474 research outputs found

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness

    Collaborative visualization and virtual reality in construction projects

    Get PDF
    In the Colombian construction industry it is recognized as a general practice that di!erent designers deliver 2D drawings to the project construction team -- Some 3D modeling applications are used but only with commercial intentions, thus wasting visualization tools that facilitate the understanding of the project, that allow the coordination of plans between di!erent specialists, and that can prevent errors with high impact on costs in the construction phase of the project -- As a continuation of the project "immersive virtual reality for construction" developed by EAFIT University, the present work intends to demonstrate how a collaborative virtual environment can be helpful in order to improve visualization of construction projects and achieve the interaction of di!erent specialties, evaluating the impact of collaborative work in the design process of the same -- The end result of this research is an application created using freely available tools and a use case scenario on how this application can be used to perform review meetings by di!erent specialist in real time -- Initial test on the system has been made with civil engineering students showing that this virtual reality tool ease the burden of performing reviews where traditionally plans and sharing the same geographical space were neede

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques

    Exploring the Potential of 3D Visualization Techniques for Usage in Collaborative Design

    Get PDF
    Best practice for collaborative design demands good interaction between its collaborators. The capacity to share common knowledge about design models at hand is a basic requirement. With current advancing technologies gathering collective knowledge is more straightforward, as the dialog between experts can be supported better. The potential for 3D visualization techniques to become the right support tool for collaborative design is explored. Special attention is put on the possible usage for remote collaboration. The opportunities for current state-of-the-art visualization techniques from stereoscopic vision to holographic displays are researched. A classification of the various systems is explored with respect to their tangible usage for augmented reality. Appropriate interaction methods can be selected based on the usage scenario

    Situated Displays in Telecommunication

    Get PDF
    In face to face conversation, numerous cues of attention, eye contact, and gaze direction provide important channels of information. These channels create cues that include turn taking, establish a sense of engagement, and indicate the focus of conversation. However, some subtleties of gaze can be lost in common videoconferencing systems, because the single perspective view of the camera doesn't preserve the spatial characteristics of the face to face situation. In particular, in group conferencing, the `Mona Lisa effect' makes all observers feel that they are looked at when the remote participant looks at the camera. In this thesis, we present designs and evaluations of four novel situated teleconferencing systems, which aim to improve the teleconferencing experience. Firstly, we demonstrate the effectiveness of a spherical video telepresence system in that it allows a single observer at multiple viewpoints to accurately judge where the remote user is placing their gaze. Secondly, we demonstrate the gaze-preserving capability of a cylindrical video telepresence system, but for multiple observers at multiple viewpoints. Thirdly, we demonstrated the further improvement of a random hole autostereoscopic multiview telepresence system in conveying gaze by adding stereoscopic cues. Lastly, we investigate the influence of display type and viewing angle on how people place their trust during avatar-mediated interaction. The results show the spherical avatar telepresence system has the ability to be viewed qualitatively similarly from all angles and demonstrate how trust can be altered depending on how one views the avatar. Together these demonstrations motivate the further study of novel display configurations and suggest parameters for the design of future teleconferencing systems

    3D Multi-user interactive visualization with a shared large-scale display

    Get PDF
    When the multiple users interact with a virtual environment on a largescale display there are several issues that need to be addressed to facilitate the interaction. In the thesis, three main topics for collaborative visualization are discussed; display setup, interactive visualization, and visual fatigue. The problems that the author is trying to address in this thesis are how multiple users can interact with a shared large-scale display depending on the display setups and how they can interact with the shared visualization in a way that doesn’t lead to visual fatigue. The first user study (Chapter 3) explores the display setups for multi-user interaction with a shared large-display. The author describes the design of the three main display setups (a shared view, a split screen, and a split screen with navigation information) and a demonstration using these setups. The user study found that the split screen and the split screen with navigation information can improve users’ confidence and reduce frustration level and are more preferred than a shared view. However, a shared view can still provide effective interaction and collaboration and the display setups cannot have a large impact on usability and workload. From the first study, the author employed a shared view for multi-user interactive visualization with a shared large-scale display due to the advantages of the shared view. To improve interactive visualization with a shared view for multiple users, the author designed and conducted the second user study (Chapter 4). A conventional interaction technique, the mean tracking method, was not effective for more than three users. In order to overcome the limitation of the current multi-user interactive visualization techniques, two interactive visualization techniques (the Object Shift Technique and Activity-based Weighted Mean Tracking method) were developed and were evaluated in the second user study. The Object Shift Technique translates the virtual objects in the opposite direction of movement of the Point of View (PoV) and the Activity-based Weighted Mean Tracking method assigns the higher weight to active users in comparison with stationary users to determine the location of the PoV. The results of the user study showed that these techniques can support collaboration, improve interactivity, and provide similar visual discomfort compared to the conventional method. The third study (Chapter 5) describes how to reduce visual fatigue for 3D stereoscopic visualization with a single point of view (PoV). When multiple users interact with 3D stereoscopic VR using multi-user interactive visualization techniques and they are close to the virtual objects, they can perceive 3D visual fatigue from the large disparity. To reduce the 3D visual fatigue, an Adaptive Interpupillary Distance (Adaptive IPD) adjustment technique was developed. To evaluate the Adaptive IPD method, the author compared to traditional 3D stereoscopic and the monoscopic visualization techniques. Through the user experiments, the author was able to confirm that the proposed method can reduce visual discomfort, yet maintain compelling depth perception as the result provided the most preferable 3D stereoscopic visualization experience. For these studies, the author developed a software framework and designed a set of experiments (Chapter 6). The framework architecture that contains the three main ideas are described. A demonstration application for multidimensional decision making was developed using the framework. The primary contributions of this thesis include a literature review of multiuser interaction with a shared large-scale display, deeper insights into three display setups for multi-user interaction, development of the Object Shift Techniques, the Activity-based Weighted Mean Tracking method, and the Adaptive Interpupillary Distance Adjustment technique, the evaluation of the three novel interaction techniques, development of a framework for supporting a multi-user interaction with a shared large-scale display and its application to multi-dimensional decision making VR system

    Contribution To Signalling Of 3d Video Streams In Communication Systems Using The Session Initiation Protocol

    Get PDF
    Las tecnologías de vídeo en 3D han estado al alza en los últimos años, con abundantes avances en investigación unidos a una adopción generalizada por parte de la industria del cine, y una importancia creciente en la electrónica de consumo. Relacionado con esto, está el concepto de vídeo multivista, que abarca el vídeo 3D, y puede definirse como un flujo de vídeo compuesto de dos o más vistas. El vídeo multivista permite prestaciones avanzadas de vídeo, como el vídeo estereoscópico, el “free viewpoint video”, contacto visual mejorado mediante vistas virtuales, o entornos virtuales compartidos. El propósito de esta tesis es salvar un obstáculo considerable de cara al uso de vídeo multivista en sistemas de comunicación: la falta de soporte para esta tecnología por parte de los protocolos de señalización existentes, que hace imposible configurar una sesión con vídeo multivista mediante mecanismos estándar. Así pues, nuestro principal objetivo es la extensión del Protocolo de Inicio de Sesión (SIP) para soportar la negociación de sesiones multimedia con flujos de vídeo multivista. Nuestro trabajo se puede resumir en tres contribuciones principales. En primer lugar, hemos definido una extensión de señalización para configurar sesiones SIP con vídeo 3D. Esta extensión modifica el Protocolo de Descripción de Sesión (SDP) para introducir un nuevo atributo de nivel de medios, y un nuevo tipo de dependencia de descodificación, que contribuyen a describir los formatos de vídeo 3D que pueden emplearse en una sesión, así como la relación entre los flujos de vídeo que componen un flujo de vídeo 3D. La segunda contribución consiste en una extensión a SIP para manejar la señalización de videoconferencias con flujos de vídeo multivista. Se definen dos nuevos paquetes de eventos SIP para describir las capacidades y topología de los terminales de conferencia, por un lado, y la configuración espacial y mapeo de flujos de una conferencia, por el otro. También se describe un mecanismo para integrar el intercambio de esta información en el proceso de inicio de una conferencia SIP. Como tercera y última contribución, introducimos el concepto de espacio virtual de una conferencia, o un sistema de coordenadas que incluye todos los objetos relevantes de la conferencia (como dispositivos de captura, pantallas, y usuarios). Explicamos cómo el espacio virtual se relaciona con prestaciones de conferencia como el contacto visual, la escala de vídeo y la fidelidad espacial, y proporcionamos reglas para determinar las prestaciones de una conferencia a partir del análisis de su espacio virtual, y para generar espacios virtuales durante la configuración de conferencias

    Stereoscopic high dynamic range imaging

    Get PDF
    Two modern technologies show promise to dramatically increase immersion in virtual environments. Stereoscopic imaging captures two images representing the views of both eyes and allows for better depth perception. High dynamic range (HDR) imaging accurately represents real world lighting as opposed to traditional low dynamic range (LDR) imaging. HDR provides a better contrast and more natural looking scenes. The combination of the two technologies in order to gain advantages of both has been, until now, mostly unexplored due to the current limitations in the imaging pipeline. This thesis reviews both fields, proposes stereoscopic high dynamic range (SHDR) imaging pipeline outlining the challenges that need to be resolved to enable SHDR and focuses on capture and compression aspects of that pipeline. The problems of capturing SHDR images that would potentially require two HDR cameras and introduce ghosting, are mitigated by capturing an HDR and LDR pair and using it to generate SHDR images. A detailed user study compared four different methods of generating SHDR images. Results demonstrated that one of the methods may produce images perceptually indistinguishable from the ground truth. Insights obtained while developing static image operators guided the design of SHDR video techniques. Three methods for generating SHDR video from an HDR-LDR video pair are proposed and compared to the ground truth SHDR videos. Results showed little overall error and identified a method with the least error. Once captured, SHDR content needs to be efficiently compressed. Five SHDR compression methods that are backward compatible are presented. The proposed methods can encode SHDR content to little more than that of a traditional single LDR image (18% larger for one method) and the backward compatibility property encourages early adoption of the format. The work presented in this thesis has introduced and advanced capture and compression methods for the adoption of SHDR imaging. In general, this research paves the way for a novel field of SHDR imaging which should lead to improved and more realistic representation of captured scenes

    A Virtual Testbed for Fish-Tank Virtual Reality: Improving Calibration with a Virtual-in-Virtual Display

    Get PDF
    With the development of novel calibration techniques for multimedia projectors and curved projection surfaces, volumetric 3D displays are becoming easier and more affordable to build. The basic requirements include a display shape that defines the volume (e.g. a sphere, cylinder, or cuboid) and a tracking system to provide each user's location for the perspective corrected rendering. When coupled with modern graphics cards, these displays are capable of high resolution, low latency, high frame rate, and even stereoscopic rendering; however, like many previous studies have shown, every component must be precisely calibrated for a compelling 3D effect. While human perceptual requirements have been extensively studied for head-tracked displays, most studies featured seated users in front of a flat display. It remains unclear if results from these flat display studies are applicable to newer, walk-around displays with enclosed or curved shapes. To investigate these issues, we developed a virtual testbed for volumetric head-tracked displays that can measure calibration accuracy of the entire system in real-time. We used this testbed to investigate visual distortions of prototype curved displays, improve existing calibration techniques, study the importance of stereo to performance and perception, and validate perceptual calibration with novice users. Our experiments show that stereo is important for task performance, but requires more accurate calibration, and that novice users can make effective use of perceptual calibration tools. We also propose a novel, real-time calibration method that can be used to fine-tune an existing calibration using perceptual feedback. The findings from this work can be used to build better head-tracked volumetric displays with an unprecedented amount of 3D realism and intuitive calibration tools for novice users
    corecore