9 research outputs found

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions

    Get PDF
    AbstractAlgorithms are developed, based on topological principles, to evaluate the boundary and “internal structure” of the Minkowski sum of two planar curves. A graph isotopic to the envelope curve is constructed by computing its characteristic points. The edges of this graph are in one-to-one correspondence with a set of monotone envelope segments. A simple formula allows a degree to be assigned to each face defined by the graph, indicating the number of times its points are covered by the Minkowski sum. The boundary can then be identified with the set of edges that separate faces of zero and non-zero degree, and the boundary segments corresponding to these edges can be approximated to any desired geometrical accuracy. For applications that require only the Minkowski sum boundary, the algorithm minimizes geometrical computations on the “internal” envelope edges, that do not contribute to the final boundary. In other applications, this internal structure is of interest, and the algorithm provides comprehensive information on the covering degree for different regions within the Minkowski sum. Extensions of the algorithm to the computation of Minkowski sums in R3, and other forms of geometrical convolution, are briefly discussed

    On the complexity of real solving bivariate systems

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate algebraic systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two sub\-result\-ant-based methods: we ignore polylogarithmic factors, and NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences, extended to several variables by the technique of binary segmentation. We exploit recent advances on the complexity of univariate root isolation, and extend them to multipoint evaluation, to sign evaluation of bivariate polynomials over two algebraic numbers, % We thus derive new bounds for the sign evaluation of bi- and multi-variate polynomials and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB( N^{12}), whereas the previous bound was \sOB( N^{16}). All algorithms have been implemented in \maple, in conjunction with numeric filtering. We compare them against \gbrs and system solvers from \synaps; we also consider \maple libraries \func{insulate} and \func{top}, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries.

    A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve

    Get PDF

    A polynomial-time algorithm for the topological type of a real algebraic curve

    No full text

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2
    corecore