | ϕ1 ∨ ϕ2 | ϕ1 ≥ ϕ2 | ϕ1 > ϕ2

Example 10. Consider W ′′ from Example 7. We have that c ≥ a ∧ b since λ(c) = 11 and
λ(a ∧ b) = 4. Similarly, we can verify that (c > a) ∨ (c > b) since λ(a) = 11 and λ(b) = 4,
i.e. we have ⊥ ∨> or max {⊥,>} = >.

6. Instantiating Epistemic States

Until now, we have looked at a quite general framework for representing epistemic states.
While this framework can be useful in some scenarios, it is more typical in real applications
to use more specific representations such as possibility theory (?, ?) or probability theory (?,
?). In this section, we discuss in detail how the (compact representation of) epistemic
states we have dealt with in the previous sections can be instantiated (in a broad sense),
or perhaps better, adapted, into either of these frameworks. In particular, we will discuss
instantiations of tractable syntactic versions of both possibility and probability theory.
Furthermore, we will explain in detail how the syntactic approach from Section 4 can be
applied to possibility theory to offer a full syntactical instantiation. In the probabilistic case
the assumption of conditional independence, and the ensuing limitation that only literals are
considered as inputs, collapses such a full syntactical instantiation into the tractable variant.
Instantiations that allow for conditional dependence in the probabilistic case fall beyond
the scope of this paper. For simplicity, we may define an instantiation with codomain
C such that C 6= Z ∪ {−∞,+∞}. In this case, we assume the existence of a bijection

20

f : C → Z ∪ {−∞,+∞} by which we can obtain an instantiation satisfying Definition 1.
For example, if an instantiation has the codomain [0, 1], then f may be a simple linear
mapping from [0, 1] to Z ∪ {−∞,+∞}.

6.1 Instantiation with Probability Theory

Probability theory is a theory of uncertainty primarily used for dealing with stochastic infor-
mation, often of a quantitative nature. In the context of a probabilistic modelling of beliefs,
uncertainty is represented by (discrete) probability distributions P on the set of possible
worlds, i.e. mappings of the form P : Ω→ [0, 1] such that

∑
ω∈Ω P (ω) = 1. By convention,

P (ω) = 1 implies that ω is for certain the true state of the world, while P (ω) = 0 implies
that ω is certainly not the true state of the world. Ignorance is commonly modelled by
the principle of insufficient reason with complete ignorance, i.e. complete ignorance is being
represented as the uniform distribution P (ω) = 1/|Ω| for all ω ∈ Ω.

A probability distribution P on Ω can be interpreted as an epistemic state similar
to Definition 1, by replacing Z ∪ {−∞,+∞} by the unit interval [0, 1] and replacing the
definition of the associated λ function in Definition 3 by stipulating λ(ϕ) =

∑
ω|=ϕ P (ω),

i.e. equating the λ values of a formula with its probability. Recall that the λ-value is
used to offer semantics regardless of the underlying instantiation. Also, analogously to
Definition 3, we see that a formula of the form ϕ ≥ ψ can be interpreted in the natural way
as P (¬ψ) ≥ P (¬ϕ), or equivalently as P (ϕ) ≥ P (ψ). Similarly, we obtain for not ϕ that
P (¬ϕ) > P (ϕ), i.e. it is more probable that ϕ is not true, or we have insufficient reasons to
choose ϕ over ¬ϕ.

6.1.1 Tractable Instantiation

A tractable representation and revision strategy can be devised in analogy to Section 5.
We start off with a similar restriction to only consider literals as input, as is common in
tractable variants of belief revision. For the representation, we define what a compact
epistemic state is, and its associated (full) epistemic state, as follows.

Definition 16. A compact probabilistic epistemic state WP is a mapping of the form
WP : At→ [0, 1]. This extends to literals by definingWP (¬a) = 1−WP (a) for every a ∈ At.
The corresponding probabilistic epistemic state ΦWP is then the probability distribution
WP : Ω→ [0, 1] defined as ΦWP (ω) = Πω|=lWP (l).

The idea here is that a compact probabilistic epistemic state WP assigns probability values
to every atom a (and hence to their negations as 1−WP (a)), which extends to a probabil-
ity distribution ΦWP over the possible worlds assuming probabilistic independence of the
atoms. The weight associated with each possible world is thusly given by the product of
the weights associated with the literals made true by that possible world.

To revise a weighted probabilistic epistemic state we simply change it so that the prob-
ability of the input is enforced:

21

Definition 17. Let WP be a compact probabilistic epistemic state. Let (l, µ) be an input
with l ∈ Lit. We define WP ′ =WP ◦Pt (l, µ) as:

WP ′(a) =

µ if l = a
1− µ if l = ¬a
WP (a) otherwise

Notably, we assume conditional independence throughout the revision process. This is
important for tractability purposes, and puts the intuition close to that of simple Bayes.
For entailment this is often sufficient, as we only care about whether an atom, or a formula,
is preferred over its negation, i.e. we typically consider most probable explanation queries.

Example 11. Let WP (a) = WP (b) = WP (c) = 0.5. Consider a sequence of inputs of the
form I = 〈(a, 0.6), (¬b, 0.2), (c, 0.7)〉. We have that WP ′ = WP ◦Pt I is given by WP ′(a) =
0.6,WP ′(b) = 0.8,WP ′(c) = 0.7. If we subsequently revise WP with (¬a, 0.6) to obtain
WP ′′ we get WP ′′(a) = 0.4,WP ′′(b) = 0.8,WP ′′(c) = 0.7.

As in Section 5, the belief set of a (compact) probabilistic epistemic state WP can be
defined in a similar way as:

Bel(WP) = {ϕ | λ(ϕ) > λ(¬ϕ)} = {ϕ | λ(ϕ) > 0.5} (1)

where λ(ϕ) =
∑

w|=ϕ ΦWP (ω). Hence, λ(ϕ) is nothing but the probability of ϕ according to
the probability distribution ΦWP . Do note that, contrary to Section 4 and 5, a belief set is
not closed by (classical) deduction as it may well happen that λ(ϕ) > 0.5 and λ(ψ) > 0.5,
but λ(ϕ ∧ ψ) < 0.5.

Whenever ϕ is a literal it is straightforward to check whether ϕ ∈ Bel(WP), since it
comes down to checking whether WP (ϕ) > 0.5. Determining the λ-values of other classical
formulas can also still be straightforward, as long as we restrict the allowed language. In the
case of a compact probabilistic epistemic state, we restrict ourselves to a language of DNF
formulas. Such a restriction is in line with typical implementations of BDI agents, where
the context of a rule – the component of which we need to determine its λ-value – is
commonly a simple conjunction of literals that need to be true for the rule to be applicable
(see Section 7). Namely, let ϕ be a DNF of the form A1 ∨ ... ∨ An, where each Ai is a
conjunction of literals q1

i ∧ ... ∧ qmi . First of all note that, by the very definition of ΦWP ,
the λ-value of a (non-contradictory) conjunction of literals is the product of the λ-values
of the literals. The λ-value of the context can then be determined using the well-known
inclusion-exclusion principle:

λ(A1 ∨ ... ∨An) =
∑
i

λ(Ai)−
∑
i,j

λ(Ai ∧Aj) +
∑
i,j,k

λ(Ai ∧Aj ∧Ak)± . . .

where the λ-value of any of these conjunctions Ai ∧ Aj ∧ . . . is either 0 if it contains both
an atom a and its negation ¬a, and otherwise is the product of λ-values of its literals.

Proposition 9. Let WP be a compact probabilistic epistemic state, and let ΦWP be defined
as ΦWP (ω) =

∏
ω|=l wWP (l). We have that λPt (ϕ) = λ(ϕ) for ϕ a classical formula.

22

Proof. For formulas that only contain conjunction, the result trivially holds as λ(ϕ ∧ ψ) =
λ(ϕ)λ(ψ) or, equivalently, P (ϕ ∧ ψ) = P (ϕ)P (ψ). This follows readily from the definition
of ΦWP as an epistemic state with an underlying probability distribution. Furthermore, the
probability of formulas with multiple possible worlds is trivially the sum of the probabilities
of the individual possible worlds. Since we defined it for a compact probabilistic epistemic
state WP as λ(ϕ ∧ ψ) = λ(ϕ)λ(ψ) the correspondence clearly holds. When we also allow
negation, the result still holds as P (¬ϕ) is identically defined in probability theory as
1−P (ϕ). When also considering disjunctions such as ϕ∨ψ, and since all formulas must be
in DNF, we know that ϕ and ψ are either a literal or a conjunction of literals. The latter
can be evaluated as we already discussed, and the former can directly be obtained through
the compact probabilistic epistemic state. The λ-valuation of the disjunction λ(ϕ ∨ ψ) can
then readily be obtained as λ(ϕ) + λ(ψ)− λ(ϕ ∧ ψ), as per the definition.

6.2 Instantiation with Possibility Theory

Possibility theory is a theory of uncertainty capable of dealing with incomplete informa-
tion. It is defined in terms of a possibility distribution π which maps every possible
world onto [0, 1], i.e. it is a mapping π : Ω → [0, 1]. By convention, π(ω) = 0 im-
plies that the possible world ω is considered impossible, whereas π(ω) = 1 means that
none of the available information prevents ω from being the real world. Possibility de-
grees are mainly interpreted qualitatively: π(ω) > π(ω′) implies that ω is more possible
than ω′. A possibility distribution is said to be normalised when ∃ω ∈ Ω · π(ω) = 1.
Normalised possibility distributions are preferred, since a possibility distribution that is
not normalised indicates the presence of conflicting information. A possibility distribution
induces both a possibility and a necessity measure. A possibility measure is a mapping
Π : 2Ω → [0, 1] defined as Π(A) = max {π(ω) | ω ∈ A}. Equivalently, for a proposition ϕ
such that Mod(ϕ) = A, we can write that Π(ϕ) = max {π(ω) | ω |= ϕ}. A necessity
measure is a mapping N : 2Ω → [0, 1] defined as N(A) = 1 − Π(Ω \ A). Equivalently,
for a proposition ϕ we can write N(ϕ) = 1 − Π(¬ϕ). When the possibility distribu-
tion is normalised we have Π(Ω) = 1 and N(∅) = 0 (resp. Π(>) = 1 and N(⊥) = 0).
When a possibility distribution is subnormal, we have Π(Ω) < 1 and N(∅) > 0 (or
Π(>) < 1 and N(⊥) > 0). An important property of necessity measure is their min-
decomposability w.r.t. conjunction: N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)). Dually, for possibil-
ity measures, we have that Π(ϕ ∨ ψ) = max(Π(ϕ),Π(ψ)). However, we only have that
N(ϕ ∨ ψ) ≥ max(N(ϕ), N(ψ)) and Π(ϕ ∧ ψ) ≤ min(Π(ϕ),Π(ψ)).

Similar to the way a probability distribution can be used to model an epistemic state,
a possibility distribution can also be used to that effect. Given the definition of a λ-value
in Definition 3, we readily have that λ(ϕ) = Π(ϕ) = max {π(ω) | ω |= ϕ} with max(∅) = 0.
The intuition of λ(ϕ) in a possibilistic setting is therefore to what degree ϕ is considered a
possible outcome. As in the probabilistic setting we know that the λ-evaluations of classical
formulas agree with the possibilistic semantics as they are determined directly on the level
of the epistemic state. An expression of the form ϕ ≥ ψ is interpreted as N(ϕ) ≥ N(ψ)
which corresponds with the intuition of ≥ as ϕ being at least as certain as ψ. Similarly,
not ϕ is interpreted as Π(¬ϕ) ≥ Π(ϕ), or, equivalently N(¬ϕ) ≥ N(ϕ). This corresponds
with the intuition of negation-as-failure: ¬ϕ is at least as plausible as ϕ itself. On the

23

semantic level, revision of a possibility distribution π given an input (ϕ,m), denoted as
π′ = π ◦π (ϕ,m), is defined as follows for each ω ∈ Ω:

π′(ω) =

{
min(π(ω), 1−m) if ω |= ¬ϕ
π(ω) otherwise

Note how the probabilistic and possibilistic instantiations highlight the strengths of our
framework. First, clearly, both model a different form of uncertainty. However, since both
instantiations expose a λ-value, the semantics of the framework are still well-defined as it
is agnostic to the underlying instantiation. Second, both instantiations consider different
revision strategies. In the probabilistic setting, the revision strategy we implemented is that
new information is adopted as-is. In the possibilistic setting, the revision strategy instead
allows an inconsistent possibility distribution. As we will see in Section 8, this does not pose
issues for our framework. An agent is thus free to model its beliefs using different
theories of uncertainty with distinct revision strategies.

6.2.1 Full Syntactic Instantiation

On a syntactical level, a possibility distribution is commonly expressed as a necessity-valued
knowledge base. However, unlike in the probabilistic setting, the syntactic approach devised
in Section 4 can be adapted to the possibilistic setting with only minor modifications.
Indeed, the only difference with Definition 9 is that we require m ∈ [0, 1] to correspond
with the codomain of a possibility distribution. Such a weighted (possiblistic) belief base is
a syntactic representation of a possibility distribution, which can be retrieved by applying
Definition 10. Furthermore, just as before, a weighted possibilistic belief base can be used
to determine the possibility of any arbitrary formula.

Proposition 10. Let B be a weighted possibilistic belief base such that m ∈ [0, 1]. Let ϕ ∈ L
be a formula. We have that λ(ϕ) = Π(ϕ) = mi 6= 0 iff there exists a (ψi,mi) ∈ B such that
ψi ∧ ϕ is satisfiable and there does not exist a (ψj ,mj) ∈ B with mj > mi such that ψj ∧ ϕ
is satisfiable. Otherwise, λ(ϕ) = 1.

Proof. The proof is analogous to the proof of Proposition 2. The formulas in B do not share
models, and a valid possibility distribution is recovered using Definition 10 since m ∈ [0, 1].
Finally, the neutral element is now 1. The result then readily follows.

While a weighted possibilistic belief base clearly is a good representation for belief
entailment, we also need to verify that it is a good representation for belief revision.

Care should be taken at this stage as input of the form (ϕ, µ) is interpreted in the more
common necessity-valued way, i.e. as N(ϕ) ≥ µ, or, equivalently, as Π(¬ϕ) ≤ 1−µ. This is
in line with possibilistic logic (?) and is reflected in the revision on the semantic level, but
can cause some confusion at first. Specifically, a pair (ϕ, µ) is treated differently depending
on where we find it; it is possibility-valued when it is a part of a weighted possibilistic belief
base, whereas it is necessity-valued when it is given as an input.

Only minor changes are needed to Definition 11 to make it applicable to the possibilistic
setting. Indeed, it suffices to take the minimum of the existing weight and the weight of the
new input (both in possibilistic terms), rather than sum up the weights. Furthermore, as

24

discussed, we need to transform the necessity-valued input into a possibility-valued pair to
revise the existing weighted possibilistic belief base. We thus have in the possibilistic setting
that B′ = {(ψ ∧ ¬ϕ,min(m, 1− µ)), (ψ ∧ ϕ,m) | (ψ,m) ∈ B¬ϕ} ∪ (B \ B¬ϕ). As before,
whenever ψ ∧ ϕ is inconsistent we simply omit it from B′ as it conveys no information.

Definition 18. The syntactic revision of (the possibilistic) B with the input (ϕ, µ), denoted
as B ◦πs (ϕ, µ), is given by B ◦πs (ϕ, µ) = B′ ∪

((
¬ϕ ∧ ¬

∨
(B∗ϕ)

)
, 1− µ

)
.

Example 12. Consider the inputs N(a ∧ c) ≥ 0.7, N(¬a ∨ ¬b) ≥ 0.2. The resulting
possibility distribution is such that π({a,¬b, c}) = 1, π({a, b, c}) = 0.8 and π(ω) = 0.3
for all other possible worlds ω. When we furthermore impose that N(b) ≥ 0.4 we have
that π({a,¬b, c}) = 0.6. Starting from B0 = {} we trivially obtain that B1 = B0 ◦πs (a ∧
c, 0.7) = {(¬a ∨ ¬c, 0.3)}. For B2 = B1 ◦πs (¬a ∨ ¬b, 0.2) we find that B2 = {((¬a ∨ ¬b) ∧
(a ∧ b), 0.3), ((¬a ∨ ¬b) ∧ (¬a ∨ ¬b), 0.3), ((a ∧ b) ∧ (a ∧ c), 0.8)}. We can write this in a
logically equivalent way as B2 = {(¬a ∨ ¬c, 0.3), (a ∧ b ∧ c, 0.8)}. In a similar way, we find
that B3 = B2 ◦πs (b, 0.4) = {(¬a ∨ ¬c, 0.3), (a ∧ b ∧ c, 0.8), (a ∧ ¬b ∧ c, 0.6)}. It can easily
be verified that ΦB3 = π, i.e. the possibility distribution induced by B3 is identical to the
possibility distribution π we computed on the semantic level at the start of the example.

Clearly, the revision of a weighted possibilistic belief base produces a new weighted pos-
sibilistic belief base, i.e. it guarantees the mutual unsatisfiability of its formulas. The proof
from Lemma 1 applies unchanged as the proof only relies on the modules of the formulas
and not on the codomain used by any given weighted belief base.

Proposition 11. Let I be a finite sequence of possibilistic inputs, i.e. formulas of the form
(ψ,m) with m ∈ [0, 1] and interpreted as N(ψ) ≥ m. Let Φ0 be the epistemic state such
that ∀ω ∈ Ω we have that Φ0(ω) = 1, and let B0 = {}. Furthermore, we take Φn = Φ0 ◦ I
and Bn = B0 ◦πs I. We then have that (ψ,m) ∈ Bn iff Φn(ω) = m for every ω ∈ Mod(ψ).

Proof. We prove this by induction on the number of inputs in I. Similar as in the proof
of Proposition 4, the base cases for B0 and B1 are trivial. For the induction hypothesis,
we assume that for a sequence of inputs I of size n with Bn = B0 ◦πs I and Φn = Φ0 ◦ I
we have that Φn(ω) = m with ω ∈ Mod(ψ) iff (ψ,m) ∈ Bn. Equivalently, we thus have
that ∀ω ∈ Ω · Φn(ω) = Ψn(ω) with Ψn the possibility distribution induced by Bn using
Definition 10. We show that this equivalence is upheld after revising with the (n + 1)-th
input in = (ϕn+1, µn+1) where Φn+1 = Φn ◦ in and Bn+1 = Bn ◦πs in.

The remainder of the proof is similar to the proof of Proposition 4. Indeed, by the
interpretation of an input of the form in = (ϕn+1, µn+1) as N(ϕn+1) ≥ µn+1 or, equivalently,
Π(¬ϕn+1) ≤ 1 − µn+1, we have that Φn+1(ω) = Φn(ω) for all ω such that ω |= ϕn+1

(i.e. ω 6|= ¬ϕn+1). This is similar in how the syntactic revision does not change the weights
of formulas that do not have models in common with ¬ϕn+1, nor does it change the weight
of the models of ψ ∧ ϕn+1 (which are models of ψ that are not models of ¬ϕn+1).

Furthermore, for all ω such that ω |= ¬ϕn+1 we know that Φn+1(ω) = min(Φn(ω), 1 −
µn+1). Similarly, in Bn+1 we have the formulas (ψ ∧ ϕn+1,min(m, 1 − µn+1)) for those
(ψ,m) ∈ Bn such that ψ ∧ ¬ϕn+1 is consistent. Finally, the models in Mod(¬ϕn+1) but
not in Bn are the models of the formula ¬ϕn+1 ∧¬

∨
((Bn)∗ϕ) to which we assign the weight

min(1, 1 − µn+1) = 1 − µn+1 since 0 ≤ µn+1 ≤ 1. Once again, it is easy to verify from

25

Definition 10 that we thus find ∀ω ∈ Ω ·Φn+1(ω) = Ψn+1(ω) with Ψn+1 the epistemic state
induced by Bn+1.

Before concluding the full syntactic instantiation, we would like to note that the com-
plexity results obtained in Section 4 for weighted belief bases trivially apply to weighted
possibilistic belief bases as well. Indeed, only the codomain has changed in the possibilistic
setting, and none of the proofs rely on the codomain for their correctness.

6.2.2 Tractable Instantiation

As in the probabilistic setting, a tractable revision strategy can be devised for possibility
theory in which we use a variant of a compact epistemic state for representation. We have:

Definition 19. A compact (possibilistic) epistemic state Wπ is defined as a mapping

Wπ : At→ [0, 1]× [0, 1] such that Wπ(a) = (
+
µ,
−
µ) with Π(a) ≤ +

µ and Π(¬a) ≤ −µ.12

Similar as in Section 5, we need to keep track of the possibility associated with both
an atom and its negation. However, we no longer map these values onto Z but onto [0, 1]
to match the codomain of a possibility distribution. The original possibility distribution
associated with a compact possibilistic epistemic state can be obtained similarly as in Def-
inition 13 where now ΦWP (ω) = minω|=l wWπ(l).

As in the probabilistic setting, the biggest change comes from the modified revision
strategy. Surprisingly, in the possibilistic setting the revision strategy is close to the one
we introduced in Section 5. Indeed, when dealing with a normalised underlying possibility
distribution the only change that would be needed to Definition 14 is to replace the addition

with a minimum, e.g. for l = a we would associate with it the value (min(
+
µ, µ),

−
µ). To also

account for subnormal distributions we need to restrict the values in the tuples associated
with any of the atoms to be restricted as soon as an inconsistency is detected. Luckily,
detecting an inconsistency is straightforward as this implies that for a given atom a we
have that Wπ(a) = (m,n) with m < 1 and n < 1. We have:

Definition 20. Let Wπ be a compact possibilistic epistemic state. Let (l, µ) be an input

with l ∈ Lit, denoting that N(l) ≥ µ. Let α = max(
+
µ, 1−µ) iff l = a and α = max(1−µ,−µ)

iff l = ¬a, with Wπ(a) = (
+
µ,
−
µ). We then define Wπ ′ =Wπ ◦πt (l, µ) for every b ∈ At as:

Wπ ′(b) =

(
+
µ,min(

−
µ, 1− µ)) if l = b

(min(
+
µ, 1− µ),

−
µ) if l = ¬b

(min(
+
µ, α),min(

−
µ, α)) otherwise

Notice here that α denotes the inconsistency degree of the possibility distribution.

Notice that since the input is always of the form (l, µ), we know that α is always well-
defined as either l = a or l = ¬a with a an atom. When an inconsistency occurs, this is
reflected in the possibility of every possible world. The last condition expressed for Wπ ′(a)
ensures that the compact possibilistic epistemic state is changed accordingly, where the
inconsistency degree affects all atoms.

12. Note that this definition allows for the representation of subnormal possibility distributions.

26

We now address the problem of belief entailment from a compact possibilistic epistemic
state. On the face of it this seems to represent a considerable problem due to the decom-
position rules in possibility theory. Indeed, in a compact possibilistic epistemic state we
only store the possibility measure of an atom and its negation. General formulas there-
fore need to be decomposed into their constituents to determine whether or not they are
entailed by the epistemic state. Since entailment is in turn defined as λ(ϕ) > λ(¬ϕ),
i.e. it depends on both the original formula as well as its negation, it appears that we
are not able to support either conjunction or disjunction in the language as in general
N(ϕ ∨ ψ) ≥ max(N(ϕ), N(ψ)). However, since we are only dealing with atomic inputs, it
importantly holds that N(ϕ∨ψ) = max(N(ϕ), N(ψ)), which makes decomposition possible.

Proposition 12 (from (?)). Let πx : X → [0, 1] and πy : Y → [0, 1] be two possibility distri-
butions on two different universes X, Y . Let πx,y : X × Y → [0, 1] be defined as πx,y(u, v) =
min(πx(u), πy(v)) (equation 1.76), and let Nx,y be the induced necessity measure on X ×Y .
For every A ⊆ X and B ⊆ Y , it then holds that Nx,y(A

∗∪B∗) = max(Nx(A), Ny(B)), where
A∗ and B∗ denote their corresponding cylindrical extensions on X × Y (i.e. A∗ = A × Y ,
B∗ = X ×B) (equation 1.78).

In the setting of this paper, the set of models of two different literals are of the same form
and can be seen as mapping their respective literal to α ∈ [0, 1], while being free in all
other literals. Without loss of generality, they can be seen as both having the domain Ω.
Furthermore, πx,y corresponds to the minimally specific possibility distribution satisfying
the constraints imposed by the respective literals. So, the max-decomposability for necessity
measures, and, equivalently, the min-decomposability for possibility measures always applies
to revisions with literals. Indeed, in general it applies to the case of having disjunctions of
literals that do not share any variables.

Determining the λ-values of arbitrary classical formulas is then straightforward.13 In-
deed, we have that λ(ϕ∨ψ) = min(λ(ϕ), λ(ψ)), λ(ϕ∧ψ) = max(λ(ϕ), λ(ψ)), and λ(¬ϕ) can
be directly evaluated from the compact possibilistic epistemic state if we assume – without
loss of generality – that an arbitrary classical formula is in NNF. We use λπt (ϕ) to refer to
the evaluation of the classical formula ϕ in this way. As in the probabilistic case, we can
again extend the language to include formulas of the form ϕ > ψ and ϕ ≥ ψ, since the
evaluation of such formulas relies on paring them down using Definition 3 to their classical
components.

Proposition 13. Let Wπ be a compact possibilistic epistemic state and Φπ
W the epistemic

state induced by Wπ. We have that λπt (ϕ) = λ(ϕ).

Proof. Due to the definition of Wπ, which maintains possibilities only on an atomic level,
we know from Definition 12 that Φπ

W is a possibility distribution such that N(ϕ ∨ ψ) =
max(ϕ,ψ) and, trivially, N(ϕ ∧ ψ) = min(ϕ,ψ). Equivalently, we have that Π(ϕ ∨ ψ) =
min(ϕ,ψ) and Π(ϕ ∨ ψ) = max(ϕ,ψ). Since λ(ϕ) = Φ(ϕ) and since for Wπ we have
that λπt (ϕ) is defined as λπt (ϕ ∨ ψ) = min(λπt (ϕ), λπt (ψ)), λπt (ϕ ∧ ψ) = max(λπt (ϕ), λπt (ψ))
the equivalence readily holds. Furthermore, since formulas are assumed to be in NNF, it
readily follows that λ(ϕ) = λπt (ϕ) with ϕ = a or ϕ = ¬a since λ(ϕ) = Π(ϕ) as before and
λπt (ϕ) = wΦπ(ϕ) = Π(ϕ) by Definition 19.

13. Recall that λ-values match up with the notion of a possibility measure.

27

7. Operational Semantics of Uncertain Beliefs in a BDI context

So far we have seen that an agent can use an epistemic state to represent its uncertain beliefs.
Different theories can be used to model the beliefs, and different revision strategies can be
employed to revise those beliefs. Furthermore, different epistemic states can be grouped
into a single GUB, either for complexity reasons or for the convenience of representing the
beliefs using different theories of uncertainty. We have also seen that syntactic approaches
exist that can efficiently perform both belief revision and belief entailment, and we even
identified a tractable fragment of the input/language. However, we have not yet discussed
how these components can be integrated into the BDI architecture. To that end, we present
in this section full operation semantics that extend Can, which highlight how these ideas
can be tightly integrated into a BDI agent.

7.1 CAN background

The Can language formalises the behaviour of a classical BDI agent, which is defined by
a belief base B and a plan library Π. The only requirement imposed on a belief base of
an agent is that it is a set of formulas over some logical language that supports entailment
(i.e. B |= b, b a belief), belief addition and belief deletion (resp. B ∪ {b} and B \ {b}).
The plan library is a set of plans of the form e : ψ ← P where e is an event, ψ is a context
and P is a plan body. Events can either be external (i.e. from the environment in which
the agent is operating) or internal (i.e. sub-goals that the agent itself tries to accomplish).
Given a plan of the form e : ψ ← P , the plan body P is applicable to handle the event e
when B |= ψ, i.e. the context evaluates to true. The event and context differ in that the
context is lazily evaluated; it is checked right before the execution of the plan body. The
language of the plan body P is defined in Backus-Naur Form (BNF) as:

P ::= nil | +b | −b | act | ?ϕ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(ϕs, P, ϕf)

with nil an empty or completed program, +b and −b belief addition and deletion, act a
primitive action, ?ϕ a test to determine if ϕ is true in the belief base, and !e a subgoal, i.e. an
(internal) event. Actions, tests and subgoals can fail, e.g. when the preconditions are not
met. Composition is possible through P1;P2 for sequencing, P1 ‖ P2 for parallelism (i.e. a
non-deterministic ordering) and P1 .P2 to execute P2 only on failure of P1. (|∆|) is used to
denote a set of guarded plans, with ∆ of the form ψ1 :P1, ..., ψn :Pn, which intuitively states
that the plan body Pi is guarded by the context ψi, i.e. the context needs to be true to
execute the plan body. This is convenient when multiple plans are applicable to handle an
event e. While executing the first plan body (which may fail), the beliefs may change and
some plan bodies may no longer be applicable, i.e. we need to retest ψi before executing
the next plan body. The plan form Goal(ϕs, P, ϕf) is a distinguishing feature of Can that
allows to model both declarative and procedural goals. It states that we should achieve the
(declarative) goal ϕs using the (procedural) plan P , where the goal fails if ϕf becomes true
during the execution.

With the syntax defined, we now look at the operational semantics of Can which are
defined in terms of configurations. A basic configuration is a tuple 〈B,A, P 〉 with B a belief
base, A the sequence of primitive actions that have been executed so far and P the remainder

28

of the plan body to be executed (i.e. the current intention). An agent (configuration) is
a tuple 〈N ,D,Π,B,A,Γ〉 with N the name of the agent, D the action description library,
Π the plan library, Γ the set of current intentions of the agent and B and A as before. For
each action act the action description library contains a rule of the form act : ψ ← ϕ−;ϕ+.
We have that ψ is the precondition, while ϕ− and ϕ+ denote respectively a delete and add
set of belief atoms, i.e. propositional atoms.

A transition relation −→ on (both types of) configurations is defined by a set of deriva-
tion rules. A transition C −→ C ′ denotes a single step execution from C yielding C ′.
We write C −→ to state there exists a C ′ such that C −→ C ′ and C 6−→ otherwise. We use
∗−→ to denote the transitive closure over −→. A derivation rule consists of a (possibly

empty) set of premises pi and a single transition conclusion c. Such a derivation rule is
denoted as

p1 p2 . . . pn
lc

with l a label attached to the derivation rule for easy reference. Transitions over basic
configurations (resp. agent configurations) define what it means to execute a single intention
(resp. the agent as a whole). For example, the transition for belief addition is:

+b〈B,A,+b〉 −→ 〈B ∪ {b} ,A, nil〉

This states, intuitively, that when the next action in the plan body is belief addition (+b), we
transition to a new configuration in which we add b to the belief base of the agent (B∪{b})
and the step is successfully completed (+b is replaced by nil). A more complex derivation
rule is the one for a primitive action:

(a : ψ ← ϕ−;ϕ+) ∈ D aθ = act B |= ψθ
act

〈B,A, act〉 −→ 〈(B \ ϕ−θ) ∪ ϕ+θ,A · act, nil〉

This rule states that when the unified precondition ψθ, with θ the unifier, is true in the
belief base B, the effect of the action is the application of the add and delete atom lists to
the belief base. Furthermore, we also add this action to the list of actions we have executed
so far and we replace act by nil to indicate the successful completion. We refer the reader
to (?) for a full overview of the semantics of Can.

7.2 Dealing with Uncertain Beliefs in a BDI Agent

Since a GUB acts as a set of formulas over the language L≥, and it supports belief revision, it
can conveniently take on the role of a belief base in Can. This will be the foundation of our
extension of Can, which we will call Can+. While mostly a straight-forward replacement,
some modifications are needed to fully support the richer language L≥ which allows for
expressions that can reason about uncertainty. A first (conceptual) modification is that the
context ϕ of a plan e : ψ ← P is taken to be a sentence from the language L≥, as is the
formula ϕ of a test ?ϕ. Next, we formally redefine the concept of configurations in Can+.
Rather than considering a belief base to model the knowledge, we instead use a GUB G to
represent the uncertain beliefs of the agent:

29

Definition 21. A basic configuration is a tuple 〈G,A, P 〉 with G a GUB, A the list of
executed actions and P a plan body being executed (i.e. the current intention). An agent
(configuration) is a tuple 〈N ,D,Π,G,A,Γ〉 with N the name of the agent, D the action
description library which defines the primitive actions, Π the plan library, Γ the set of
current intentions of the agent and G and A as before.

With the configurations redefined we can extend the first set of rules from Can, i.e. the
rule for a test goal (?ϕ) and the rule for plan selection (select):

G |= ϕθ
?ϕ

〈G,A, ?ϕ〉 −→ 〈G,A, nil〉

ψi :Pi ∈ ∆ G |= ψiθ
select〈G,A, (|∆|)〉 −→ 〈G,A, Piθ . (|∆ \ ψi :Pi|)〉

We retain the notation as used in (?) to denote unification as e.g. ϕθ, i.e. variables are
dealt with in the customary way. The modified rules make clear that verifying whether a
belief or context holds is now achieved using the GUB. The language has been implicitly
extended in both cases, since test goals and contexts can now include statements to reason
over uncertain beliefs, i.e. ϕ,ψi ∈ L≥.

So far we have looked at how to reason about the agent’s (uncertain) beliefs, but we
also want to revise these beliefs. Recall that a GUB G can be revised directly given an
input b = (ϕ,m) and denoted as G ◦ (ϕ,m). Based on this notation, we introduce the ◦b
rule to Can+ for belief change. The intuition of this new rule is clear; we want to change
the beliefs encoded in the GUB with the uncertain belief b. We have:

◦b〈G,A, ◦b〉 −→ 〈G ◦ b,A, nil〉

The rule for belief change can serve as a template to define the rules for classical belief
addition +ϕ and deletion −ϕ. Those rules would become:

+ϕ
〈G,A,+ϕ〉 −→ 〈G ◦ (ϕ,maxG),A, nil〉

−ϕ
〈G,A,−ϕ〉 −→ 〈G ◦ (ϕ,minG),A, nil〉

with maxG = max {maxΦi | Φi ∈ G} and minG analogously defined. Notice that we trans-
form the formula ϕ into an uncertain belief by assigning to it the weight maxG (minG). This
ensures that ϕ will be true (false) after revision. We can also define belief addition and
deletion as syntactic sugar on top of the belief change semantics. Indeed, a statement such
as +ϕ is nothing more than a shorthand for the statement ◦(ϕ,maxG). Similarly, −ϕ can
be considered a shorthand for ◦(ϕ,minG). As we try to keep the semantics as concise as
possible, we opt to define these operators in the latter way.

In conclusion, the new language for a plan body in Can+ is given in BNF as:

P ::= nil | ◦b | act | ?ϕ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(ϕs, P, ϕf)

30

with b an uncertain belief and ϕ,ϕs, ϕf ∈ L≥. We have modified the rules for ?ϕ and select,
while dropping the rules for +ϕ and −ϕ and introducing a new rule for ◦b. The rules in
Can dealing with program flow do not require any changes and can be integrally applied
to the Can+ semantics. The rules on declarative goals do need to be modified, but in a
straightforward way similar to ?ϕ, i.e. we need to verify ϕs and ϕf against G.

8. Qualitative Evaluation

In this section, we demonstrate the practical feasibility of our framework through the use
of an implementation and illustrative scenario.

8.1 Implementation

In order to evaluate our framework, we have implemented the GUB model with three types
of epistemic states: a probabilistic instantiation, a possibilistic instantiation and a ranking
function instantiation. This was combined with a variant of the AgentSpeak interpreter (on
which Can is based) to form a full BDI implementation called TEAgentSpeak (Tractable
Epistemic AgentSpeak).14 This implementation supports traditional AgentSpeak programs
with some minor changes to syntax, yet can model and revise uncertain beliefs and can
reason about these uncertain beliefs during plan selection. In practice, our interpreter is
very similar to the original definition of AgentSpeak, as well as the underlying AgentS-
peak interpreter used in Jason (?). We can summarise our implemented AgentSpeak-style
reasoning cycle as follows:

Planning stage:

Select event: At most one event is selected and removed from the event set E by an
event selection function.

Select relevant plans: If an event is selected, then the interpreter iterates through the
plan library and attempts to unify the triggering event of each plan with the
selected event. The subset of plans in the plan library for which a unifier is
found becomes the set of relevant plans for this event.

Select applicable plans: The interpreter iterates through the set of (partially instan-
tiated) relevant plans and attempts to unify the context of each plan with the
GUB. The subset of relevant plans for which a unifier is found becomes the set
of applicable plans for this event.

Adopt intention: A single plan is selected from the set of (partially instantiated) ap-
plicable plans by a plan selection function. This plan is pushed to the intention
contained in the selected event.15 The intention is adopted by adding it to the
intention set I.

Acting stage:

Select intention: At most one intention is selected and removed from the intention
set I by an intention selection function.

14. https://github.com/kevinmcareavey/teagentspeak

15. Events generated externally to the agent will have an empty intention.

31

Execute step: If an intention is selected, then the next step in the body of the plan
at the top of the intention is executed.

Conclude step: If the executed step involves a new subgoal then a new event contain-
ing the previously selected intention is added to the event set. Conversely, if the
executed step involves belief revision then a new event containing an empty in-
tention is added to the event set while the previously selected intention is added
back to the intention set.

In procedural terms, we have not made any changes to the underlying AgentSpeak reasoning
cycle. However, regarding belief revision and evaluation, there are a few notable differences:

(i) The belief base is a GUB rather than a set of belief atoms (as in AgentSpeak) or a
set of belief literals (as in Jason).

(ii) Belief revision is supported while belief addition and belief deletion are not.

(iii) Plan contexts support any formula in the language L≥t rather than being limited to
a conjunction of literals (as in AgentSpeak) or to restricted classical formulae (as in
recent versions of Jason). This allows plans to be selected based on the uncertainty
associated with the beliefs of the agent.

Wherever possible, we have adhered to the design decisions made by the Jason developers.
For example, we support different event, plan and intention selection functions but the de-
fault behaviour operates on a first-in first-out basis. The only syntactic differences between
TEAgentSpeak and Jason are as follows:

(i) We allow plan contexts to be any formula in L≥t by augmenting standard Jason syntax
with ϕ > ψ and ϕ >= ψ to denote the formulas ϕ > ψ and ϕ ≥ ψ, respectively.

(ii) If G is the agent’s GUB, then we use *(ϕ,µ) to denote the belief revision operation
G ◦ (ϕ, µ) and the corresponding belief revision triggering event.

Due to these similarities, we will not elaborate on specific AgentSpeak implementation
details and instead refer the reader to the comprehensive documentation on the Jason
implementation of AgentSpeak (?)

The only remaining TEAgentSpeak-specific details to mention is how we model and
revise a GUB and how we evaluate plan contexts. Firstly, by Definition 5, a GUB is just
implemented as a set of epistemic states over disjoint sets of ground belief atoms. Secondly,
the ranking, probabilistic and possibilistic epistemic state instantiations are all represented
as described in Definitions 12, 16 and 19 and revised using Definitions 14, 17 and 20,
respectively. Thirdly, plan contexts are implemented as binary expression trees which we
evaluate using Definitions 3, 4 and 6 along with the λ values outlined in Propositions 7, 9
and 13, respectively. We omit a quantitative evaluation of these operations in this paper due
to the tractable computational complexity proofs from Propositions 5 and 8. However, in
the next section we will demonstrate the benefit of applying our framework to AgentSpeak
by simulating a scenario involving uncertain information.

32

location(1) location(2)

location(3) location(4)

Figure 2: Possible sequences of actions in treasure hunt scenario.

8.2 Scenario

As part of a treasure hunt, a robot is required to find items of treasure and deliver them to
a designated location. In the area, there are three locations in which treasure may be found:
location(1), location(2) and location(3). The designated location for delivering trea-
sure is location(4) and, once there, the robot will be retrieved, i.e. it is not possible for
the robot to leave this location. A graphical illustration of all possible sequences of actions
is shown in Figure 2. The robot itself is powered by a battery and if the remaining battery-
life depletes before reaching location(4) then the robot will be irretrievable. Also, it is
not possible to retrieve the robot from any other location and, for this reason, the robot
will always make an attempt to reach location(4). Thus, the robot must be careful to
ensure that it can reach location(4) while still attempting to collect as much treasure as
possible. In addition, the robot has some uncertain beliefs which it may consider in order
to decide upon the best course of action. Firstly, a sensor in each location relays informa-
tion to the robot about the location it is in. These sensors are independent of each other,
i.e. they only report what they sense, without taking into account the information from
the other sensors. Secondly, the robot has been informed that treasure may be found at
location(2) and location(3), but that location(2) is the more promising of the two.
Thirdly, based on sensor information, the robot strongly believes that it is currently at
location(1). Fourthly, the robot has roughly estimated that it has sufficient battery to
travel from location(1) to location(2), or from location(1) to location(3), before
proceeding to location(4). However, since the terrain is unfamiliar, the robot does not
have enough information to speculate about other options.

Wi Instantiation b ∈ Ati Wi(b)

hasItems(location(1)) (0.1, 1)
hasItems(location(2)) (1, 0.2)W1 Possibility
hasItems(location(3)) (1, 0.3)

at(location(1)) (0.9, 0.1)
at(location(2)) (0.06, 0.94)
at(location(3)) (0.03, 0.97)

W2 Probability

at(location(4)) (0.01, 0.99)

sufficientBattery(location(1),location(2),location(4)) (1, 0)
sufficientBattery(location(1),location(3),location(4)) (1, 0)W3

sufficientBattery(...,...,location(4)) (0, 0)

Table 1: GUB definition and weights after initial belief revision.

33

1 // Initial beliefs.

2

3 *(∼hasItems(location(1)),0.9).
4 *(hasItems(location(2)),0.8).

5 *(hasItems(location(3)),0.7).

6 *(at(location(1)),0.9).

7 *(at(location(2)),0.06).

8 *(at(location(3)),0.03).

9 *(at(location(4)),0.01).

10 *(sufficientBattery(location(1),location(2),location(4)),1).

11 *(sufficientBattery(location(1),location(3),location(4)),1).

12

13 // Initial goals.

14

15 !completeMission.

16

17 // Plan library.

18

19 +!completeMission : at(location(X)) >= at(location(Y)) & at(location(X)) >= at(location(Z

)) & at(location(X)) >= at(location(4)) & (hasItems(location(Y)) | hasItems(location(

Z))) & hasItems(location(Y)) >= hasItems(location(Z)) & sufficientBattery(location(X)

,location(Y),location(4)) & X \== 4 & X \== Y & X \== Z & Y \== Z <- !proceed(

location(X),location(Y)).

20

21 +!completeMission : at(location(X)) >= at(location(Y)) & at(location(X)) >= at(location(Z

)) & at(location(X)) >= at(location(4)) & (hasItems(location(Y)) | hasItems(location(

Z))) & hasItems(location(Y)) >= hasItems(location(Z)) & not sufficientBattery(

location(X),location(Y),location(4)) & X \== 4 & X \== Y & X \== Z & Y \== Z <-

broadcast(try(location(Y))); !proceed(location(X),location(4)).

22

23 +!completeMission : at(location(X)) >= at(location(Y)) & at(location(X)) >= at(location(Z

)) & at(location(X)) >= at(location(4)) & ∼hasItems(location(Y)) & ∼hasItems(
location(Z)) & X \== 4 & X \== Y & X \== Z & Y \== Z <- !proceed(location(X),location

(4)).

24

25 +!completeMission : at(location(4)) >= at(location(X)) & at(location(4)) >= at(location(Y

)) & at(location(4)) >= at(location(Z)) & X \== 4 & Y \== 4 & Z \== 4 & X \== Y & X

\== Z & Y \== Z <- depositItems.

26

27 +!proceed(location(X),location(Y)) : true <- collectItems; *(∼hasItems(location(X)),1);
*(hasItems(location(X)),0); !travel(location(X),location(Y)); !completeMission.

28

29 +!travel(location(X),location(Y)) : true <- *(at(location(X)),0.01); *(at(location(Y))

,0.99).

Listing 1: TEAgentSpeak program for robot in treasure hunt scenario.

34

To solve this problem, the robot’s cognitive capabilities (which we refer to as the agent)
have been implemented as an TEAgentSpeak program as shown in Listing 1. In this pro-
gram, the agent’s belief base is a GUB containing three epistemic states W1, . . . ,W3. The
domain and underlying uncertainty representation of each epistemic state is described in
Table 1. For example, the epistemic state W1 models the agent’s beliefs about the possible
location of treasure and, since this information is vague, is instantiated using possibility
theory. Similarly, the epistemic state W2 models the agent’s beliefs about its current loca-
tion and, since this is based on sensor information, is instantiated using probability theory.
Finally, the epistemic state W3 models the agent’s beliefs about its battery-life and, since
this information is vague and incomplete, is instantiated using a ranking function. For any
instantiation W over At, then the initial (default) values for each b ∈ At are:

W(b) =

(1, 1), if W is possibilistic,
(0.5, 0.5), if W is probabilistic,
(0, 0), if W is a ranking,

where W(b) = (
+
µ,

+
µ) denotes that

+
µ is the λ value for b and that

−
µ is the λ value for ¬b.

In addition, given an epistemic state W and a formula ϕ in the language of W, then recall
that: λ(ϕ) = Π(ϕ) if W is possibilistic (see Section 6.2); λ(ϕ) = P (ϕ) if W is probabilistic
(see Section 6.1); and λ(ϕ) is taken from Definition 15 if W is a ranking function.

Prior to commencing the TEAgentSpeak reasoning cycle, it is possible to specify the
agent’s initial beliefs. This is performed on lines 3–11 of Listing 1. When the agent’s GUB
is revised to reflect these beliefs, we obtain the initial weights outlined in Table 1. The
agent’s initial goal is then described on line 15 of Listing 1. In this case, the achievement
goal !completeMission is added to the agent’s event set as an external event. At this point,
the six plans in the agent’s plan library on lines 19–29 are stored as plans p1, . . . , p6 and
the TEAgentSpeak reasoning cycle begins. A complete summary of the agent’s reasoning
(until both its event and intention sets are empty) is shown in Table 2. Informally, the agent
receives the goal !completeMission as a new event and decides to travel from location(1)

to location(2) using plan p1 because it believes it is currently at location(1), that it
is more likely to find treasure at location(2) than location(3) and that it has suffi-
cient battery to travel to location(2) while still being able to complete its journey to
location(4). At location(2), the agent then decides to travel from location(2) to
location(4) using plan p2 because it believes it is currently at location(2) but does not
believe it has sufficient battery to travel to location(3) while still being able to complete
its journey to location(4), even though it believes that it is likely to find more treasure
at location(3). Once at location(4), the agent decides to complete its current planning
phase using plan p4. At this point, the agent waits for new events to act upon.

Obviously we are mainly interested in the effect of introducing a GUB to the AgentSpeak
reasoning cycle. That is to say, we are mainly interested in the evaluation of plan contexts
and the revision16 of uncertain beliefs. We can describe these in detail by referring again
to Listing 1 and Table 2. Notice that, for plans p5 and p6, the context is true. Thus, if p5

and p6 are relevant plans, then they will also be applicable plans since true trivially unifies
with any GUB. Evaluating plan contexts in this scenario is only of interest when the set of
applicable plans contains any of the plans p1, . . . , p4.

16. Without loss of generality, we only consider belief revision triggered from within plan bodies.

35

Step E Relevant plans Applicable plans Adopt intention I Execute step Generate event I

1 {e1} {〈p1, ∅〉, 〈p2, ∅〉,
〈p3, ∅〉, 〈p4, ∅〉}

{〈p1, {X/1, Y/2, Z/3}〉} i1 = [〈p1, {X/1, Y/2, Z/3}〉] {i1} !proceed(location(1),location(2)) e2 = 〈+!proceed(location(1),location(2)), i1〉 ∅

2 {e2} {〈p5, {X/1, Y/2}〉} {〈p5, {X/1, Y/2}〉} i2 = [〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i2} collectItems – {i2}

3 ∅ – – – {i2} *(∼hasItems(location(1)),1) e3 = 〈*(∼hasItems(location(1)),1), []〉 {i2}
4 {e3} ∅ – – {i2} *(hasItems(location(1)),0) e4 = 〈*(hasItems(location(1)),0), []〉 {i2}
5 {e4} ∅ – – {i2} !travel(location(1),location(2)) e5 = 〈+!travel(location(1),location(2)), i2〉 ∅
6 {e5} {〈p6, {X/1, Y/2}〉} {〈p6, {X/1, Y/2}〉} i3 = [〈p6, {X/1, Y/2}〉,

〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i3} *(at(location(1)),0.01) e6 = 〈*(at(location(1)),0.01), []〉 {i3}

7 {e6} ∅ – – {i3} *(at(location(2)),0.99) e7 = 〈*(at(location(2)),0.99), []〉 {i3}
8 {e7} ∅ – – {i3} !completeMission e8 = 〈+!completeMission, i3〉 ∅
9 {e8} {〈p1, ∅〉, 〈p2, ∅〉,

〈p3, ∅〉, 〈p4, ∅〉}
{〈p2, {X/2, Y/3, Z/1}〉} i4 = [〈p2, {X/2, Y/3, Z/1}〉,

〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i4} broadcast(try(location(3))) – {i4}

10 ∅ – – – {i4} !proceed(location(2),location(4)) e9 = 〈+!proceed(location(2),location(4)), i4〉 ∅
11 {e9} {〈p5, {X/2, Y/4}〉} {〈p5, {X/2, Y/4}〉} i5 = [〈p5, {X/2, Y/4}〉,

〈p2, {X/2, Y/3, Z/1}〉,
〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i5} collectItems – {i5}

12 ∅ – – – {i5} *(∼hasItems(location(2)),1) e10 = 〈*(∼hasItems(location(2)),1), []〉 {i5}
13 {e10} ∅ – – {i5} *(hasItems(location(2)),0) e11 = 〈*(hasItems(location(2)),0), []〉 {i5}
14 {e11} ∅ – – {i5} !travel(location(2),location(4)) e12 = 〈+!travel(location(2),location(4)), i5〉 ∅
15 {e12} {〈p6, {X/2, Y/4}〉} {〈p6, {X/2, Y/4}〉} i6 = [〈p6, {X/2, Y/4}〉,

〈p5, {X/2, Y/4}〉,
〈p2, {X/2, Y/3, Z/1}〉,
〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i6} *(at(location(2)),0.01) e13 = 〈*(at(location(2)),0.01), []〉 {i6}

16 {e13} ∅ – – {i6} *(at(location(4)),0.99) e14 = 〈*(at(location(4)),0.99), []〉 {i6}
17 {e14} ∅ – – {i6} !completeMission e15 = 〈+!completeMission, i6〉 ∅
18 {e15} {〈p1, ∅〉, 〈p2, ∅〉,

〈p3, ∅〉, 〈p4, ∅〉}
{〈p4, {X/3, Y/1, Z/2}〉} i7 = [〈p4, {X/3, Y/1, Z/2}〉,

〈p5, {X/2, Y/4}〉,
〈p2, {X/2, Y/3, Z/1}〉,
〈p5, {X/1, Y/2}〉,
〈p1, {X/1, Y/2, Z/3}〉]

{i7} depositItems – ∅

Table 2: TEAgentSpeak reasoning cycle for Listing 1 where [〈p1, σ1〉, . . . , 〈pn, σn〉] denotes a stack of partially instantiated plans,
such that 〈p1, σ1〉 is at the top of the stack, and si denotes that element si is selected and removed from the set
{s1, . . . , sn} by the relevant selection function. Technically, each partially instantiated plan in an intention also has an
index identifying the next step in the plan body to be executed, however we omit this index since it can be inferred
from context. The initial event e1 = 〈!completeMission, []〉 is defined on line 15 of Listing 1.

36

Also notice that each of these plans contain the subformula X \== 4 & X \== Y & X \== Z
& Y \== Z which, combined with the rest of the formulas, restricts the possible unifiers to:

σ1 = {X/1, Y/2, Z/3}, σ3 = {X/2, Y/1, Z/3}, σ5 = {X/3, Y/1, Z/2},
σ2 = {X/1, Y/3, Z/2}, σ4 = {X/2, Y/3, Z/1}, σ6 = {X/3, Y/2, Z/1}.

We can thus omit this subformula from the rest of our discussion as we know that it
will always be satisfied by each of these unifiers. To determine applicable plans we must
substitute variables, apply Definition 6 to parse the context of each relevant plan, and
determine λ values from the underlying epistemic states. We evaluate e.g. plan p1 as:

P (¬at(location(X))) ≤ P (¬at(location(Y)))

∧ P (¬at(location(X))) ≤ P (¬at(location(Z)))

∧ P (¬at(location(X))) ≤ P (¬at(location(4)))

∧ (Π(hasItems(location(Y))) > Π(¬hasItems(location(Y)))

∨Π(hasItems(location(Z))) > Π(¬hasItems(location(Z))))

∧Π(¬hasItems(location(Y))) ≤ Π(¬hasItems(location(Z)))

∧ λ(sufficientBattery(location(X),location(Y),location(4)))

> λ(¬sufficientBattery(location(X),location(Y),location(4)))

Considering the six possible unifiers, we obtain the following results at step 1:

p1σ1 : (0.1 ≤ 0.94) ∧ (0.1 ≤ 0.97) ∧ (0.1 ≤ 0.99) ∧ ((1 > 0.2) ∨ (1 > 0.3)) ∧ (0.2 ≤ 0.3) ∧ (1 > 0) ⇔ >
p1σ2 : (0.1 ≤ 0.97) ∧ (0.1 ≤ 0.94) ∧ (0.1 ≤ 0.99) ∧ ((1 > 0.3) ∨ (1 > 0.2)) ∧ (0.3 ≤ 0.2) ∧ (1 > 0) ⇔ ⊥
p1σ3 : (0.94 ≤ 0.1) ∧ (0.94 ≤ 0.97) ∧ (0.94 ≤ 0.99) ∧ ((0.1 > 1) ∨ (1 > 0.3)) ∧ (1 ≤ 0.3) ∧ (0 > 0) ⇔ ⊥
p1σ4 : (0.94 ≤ 0.97) ∧ (0.94 ≤ 0.1) ∧ (0.94 ≤ 0.99) ∧ ((1 > 0.3) ∨ (0.1 > 1)) ∧ (0.3 ≤ 1) ∧ (0 > 0) ⇔ ⊥
p1σ5 : (0.97 ≤ 0.1) ∧ (0.97 ≤ 0.94) ∧ (0.97 ≤ 0.99) ∧ ((0.1 > 1) ∨ (1 > 0.2)) ∧ (1 ≤ 0.2) ∧ (0 > 0) ⇔ ⊥
p1σ6 : (0.97 ≤ 0.94) ∧ (0.97 ≤ 0.1) ∧ (0.97 ≤ 0.99) ∧ ((1 > 0.2) ∨ (0.1 > 1)) ∧ (0.2 ≤ 1) ∧ (0 > 0) ⇔ ⊥

Thus p1 is an applicable plan at step 1, with σ1 the only valid unifier. Importantly,
in TEAgentSpeak, we do not try to find all valid unifiers – rather we simply return the
first valid unifier which is found. This approach to unification is consistent with logic
programming convention and with Jason. In the same way, we can then determine the
complete set of applicable plans for event e1 at step 1 by evaluating the contexts of plans
p2, . . . , p4: in this case, we find that p1σ1 is the only applicable plan for e1.

Steps
b ∈ At

1 4 7 8 13 16 17

hasItems(location(1)) (0.1, 1) (0, 1) – – (0, 0.2) – –
hasItems(location(2)) (1, 0.2) – – – (0, 0.2) – –
hasItems(location(3)) (1, 0.3) – – – (0.2, 0.2) – –
at(location(1)) (0.9, 0.1) – (0.01, 0.99) – – – –
at(location(2)) (0.06, 0.94) – – (0.99, 0.01) – (0.01, 0.99) –
at(location(3)) (0.03, 0.97) – – – – – –
at(location(4)) (0.01, 0.99) – – – – – (0.99, 0.01)

Table 3: Weights for belief atoms at the beginning of each step where omitted weights
remain unchanged from the previous step. Weights for belief atoms in At3 remain
unchanged throughout execution and initial weights can be found in Table 1.

37

This type of evaluation must be repeated each time an event is selected for which relevant
plans are found. For this reason, in order to explain the selection of applicable plans at each
step, a complete listing of the weights modelled by the GUB throughout the reasoning cycle
is provided in Table 3. For example, plan p2 is selected at step 9 with unifier σ4 because the
agent now believes that it is at location(2) and that it is more likely that location(3) has
items than location(1), but the agent does not believe that they have sufficient battery to
travel from location(2) to location(3) while still being able to reach location(4). In
addition, this table serves to summarize the effect of belief revision throughout execution
as described in Definitions 14, 17 and 20. Notice that the ranking epistemic state W3 is
unchanged throughout execution while the probabilistic epistemic state W2 only requires
trivial changes. The more interesting change occurs in the possibilistic epistemic state W1

after the revision of ∼hasItems(location(2)), shown in step 13. In this case, the weights
for all belief atoms in At1 are revised so as to ensure consistency. Even with the simple types
of uncertain information referred to in this scenario, TEAgentSpeak clearly demonstrates
the benefits of applying our framework to practical BDI systems.

9. Related Work

The BDI framework (?) is used for modelling agents by expressing their Beliefs, Desires and
Intentions. The Beliefs describe the knowledge of an agent, the desires express what the
agent wants to bring about, and the intentions are those desires the agent has decided to
act upon. The complex temporal modal logic used in the BDI framework, along with strong
assumptions (e.g. unlimited resources), means that directly implementing the BDI frame-
work has proven difficult. The AgentSpeak language (?), proposed by one of the original
authors on BDI, resolved this shortcoming by instead introducing an abstract agent-based
language. The language was, on the one hand, strongly related to the BDI theory but, on
the other hand, easily implementable and based on existing attempts at implementing the
BDI framework. Although AgentSpeak allowed a theoretical treatment of actual implemen-
tations, it did not yet allow for declarative goals. The Can language (?) in turn extended
the AgentSpeak language with full operational semantics, including semantics for dealing
with declarative goals. Such goals allow a considerable increase in flexibility. For example,
plans can be stopped when the goal is reached instead of being blindly executed until the
end. Declarative goals also open the door to the use of first-principles planners in Can,
as the declarative goal describes the goal to reach rather than simply the steps to (try to)
reach an implicit goal.

A shortcoming of the BDI framework in general, and languages such as AgentSpeak and
Can in particular, is that they do not consider uncertainty. One of the first works to look at
integrating uncertainty in a BDI context is the work on graded BDI (?). In the graded BDI
setting it is assumed that the beliefs, desires and intentions have a degree of uncertainty.
Furthermore, it was realised that different theories of uncertainty are needed to correctly
model the different facets of uncertainty. The graded BDI system was further extended
to incorporate norms (?), i.e. patterns of behaviour that should be adhered to in given
circumstances. These norms are acquired and enforced in the same uncertain environment.
To accommodate this, norms have an associated prominence to reflect their importance in
the given uncertain environment. While the graded BDI framework is of a clear theoretical

38

interest, its usage of the same complex modal logic axiomatisation that made it hard to
implement BDI have similarly prevented any direct implementations of the graded BDI
framework. Early work also looked into the relationship between BDI and (PO)MDP (?).
The authors found that BDI can be endowed with the ability to reason about uncertainty
by linking it up with a corresponding POMDP-based method. The resulting hybrid BDI-
POMDP framework outperforms both BDI and POMDP in that it can elegantly model
team problems, even when faced with uncertainty. However, by design, this hybrid BDI-
POMDP framework is limited to the modelling power and computational complexity of the
POMDP component.

On the contrary, the work in (?) is one of the first to implement uncertain percepts in
an AgentSpeak setting. It was not based on the graded BDI framework but approached
the problem more pragmatically. The authors describe a classical AgentSpeak agent, along
with Markov Decision Process (MDP) models for some aspects of the problem domain.
As needed, these MDP models can be used to reason about the uncertain aspects of partic-
ular areas of the domain. A difficulty with this approach lies in the duplication of informa-
tion, as the knowledge encoded in the MDPs often overlaps with the knowledge encoded in
the AgentSpeak agent. In addition, there is no real integration between AgentSpeak and
MDPs, which makes the framework particularly difficult to extend. In (?), one of the papers
extended in this work, we proposed the first approach in which the ideas of graded beliefs
are adopted. This is accomplished by allowing more fine-grained control over the beliefs by
dividing those beliefs into isolated parts, each with their own representation and revision
strategies. In spirit, this work is very close to CanPlan (?). As the beliefs of an agent are
modelled as epistemic states in this framework, it allows for a very tight integration between
the modelling of the uncertainty about the beliefs, and the actual reasoning capabilities of
the agent itself.

Some work has been done on plan selection under uncertainty. In (?, ?) the authors
address the limitation that the context of a plan is a Boolean formula that has to be specified
at design time. Instead, they propose methods for a BDI system to learn the probability
of success for a plan execution based on previous experience using a decision tree model.
While the authors take uncertainty into account in the form of a probability of success, the
work is limited when it comes to reasoning about uncertainty as the framework is restricted
to reasoning about plan success. In (?) a framework is presented for plan selection in
probabilistic BDI agents. Such agents can reason about the cost of plan execution as well
as the success chance of plan execution. They do so by introducing a plan selection strategy
that is able to choose a subset of plans to maximise the maximum number of goals that can
be achieved while ensuring that all intentions are consistent and that given resource bounds
are respected. Our work is distinct in that we focus on how to model uncertain beliefs
and how such beliefs can trigger plans. As such, all these works address different problems
and enrich each other (through learning, revising intentions, modelling belief uncertainty)
rather than compete with each other.

The idea of a GUB – a set of local epistemic states – bears some resemblance with
concepts introduced in other works. In (?) the author introduced a logic of viewpoints,
where a formula is not simply true in a given world but is dependent on the viewpoint of
that world, i.e. how the world is conceptualised. In a sense, the local epistemic states can
be seen as viewpoints, although they are different in that they are used to model different

39

types of uncertainty and to model different parts of the world rather than different ways
of conceptualising the world. Another related idea is that of multi-context systems (?,
?). In a multi-context system, each context can employ its own logic and information
is shared between contexts using so-called bridge rules. There is a resemblance between
local epistemic states and contexts, and the λ-evaluation proposed in this paper could be
said to perform a similar role as bridge rules (although the λ-evaluation is used to extract
information, not to pass information). The concept of multiple contexts was used in graded
BDI (?), which we discussed earlier.

The epistemic states used in the current paper to model the uncertain beliefs are often
only defined on a semantic level. Many interesting bodies of work tackle the problem of
epistemic state revision, given a wide variety of different inputs (for an overview we refer
the reader to e.g. (?)). However, a direct implementation of these semantic definitions is
often (too) computationally expensive. Syntactic operators for revision with either classical
or uncertain inputs have been considered in the literature, where most deal with classical
inputs and are based on the AGM style of revision, e.g. (?, ?). Syntactic operators that
are able to deal with iterated belief revision are far less common, and are usually only
defined on the (semantic) level of epistemic states, for which we can use Ordinal Conditional
Functions (OCF) (?) or, for example, the representation we used in this paper based on (?).
A syntactic representation for OCF (?), along with the conditions that such a representation
has to satisfy, was presented in (?).

A syntactic revision operator in the setting of possibility theory was later presented
in (?) that could also deal with uncertain input. This operator makes use of the ability
to transform a possibility distribution into an OCF and vice versa, effectively developing a
revision operator for both frameworks based on the earlier work. However, this approach
treats uncertain input as a form of conditioning, where the resulting beliefs have to conclude
the formula with exactly the given degree of uncertainty. They do not interpret uncertain
inputs as in this paper, i.e. as information that strengthens or weakens the beliefs that the
agent currently holds. Postulates for how to reasonably treat uncertain input as unreliable
information were only presented later in the literature (?).

Interesting work in the cross-section with BDI has been carried out in (?), where the
authors develop a tractable form of belief revision by devising a cross-over between AGM
style revision and reason-maintenance style belief revision (?). In particular, in a BDI setting
where beliefs are modelled by literals (and plans take their usual form of rules) it can be
shown that the operator satisfies most of the AGM postulates. Still, this approach can
only deal with classical input. A framework for BDI agents dealing with uncertain input
has been presented in (?), where the authors develop a theoretical framework based on
possibility theory where both beliefs and desires are represented as possibility distributions.
Confusingly, (?) used the term belief change that was also used in (?), but both frameworks
are distinct. In (?) they then develop a way to select the best set of goals to be adapted
depending on the consistency of these goals, which in turn depends on the uncertain beliefs
of the agent. Their work was extended in (?) where they developed a syntactic approach
for their framework, highlighting the practical feasibility. However, as discussed, their work
is based on the notion of interpreting uncertain input in the sense of conditioning, where
the beliefs of the agent need to exactly reflect the input uncertainty.

40

10. Conclusion

As human beings, we can be seen as prime examples of autonomous agents. We are ca-
pable of seamlessly making snapshot decisions, persisting in our attempts to achieve our
desires, and reacting in intelligent ways in a real world pervaded by uncertainty. There is
a significant challenge in artificial intelligence to develop similarly capable intelligent and
autonomous agents, along with the tools to define them. The BDI framework, as well as
AgentSpeak, have clearly provided significant advances in this ongoing quest. Languages
such as AgentSpeak, and their derivatives such as Jason and 3APL, have greatly simplified
how we can express the complicated behaviour of an agent. Through their underpinnings
with the BDI framework the resulting agents already express a number of the desired prop-
erties. Indeed, the BDI framework allows the design of reactive agents that can adopt
intentions which they potentially pursue in a relentless fashion. In this work, we have fur-
ther advanced the state-of-the-art in the BDI domain by designing a framework that allows
different types of uncertainty to be easily modelled, that allows an agent to effectively rea-
son about – and react to – this uncertainty, and that offers a computationally efficient way
of modelling and reasoning about this uncertainty. To the best of our knowledge this paper
is the first to introduce a syntactic approach to belief change for dealing with unreliable
input. It is also the first in which the beliefs of an agent are expressed as different epistemic
states, each capable of using different uncertainty representations and revision mechanisms.
We have extended on our previous work by demonstrating how these epistemic states can
be initialised to actual theories of uncertainty such as possibility theory and probability
theory, and we have developed the machinery to offer both fully syntactic revisions as well
as tractable revisions. Finally, to highlight the capabilities of our new framework we have
created and evaluated an intricate scenario to demonstrate how these new capabilities can
be readily modelled and easily put into practice. We hope our work will inspire some future
research in this direction. We also anticipate to see the use of our framework in real-world
applications.

Acknowledgements

We would like to thank the reviewers of this paper for their invaluable contributions, their
helpful comments, and the many hours they must have spent to read the paper in such
detail. Without their help the paper would not have been as good as it is now.

Prof. Dr. Weiru Liu and Dr. Jun Hong completed most of the work on this paper while
affiliated with Queen’s University Belfast (QUB). This work has been partially funded by
EPSRC PACES project (Ref: EP/J012149/1).

41

