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ABSTRACT

Let I (:z: ,y ,z) be a homogeneous polynomial With. rational coefficients. Let
C, be the real projective curve defined by ! = 0" and suppos~ that C/ is
nonsingular. It is well known that C/ is essentially a finite collection of dis
joint circles, all except possibly one of which lie in th~ projective plane Rp2
in such a way as to have both an interior (homeomorphic to a disk), and an
exterior (homeomorphic to a Mobius strip).· These two-sided components of
C/ are called ovals. The partial order im;posed on-its ovals by the relation of
inclusion specifies the topological type ,or ·C/. We present an algorithm
which, given I. determines the ordering of the ovals of C/. The algorithm
constructs. a cell complex f.or IRp2, such that for each oval 0 of C/, the clo
sure of each component of complement(0) is a. subcomplex. The Euler
characteristic X of a complex is easily computed, and since
X(disk)¢X(MBbius strip), any cell can be classified as being inside, on, or out
side a particular oval. This essentially determines the ordering of ovals.
The maximum computing time of our algoriUun is dominated by '8 polyno
mial rW?-ction or the degree of I and th~ size of its coefficients.

Keywords: polynomial zeros, computer algebra, computational geometry,
semi-algebraic geometry, decision procedures, real algebraic geometry,
Hi~bert's ~ixtcenthProblem, cylindrical algebraic decomposition.
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1. Introduction.

Let f (x ,y ,z" be a homogeneous polynomial with rational coefficients.

Let CJ be the real projective curve defined by f = O. It is well known

[Wil7Ba] that if C/ is nonsingular, then it is a compact one-dimensional man

ifold, and so homeomorphic to a disjoint union of circles. A circle can have

either a one-sided or two-sided imbedding fu IR~2 (see Section 4); in the

latter case it has both an interior (homeomorphic to a disk), and an exterior

(homeomorphic to a Mobius strip). The two-sided components of CJ are.

called ovals. If f has even degree. then every component of Cf is an oval; if.

degree(J) is odd, every component except one ,is an oval.

Curves C1 and C2 p.ave the same topological type if there is a

homeomorphism rp:IRp2-+IRp2 which maps C1 on~o C2• Each oval of a non

singular curve C, is either inside or outside any other: the partial orderi~

of the ovals induced by this inclusion relation, together with the parity of

the degree of f . determine the topological type of the curve.

In this paper we present an algorithm which. given f (x,y.z) ·with

rational coefficients. determines whether C, is nonsingular. and if so, deter

mines the ordering of its ovals. The main' step of the algorithm is construc

tion of a cellular decomposition D, of lRp2 such t}),at every component of C,

is a lUlion of'cells of DJ . The following description of D, is produced: (1) a

list of the pail's of adjacent cells (two cells are adjacent if their uni~n is con

nected), and (2) a list of the cells conta~ned in C/. In the course of con

structing D, we determine if C, has singularities (see Section 3), and if so,

halt.
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Assuming Cr is nonsingular. the rest of the algorithm is straightfor

ward. The reflexive transitive closure R of the adjacency relation is an

equivalence relation; for a subset X of Rp2, let R(X) ,denole its restriction

to the cells of D1 which. meet X. We construct the eq~valence classes of

R(e/ ); (the union of) each class is a compon~nt of C/o Let 0 be one of these

components and K the corresponding class of R(e/ ). We construct the

equivalence classes of R(complement(O»; (the union of) each class is a

component of complt~ment(O). 0 is an oval if fln~ only if there are two such

classes; if there 1s ,only one, we do not process 0 further. Suppose there q.re

two classes XI and K 2• Let V be the union of K I and let If be tbe union of K2.

We want to determine which of V and W is the ~terior (lnt(O)) and which is

the exterior (Ext{O» of O. We prove in Section 5 that D, gives 1RP2 the

structure of a finite cell complex (see e.g [Gra75a. Hil3.a]. or [Mas67a]).
- .

Theorem 4.1 of Section 4 establishes that 0 U V = Vand 0 U w = W, hence

KUKI and KUKz give V and W respectively the structure of subcomplexes

of IRpz. We can therefore ·compute the Euler characteristic.x of each of V

and W using the formula

x ;; 0:0 - 0: 1 .+ 0:2

where a, is the number of i-cells (see e.g TVic73a]). By Theorem 4-.1. we

};lave Int( 0) homeomorpWc to the closed disk :and Ext(0) homeomorpWc to .

the closed Mobius strip. Thus X(lnt(O» = I and·x(Ext(O» = O. Hence we

can determine from X which of Vand W is Int(O) and which is Ext(O). After

making tWs determination for all ovals or· C,. we- know. for any oval. which

cells of D, are inside. which on. and which outside it. From this information

the ordering of ovals follows.
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The chief tool for constructing D, is the cylindrical algebraic decompo

sition (cad) algorithm [ArnB2a, Arn82b, Co175a]. We use it to construct a cel

lular decomposition for an affine plane in lRp2. Then by appropriately parti

tioning the line at infinity into cells. we extend to a cellular decomposition of

lRP'2, These steps are described in detail in Section 3. Before applying the

cad algoritlun. we may possibly perform a linear change of coordinates of

IRp2, Section 2 gives the conditions under which we change coordinates, and

defines the transformation used. In Section 5 we prove that the cellular

decomposition of lRp2 constructed in Section 3 is a complex.

We show in Section 6 that the computing time of our algorithm is

DC p (n,d)), for some polynomial function p of the degree n of! and .the

size d of its coefficients. PolotovsIdi [Po173a) gave a topological type algo

rithm for curves of even degree, but did not establish a bound for it, His

approach is quite diiierent from ours: he examines the curves

f (x,y,z) + f: zn, (n = degree (J)), for various small values of f:. As noted by

Fuks [Fuka] and Delzell [DelBOa), one could get a "topological type algori~bm

from Tarski's decis~on procedure "[or elementary algebra and geometry

[Tar51a], but such an algorithm would have an exponential computing time

bound. We have recently learned of an independently developed topological

type algorithm by P, Gianni and C. Traverso [Gia83a], wWch has some resem

blance to our method, but does' not make use of cell complexes,

Section 7 provides an example of our algorithm. Because the time of

our method depends almost entirely on the time required by the cad algo

rithm, and because the cad algorithm has recently been implemented.

[ArnBla], our algorilhm appears to have ~ome practical value. It could be

used, for eX'lmple, to study examples relaLing to Hilbert's 16th problem

I
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Our method existed in rough form in summer 1982. It was frrst fully

presented at a purdue Univ~rsltySymposium in February. 1983.

[W1l78a).

2. The change of coordiDates.

Assume that f is squarefree; if nol, we may replace it with its greatest

squarefre
e

divisor h. (Le. the product of its distinct squarefre
e

factors).

since C/ = e
h

. (See [KalB2a]. p. 98. or (Co173a] for information .00. square

free factorization). The line at infinity in lRp2, written l., consists of aU

points [x ,y ,0] in lRP',

If C, does not satisfy these cl?oditions initially. then we will transform

J (x,y,z') to a polynomial E(U,V,W) such that E is squarefre
e

and homo

geneous of the same degree. as f, Cf is non-singular if aD:d only if Ce is non

singular, Cf' and Ce have the same topological type, and E s~tisfies condl

tioos (1) and (2) ..We shall then assume, by replacing f by B, that condi-

tions (1) and (2) hold lor! '

We want C, to satisfy the fa,HaWing conditions:

(1) C
J

has only simple intersections with l .. (this Will be the case if and only

if f (:z: ,y,D) does not have a multiple factor);

(2) Cr does not contain the point [0,1,0).

We show now how to obtain E. Let the degree of f be n, and let"

!(x,y,z) = !r(x,y,)zn~ + ", '+!n(x,y)

where O~T::::n, each ft(x,y) is homogeneous of degree i, and fr(x,y)¢O.

The more -~ypical situation is lhat in which I n(x ,y)¢.O. However let us pause
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to consider our strategy in the event that f n (x ,V) = O. In this case

z If (X,Y,Z) but Z2 t f (x,y,z) as J (x,y,z) is squarefree. We can therefore

wrile/(x,y,z) = Zfl(X,y,z),where

f,(x,y,z) ; fT(X,Y)Zn~-' + ,., + fn-'(x,y)

and /n_i(X,y);tQ. Thus l;" is contained in the curve C/o Hence if CJ has any. ,
point on L... (that is. if either!n-l (0,1) = a or f n-I (l.y) has a real root) then

C/ is a singular curve, and we report this fact and exit from the algorithm.

If C/ l does not meet Zoo then CJ is non-singular if and only if CI
I

is 000-

singular. Moreover. if CJ 1 is non-singular. then Cf and .Ch have the same

number and arrangement of ovals. Hence we can replace f by 11: since C'I

does not meet l .... conditions (1) and (2) of ·are trivially satisfied.

Let us "assume, then. that fn{x,y);tO. We will now transform f(x,y,z)

into F(X,Y,Z), where F(O,l,O);tO (so the point [~,l,O] does not lie on the

curve Cr ). We know fn6c.+);l!O, as otherwise fn(x,y) = 0, a contradiction.

Thus there is an integer A such that f n (A, 1):;!:0. Define F(X. r.Z) by

F(X,Y,Z) ; f(X + I>Y,Y,Z)

Then one has F(O, I, 0) ; f (I>, 1.0) ; f n (1),1);'0.

Let G(X,Y); F(X,Y,I) and let D(X) be the discriminant of G(X,Y),

Th"en D(X);tO as G(X.Y) is squarefree. Find an integer a with D(a)il!O, and

consider the following change of variables: X = W + a.U. Y = V. Z = U.

As IV = X - aZ, the line X = aZ (i.e. the affine line X =a) corresponds to

the line W=O (i.e. the line at co in the V, V. W coordinates). Let
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E(U,V,W) = F(W + "U, V, U)

Now E is clearly squarefree and homogeneous of the same degree as J.

Observe E(O,l.O) = F(O,.l,O)"O. Now E(U,V,O) = F(aU,V,U), so that

E(l, V,O) = F(a, V,l) = G(a, Y), a squarefree polynomial (since D(a)"O).

Thus E(U,V,O) is squarefree. Hence the curve CE s~tisfi.es conditions (1)

and (2). It remains to show that (0 CJ is non-singular if and only if CE is

non-singular; f!.D.d (ii) C, and Ce have the same topological type. Let

T(z ,Y ,z) = (z ,y ,z - (Xz - ~y). Then Tis .an invertible linear transformation

of IR3 with inverse given-by. r-I(U,V,W) = (W+aU+XV.W). Note that we

have

E(U,V,W) = fCT-l(U,V,W)).

Applying the chain rule for difierentiation one finds

(2.1)

(2.2)

Now the matrix on the left hand side of (2.2) is invertible. Her;a.ce (2.1) and

(2.2) imply that (U, V, W) is a singular point of CE if and only if T-1( U, V, If) is

a si~ular point of C/. This proves (i). As T is an invertible },inear transfor

mation of )R3, . T induces a homeomorphism T::Rp2-tIRp2 given by

T[z,y,z] = [T(z,y,z)]. By (4.2) T carries C, onto CE' Thus C, and CE

have the same topological type: so (ii) is proved.

The re.ader may wonder why we do not transform' C, to a curve which

has no intersections with t .... It is stated in [Rag06a] that there exist curves

which. for any linear change of coordinates. will have points on z....
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3. Cellular decomposition of the projective plane.

Our objectives in this section are to define a cellular decomposition DI

of JRp2, such that some subset of D, is a decomposition for C" and to

describe how we construct the following infor~ation about DI : (1) a list of

the pairs of adja.cent cells, and (2) a list of the cells contained in CJ .

Let g(x,y) = f(x,y,l)., Using algorithm CADA2 of [ArnB2b], we deter

mine. a proper g-in~ariant,cylindricalalgebraic decomposition (cad) D of ]RI::.

CADA2 produces a list of"pairs of (the indices of) adjacent cells in the cad. a

list of the (indices of the) cells on which 9 vanishes (these are exac;!tly the

sections of the cad, ide.ntifiable by their indices), and sample points for the

cells. By exact evaluation of go: (x ,y) and 91J (x ,y) at the O-cell sample points.

we determine whether they vanish simultaneously on some O-cell. ]f so, we

report that CJ 'is singular and exit from the topological type algorithm. If

not, we report that CJ is non-singular and continue. (By Conditions (1) and

(2) of Section 2, CJ has no singularities on loo).-

Recall that lRp2 is the disjoint union of U and l ... , where a is ~he image

of the affine plane JR2 under the natural embeddi?g t: -<z.y> -10 [x,y,l].

Thus the images or" the cells of D under t are a cellular decomposition for

U. 1 Furthermore the cells of D on which 9 vanish~s are exactly the cells of

U contained in CJ . Suppose that there are k 2: 0 points of Cf on l ... Since

(0,1,0] does not lie on Cf (by Section 2). these points can be written

[1,)'1,0], ...• [1,)'/;.0], where )'1 < ... <)'/1; are the real rools of !(l.y.D).

By isolating these roots [Co182a]. we determine a cellular decomposition of

L. consisting of the following elements: the points oi C, on l .... the point

I for convenience we v."i.l.l not distinguish. between u eell c· of D ~TJ.d t(C).
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[0,1,0], and the k +1 i-cells which comprise the remainder of l ... We can

assign indices to these cells (in the sense of [ArnB2b]) in some arbitrary

fashion (cf. the example in Section 7). Thus we have defined Dr, we have an

index for every cell, and we have (a list of the indices or) the cells wblch

belong to C/"

The adjacencies within U have been given. to us, by the cad algorithm.

The adjacencies of cells within Zoo are obvious. The foUo~ing theorem is the

basIs for determina.tion of adjacency between a cell of Z... and a cell of U (see

[Arn82b], Sec. 2 for the definitions of stack. seclion, and rp~section):

THEOREM 3.1. Let Sand T be (respectively) the "rightmost" and "leftmost"

stacks 0/ D. TMn

(i) S has k sections, say 81 < ... < Sk' and T has k sections, say

t 1 <···<tk ,·

(ii) if Si is the graph 0/ the continuous real-valued function .rr, and ti is the

graph oJ the continuous r'e~-valuedfunction 'ljI, for 1~ i:9:: , then

Proof. Let n b.e the degree of f (x,y,z). By condition (1) of Secti!?n 2, each

7< is a simple root of l(l,y,O). Let G(X,Y)=/(l,Y,X). Then since

+ gl(X)yn-1 + ... + 9n(X), for some constant go¢O and

1(0,1,0)"0

G(X,y) = goY"

by· condition (2) of Section 2,

some polynomials g,(X),. ..,gn(X), Since G(O,y) = l(l,Y,O), G(O,Y) has

exactly k real roots 71 < ,.. < 7Je ' each of them simple, Hence by root

continuity, there is some 6>0 such that IXI<6 implies G(X,y) has exactly k

real roots, each of them simple, the i 1h of wWch approaches 7i as IXI-)O.

Since g(z ,y) := x n .G(1/ z ,y / x) for nonzero %, 9 (z ,y) has k real roots. each
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simple, for all "sufficiently large positive:c. Hence S has k sections. A simi

lar argument shows that T has k sections.

For any:t in the interval (tx, + co) on which 'f is defined, 'fez) is the i~h

real root of g(z,y), Henc"e, for positive x greater than a, ~is the i-th. . x

real root of G(l/z,y). Hence. as x approaches + 00, ~approachesI'i.
x

For any x in the interval (-oo.{J) in which 1/1 is defined. 1/1(%) is the i-th real

root of 9 ex.y), H~nce,.for negative x less than P,~ is the (k -i+ l)-th
'x

real root of G(l/ x, Y). Hence, as x approaches .- 00, Y!W..approacbes 1.c-t+1
x .

•

Figure 3 in Section 7 illustrates the theorem". S and T each have four

sections. One sees that the asymptotic slope of s" namely 1\. is equallo the

asymptotic slope of tA:-i+l'

Let Pi ;; [1.)'\,0] fa,: l:=i:::;:k, let Po;; PhI;; [0,1,0], and let e, denote

the I-cell in too between Pi. and P i + l • for O:;:;:i:;:;:k. Note that

e-;;; ei. uIP(.P1+d, Let R be any stack of D. say over the interval I, wi~h

sections TO <.T t <: ... <Tt < Tt+l' where TO = I x {- col and

TL+I = J x I + col are the infinite sections. For o.s:i~t let.pi. denote the sec-

tor of R lying between ri. and Ti+I'

Let S and T be as in Theorem 3.1. We now consider adjacencies between

cells of S and too. and cells of T and too. In general, Sand Tare distincL

stacks of D, however .it is possible that S=T is the only stack of D. Suppose

S'¢ T. We show that p( is a limit point of Si (and hence that s, is adjacent Lo

p;J. Let-[x,/.I/"(Xi).l} be a sequence of poinLs ins,/. with Xi approaching + co.

Then lim [x,,~(x,).I] = lim [1. ~(x')."!-J = (l.r,.OJ = P,. It can be shown that
Xi x~



11

P" is in fact the unique limit point of s( on l.... Similarly. P.t:-..oI.+l is the uniqu~

limit po1rit of tc on l ..._ If S = T, then s" = t, has exactly two limit points Pc

and PI; -i+ I in ,_.

If S¢T. it 1s eVident that the portion of the boundary of ~ contained in

l. is e". while the portion of the boundary of ~ contained in loa is e.t_'l.'

0::$ i ::: k (Figure 1) US::::; T is the only stack of D. the portion of the boun

dary of s( contained in! ... is e,ue,\:--i (Figure 2). A-sector of S or Tis adja-

cent to exactly those cells in l ... which belong to its boundary.

Now let R be any stack of D besides Sand T. Let TI < ... < T, be the.

finite sections of R. Then: clearly only TO and;, have limit points on l .... and

each in fact has the unique limit point Po on l .... This completes the determi

nation of all adjacencies bet~een cells of l_ and cells of U..

F'igure 1

s
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4. Simple closed curves in the projective plane.

!n this section we characterize the two possible imbeddings of a circle

in JRp2. A simple closed curve is a topological space homeomorphic to Sl,

Le. a space which is essentially a circle. In the following. M 2 denotes the

closed Mobius band. X denotes IRp2, and "::::" denotes homeomorphism.

THEOREM 4-.1. Let C be a simple closed curve in X. Then either:

(i) X \ C has exactly two connected components V ·a.nd W wi~h common

boundary C (i.e. c; = V\ V = W \ W), such that, afte,r interchangtng V

and W if necessary, if::::: S2 and W ::::: f,{2; or

(ii) X \ C = V is connected, V::::: U2 , C is the boundary of V, and V= X.

Proof. \;{e make use of the fact (see [Mun75aJ. Sec. 8-7) that S2 is a cover·

ing space of X, with covering map 11: S2 -) X given by rr(x.y,z) ::;: (x,y,z),

It can be shown using the path lifting property (Lemma 4.1 in Ch. B of
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(Mun75a], that the subset 1T- I (C) of 52 consists of either one or two disjoint

simple closed- curves. ]n the' latler case. let C1 and C2 be ~he two disjoint

simple closed curves comprising u-1(C). By the Jordan curve .the?rem and

the Schoenflies theorem (Sec. a-13 of [Mun75a]). C1 and Cz separate the

sphere inlo three components VI' V2 and WI' with VI:::: V2 ~ 8
2

. and

WI ~ a closed annulus. Moreover. C1 is the boundary of VI' C2 is the boun

dary of V
2

• and C1U C2 is the boundary or WI- Using these facts it can be

,hown that rr( V,) = rr( V,). and that (1) hold" with- -V = rr(V,) and

W = neW,). In the former case, let C1 be the simple closed curve 1T-
1
(C).

By the Jordan curve theorem, C1 separates the sphere into two components

1'1 and V
2

• of which C
1

is the common boundary. Moreover. by the

Schoenfiies theorem,. VI and liz are each homeomorphic to B
2

., One can show

that rr( V,) " rr(V,) and that(ti) hold,. with V = rr(V,)·

5. Cell complex structure for the projective plane.

We prove that the cellular decomposition DJ .of ]RP~ defi,ned in Section 3

gives lRp2 the structure of a tl.nit~ cell complex (and hence, the structure of'

a finite CW-complex). For convenience, we review the definition of a com

plex. Let Bn denote the n-dimensional closed unit ball in ]R!", un the n

dimensional open unit ball in JRn , 5 71 - 1 the (n - i)-sphere in JR
n

, In the

closed n-cube in JRn, Afinite ceU complex X is a Hausdorff space which is

the union of finitely many disjoint open cells e~ (aE: A.) such that to each e~

there corresponds a continuous map 'Xa:Bf-)X [or which Xa(Si-l) ~ ,Xf-i

(where ,Xi-i, called the (i-l)-skeleton of X, is the union:of all cells of dimen

sion :5:: i-i) andXa\~ is ~homeomorphism from U\ onto e~. The maP'Xa
is

culled a chaTacteristic map for e~. Yor more informaLion on cell complexes
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the reader can consult any of the following texts: [Hil3,a], Chapter 7

[Mas67a], Chapter 7 (Gra75a], Section 14.

The proof of the following theorem involves some of the basic notions of

cylindrical algebraic decompositions (e.g. sector. section), for which the

reader may wish to consult Section 2 of [ArnB2a].

THEOREM 5.1. E1J~ry cell of DI has a characteristic map. DI thus pes lRp2

the structure of a finite cell complex.

Proof. Let X ::: lRp2, Let us adopt the convention that [x, + CQ,z] :;; [2:,

CI:l,z] :::; [0,1,0] for x & z finite. Note that. as Hi is homeomorphic to r
under a map carrying S1-1 to a(r). it sutIices to give characteristic maps

from r into X.

Characteristic maps for O-cells are trivial. Let e 1 be a i-cell of DJ . e 1 is

contained either in L.., or in the ~ine plane U (ct. Section 3). ]0 the latter

case, II is a cell of the cad that we. constructed in Section 2, and hence is

either a sector over a point x ::: a: cr., finite (case 1) or a secUon over an

. interval (a.{J), -!XI:5 a < {1:=; + 0:> (case 2). If e I is contained in Zoo. then

e' ~ Ill.y ,0lEX : ")' < y < oj, some")', 0, - 00 ,,")' < 0" + 00, Let .:lo,l]~[")',ol

be a homeomorphism such that 0"(0):::"y, a(l)::: lj, DeCme X:(O,l].oJ.X by

Xes} = (l.a(~·).O]. Clearly X is a ·characteristic map for e
1

• In case (1)

e' ~ !lO(,y,l]EX: ")'<y <01, -00"")'<0" +00, Let .:[0.1]~[")'.01 be a

homeomorphism such that u(D) = r, 0(1) = lS. DeCme X:(O,l]--tX by

Xes) = [ex,a(s),l]. Clearly X is a characteristic map ,for e
1

. In case (2)

e l = {[x,y,l]E:X:a<x <{J,y = rp(x)j, where -o:>::::a<{1=== + 0:> andcpisa

continuous function from (a.p) into m. Let (] : ~D,l]--t[ex,j3] be a homeomor·

phism with .(0) ~ 0(. .(1) ~~. Defme X: (0,1)->X. by

.. ,
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x(s) = [a(s),~(a(s)),l]. Clearly X is a homeomorphism from (0,1) onto e',

Now X has a continuous extension to [0.1]: if a is finite, set X(O) = [a.)'.l],

where 7' = lim ~(z): if a is lntlnlte ( a =- ~ ), set X(D) = [1,7',0], where
Z:"Q +

7' = lim f1& (this limit exists and is tlnlte by Theorem 3,1): define X(l)
z:.. •• :z:

similarly. Hence X 1s a characteristic map for e I,

Let e2 be a 2-cell of DI' Then e2 = l[x,y,l]E.X:a<x <P,

9'(x) <: y < 1/1(::)1, where - CICI ~ a < P~. + w, and 'P & 'l/J are continuous func

tions on (a,~), with ~ <'/' (possibly ~= -~,or '/'= + ~), Let a:[D,l]~[a,~] be a

homeomorphism such that u(O) = a. u(l) = p. There are three cases to

consider.

Case I. rp and. 1/J both tln1te. For 0 <: s < 1 and 0 S t':5': 1 set

X(s,f) = [a(s),7(s,t),1] where 7(S,t) = ~(a(s)) +,t(,/,(a(s)) - ~(a(s))),

Clearly X maps (0,1)%(0.1) horneomorphically onto 8
2, Now X bas a continu

ous extension to ]2 : if a is finite, 'sel X(O,t) = [a:y -+- teo -7).1"] where

7' = lim ~(z) I< 6 = lim ,/,(z); if a is, intlnlte (a =-~), set
:"4+ ;:: ...a+

x(D,t) = [1,7' + t(6 -1'),0],

define x(1,t) similarly.

where i' = lim f.kl. and 0 =
z .. ·... x

I , Y1&
1m •

: .. -00 X

Case II. 'f- and ", both infinite (i.e. rp= - co & "1/1== + co). Suppt?se first that

either IX or p is finite. After a change of coordinates (of the type discussed

in Section 2). we may assume that both ex and f1 are .finite. We can define a

characteristic map X:J2-+X for e 2 by X(s,t) ::;; [0"(5); T(t).l]. 'whe.re T is a

homeomorpWsm from [0,1] onto [_DO. + DO]. Suppose, on the other hand,

that both ex and p are infinite (that is. Ct:::;; - 00 & (3 = + co). Notice that in tile

case e-2 ::;; X. The closed disk B 2 can be mapped into X as' follows:
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x(x ,y) = [x ,y I V 1 - X 2 - y2]. (for x 2 + y2 5: 1). The map X is a characlerisUc

map for e2:

Case III. either cp or 'l/J. not both. infinite. Say cp is finite &. ""= + 00. If either

a: or (3 is finite then one can reduce as in Case II to the case in which both a.

and (3 are finite. and easily write down a characteristic map for e 2. Suppose.

then, that a and (J are both infinite. Let D2 be the closed semi-circular'

region l(x,y)E:lR2:X 2 + yZ"5, 1,y~OI. Define a map from tbe portion of D 2 in

which x 2 + y2 < 1 into X by

1·& %>0 then

Now X maps the interior of D2 homeomorphically onto e 2• But X has a con

tinuous extension to the whole of D2: if x 2 + y2 ;; 1 &. x < 0 then set

= lim ~ if %2 + y2 =
z .. -... x

Xex,y) = [l.y/x+r,D): where r

set X(x,y) = [I,y/x + r',D], where finally, set

X(O,l)' = [0,1,0]. As D 2 is' homeomorphic to B 2 under a map carrying aD2

onto Sl. we may regard X as an character1stic map for e 2.

6. Computing time analysis.

We show that the maximum computing time of our algorithm is dom~

inated by a p!llynomial function of n (the degree of f (z ,y ,2"» and d = log d,

where d. is the sum of the" absolute values of the numerators and denomina-

tors of all rational coefficients of f ' Le. the norm of J .

The steps of the algorithm to implement Section 2 are: carry out two

linear changes of coordinates, compute the discriminant of a bivariate poly-

nom[al of degree n, and isolate the real roots of this discriminant. The
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times for these operations are polynomial in n and d [eoI71a. ColB2a] When

we are done with these sleps,we will have some (possibly new) J (z,y,z) of

degree n; let eo denote its norm. log e is bounded by a polynomial function

ofnandd.

Let g(:t,y) = J (%,11,1). Collins [Co175a] established .that the time for

construction of a g-invariant.cad of E2 is polynomial in n an.d log e.' The cad

algorithm in (ArnB2a,"A.rn82b] is slightly different from that .which Collins

analyzed, and in addition constructs adjacencies. but its computing time. is

also so bounded. Furthermore. there are at most 0(71.
3

) cells in the cad con

structed by the algorithm. as we now shoW: since [0.1.0] is not on CI ·

I (:e,y ,z) :;: cyr\. + (terms of lower degree in y), for some ~ational number

c. so 9 (.:e,Y) = cyn + (terms of lower degree in y). hence

PROJ(g) = di,criminant(g). and degree (discriminant(g» = 0(71.'). (See

[ArnB2a] for the definition of PROJ). The evaluation of 9z and 91/. at O-cell

sample points of the cad takes polynomlal time.

We determlne how many points C, has on l", by isolating the real roots

of f n (l ,y). This takes time polynomial in n and log e [ColB~p.]. There are at

most n such roots. Hence D, has D(n3) cells.

The sections of D, are precisely the cells of D! on which f vanishes, so

we can determine whether f vanishes on a cell by examining its cell index

(con,tant time per cell; 0(71.') cells). There are O(rz'J) = 0(71.
6

) adjacencies.

Henqe in time D(n B) we can determine the equivalence classes of R(GI )·

For each component of C" we can find the eqUivalence classes of

R(complemenl(D» in time D(nG) For each component which is an oval. 'We

can compute the Euler characteristics of D I and Dz'QY merely scanriing the



16

lists of their D(nS) cells and calculating their dimensions (from the cell

indices. see [ArnB2a], Section 4) in constant (or at most o(log n» time.

Since, by Harnack's Theorem [Wil78a]. CJ has O(n2) components. the total

time for step 5 is D(ns):

We have thus shown that the totai time required by D.ur algorithm is

O(:n(n; d», for. some polynomial functionp(n, d).

7. Example.

We now do an example of our algorithm. Let the input polynomial be:

/(X,y,z) = .y" - 2xy3 - X2y 2 + 2x3y + y2z 2 + :z:2z 2 _ Z4.

f is irreducible, hence squarefree. I (z,y,a) has no multiple factors. and

[O,l,OJ docs not lie on CI , so we need not change coordinates.

Let 9 (x,y}:::: f (x.!!,l). A proper g-invariant cad D of IR2 looks as fol-

lows:



'..

Fig=.3

The indices of these cells are:

(1,9) (5,9)

(l,B) (5,B)

(1,7) (2,7) (4;7) (5,7)

(1,6) (2,6) (4,6) (5,6)

(1,5) (2,5) (3.5) (4,5) (5,5)

(1,4) (2,4) (3,4) (4,4) (5.4)

(1,3) (2,3) (3,3) (4,3) (5,3)

(1,2) (2,2) (3,2) (4,2) (5,2)

(1,1) (2,1) (3,1) (4,1) (5,1)

I~

We find that B: (.2:' ,y) and 911 (.z ,y) do not vanish simultaneously at any O-cell

of D I so Cf is nonsingular.
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Continuing, we find that

l(x,y,O) = y (y-x) (y+x) (y-2:r:),

and so C, has the lour points [1,0,0], [1,1,0], [1,:1,0], and [1,2,0] on!•. Thus

DJ consists of the, (imbeddings in lRp2 of the) cells of D, the four just-listed

points of loo plus [0,1,0], and the remaining 1-cells that make up l~. Let us

use the convention that (0,0) is the cell index of [0,1,0]. (O,2i) is the cell

index of the cell in l ... corresponding to the i~h real root of f (l.y ,0), and the

1-cells in l ... have the naturally induced indices consistent with these O-cell

indices. Thus the indices of the cells in DI which make up l ... are:

(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0.7), (0,8), (0,9)

We find that C/ has-two components, composed of the following collections of

cells (these are the equivalence classes of R(Gf »:

! (1,2), (2,2), (1,4), (0.8), (5,8), (4,6), (5.6), (0,6) }

1(1,6), (2,4), (3,2), (4,2), (5,2), (0,2), (1,8), (2,6), (3,4). (4,4), (5.4), (0,4) I

Since! has even degree, both are ovals..

Consider the first cOIIlPonenl of CJ above. We get two equivalence

classes K 1 and K2 for "R(complement(O»:

1(1,3), (0,7). (5,7) J

1(0,0), (1,9), (5,9), (0,9), (1,8), (1,7), (2,7), (4,7),

(1,6), (2,6), (1,5), (2,5), (3,5), (4,5), (5,5); (0,5),

(2,4), (3.4), (4,4). (5,4), (0,4), (2,3), (3,3), (4,3),

(5,3), (0,3), (3,2), (4,2), (5,2), (0,2),

(;,1), (2,1), (3,1), (4,1), (5,1). (0,1)
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NO,te that the d~ensionof a cell is equal to the sum. o.r the parities (even=O,

odd=l) of the components of its cell index, e.g. (l,9) is a 2-cell, (4,4) is a 0·'

cell. Thus we see that the Euler characteristic of the complex consisting of

tl?-e cells of K
1

together with the cells ,of ,the oval is X = 4 - 5 + 2 = 1. For

the complex consisting of the cells of K 2 plus the cells of the oval we have

X = 11 - 22 + 11 = O. Hence the first cluster is the interior. and the

second the exterior, of this oval.

Now consider the second' oval of C,. Again we get two classes K 1 and K 2

ler R(cemplement(O»:

I (1.7). (2.5). (3.3). (4.3). (5.3). (0.3) I

1(0.0). (l.9). (5.9). (0.9). (5.B). (0.6). (2.7). (4.7). (5.7) •.(0.7)•..

(4.6). (5.B). (0.6). (1.5). (3.5). (4.5). (5.5). (0.5). (1.4).. .

(1.3), (2.3). (1,2), (2.2). (1.1), (2,1). (3.1), (4.1). (5,1). (0.1) I

The Euler characteristic of the complex consislio&: of K 1 plus the cells of the

Qvalls X = 6 - 9 + 3 = O. For the complex consisting of K2 plus the cells of

the oval we have X ;:: 11 - .20 + 10 ;:: 1. Hence the first cluster is the exte

rior, and the second the interior, of this oval.

We now see by inspection that the cells comprising the first oval occur

among the cells comprising. the interior of the seco"nd oval. Equivalently,

the cells comprising the second oval occur among the cells comprising the

exterior of the first ovaL Hence the topological type of C, may be specified

by saying that it consists of two ovals. one inside the other.
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