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ABSTRACT

Let f(z ,v.z) be a homogeneous polynomial with rational coefficients. Let
C; be the real projective curve defired by f = 0,-and suppose that Cy is
nonsingular. It is well known that C; is essentially a finite collection of dis- -
joint ecircles, all except possibly one of which lie in the projective plane RF?
in such a way as to have both an interior (homeomorphic to a disk), and an
exterior {homeomeorphic te a Mébius strip).- These two-sided components of
C; are called ovals. The partial order imposed on its ovals by the relation of -
inclusion specifies the topolegical type of -Cy. We present an algorithm
which, given f, determines the ordering of the ovals of C;. The algorithm
constructs. a cell complex for RP?, such that for each oval O of Cy, the clo-
sure of each component of complement(0) is a subcomplex. The Euler
characteristic ¥ of & complex is . easily computed, and since
¥(disk) #x(Msbius strip), any cell can be classified as being inside, on, or out-
side a particular oval. This essentially determines the ordering of ovals.
The maximum computing time of our algerithm is dominated by a polyne-
mial function of the degree of f and the size of its coefficients. ,

Keywords: polynomial zeros, computer algebra, computational geo.metry.-
semi-algebraic geometry, decision procedures, real algebraic geometry,
Hilbert's sixteenth Problem, cylindrical algebraic decomposition.
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1. Intreduction.

let f(z,¥,2) be a homogeneous polynomial with rational coefficients.
Let C; be the real projective curve defined by f =0. It is well known
[Wil78a] that if Cy is ﬁonsi.néular. then it is a compact one-dimensional man-
ifold, and se homeomorphic to a disjoint union of ecireles. A circle can have
either a one—sideci or two-sided imbedding in RP? (see Section 4); in the
latter case it has both an interior (homeomorphic to a disk), and an exterior
(homeomorphie to a Mébius strip). The two-sided components of Cr are
called ui)a,!:s. It r has even degree, then every component of Cy is an oval; if.

degree(f ) is odd, every component except one is an oval.

Curves C; and Cz have the same [fopological fype if there is a
homeomorphism 50:]RP2-DIRP2 which maps €, onto Cz Each oval of a non-
singular curve C, is either inside or outside any other; the partial ordering
of the ovals induced b);v this inclusion relation, together with the parity of

the degree of f, determine the topoleogical type of the curve.

In this paper we present an algorithm which. given f(z.y.z) with
rational coefficients, deltermines whether C; is nonsingular, and if so, deter-
mines the ordering of its .covals. The main step of the algerithm is cénstruc-
ticn of a cellular deéomposition Dy of ]RP-"" such that every component of Cp
is a union of '-cells of Jy. The iollowing deseription of Dy is produced: (1) a
list of the pairs of adjacent cells (tiwo cells are aa%ja.cent if their union is cor-
nected), and (2) a list of the cells contained in Cp. In thel course of -con-
structing Dy we determine if C, has singu.larlitie-s (see Section 3), and if so,

halk.



Assuming Cp is nonsingular, the rest of the algorithm is straightfor-
ward. The reflexive transitive closure R of the adjacency relation is an
equivalence relation; for a subset X of RP?, let R(X) denote its restriction
to the cells of D, which meet X. Ye construct the equivalence classes of
E( C}); (the union of) each class is a component of C;I' L.et 0 be one of these
components -é.nd K the corresponding class of E(C‘,). ﬁe construct the
equivalence classes of E(complement(O)): _(tha union of) each class is a
component of compiément(o). 0 is an oval if and only if there are two such
classes; if there is only one, we do not procéss o fu'rthe_.r. Suppose there are
two classes K, and Ko. .Let ¥V be the union of Kll E.mcl.le‘t ¥ be the union of Ii;g. -
We want to determine which of ¥V and ¥ is the interior (Int(0)) and which is
the eJ-:terior (Ext{0)) of 0. We prove in Section 5 that D, gives RP? the
structure of a finite cell cornplex {see e.g [Gra75a, Hil3,a], or [Mas67a]).
Theorem 4.1 of Section 4 establishes that OU-V = Vand oyrw = ¥, hence
KK, @d K\ ) K, give V and ¥ respectively the stru_ctu.re of subcomplexes
of RP?. We can therefo‘re -compute the Eule‘r characteristic x of each of 17
end ¥ usiog the forﬁuula

X = 0g - a; + oy
where o; is the number of i-cells (see e.g [Vic73a]). By Theorem 4.1, we
héve iﬁ-t:(_()_j homeomeorphic to the closed disk -and W h_omeomorphic to-
the closed Msbius strip. Thus x{Int(0)) = 1 and"x(M) = 0. Hence we
can determine from y \;rhich of ¥ and W i;s m and which is EHO_) Mtef
making t.hils determination for all ovals of Cy, we know, for any oval, which
cells of D, are inside, which on, and which ocutside it. From this information

the ordering of ovals follows.



The chief tool for constrt_lcti.ng Dy is the eylindrical algebraic decompo-
sition (cad) algorithm [Arn82a, Arn8eb, Col75a]. We use it to construct a cel-
lular decomposition for an affine plane in RPE. Ther; by approﬁriately part.i-

tioning the line at infinity into cells, we extend to a celiular decomposition of
RP? These steps are described in dstail in Section 3. Before applying the

cad algorithm, we may possibly perform a linear change of coordinates of
RP?, Section 2 gives fhe conditions under which we change coordinates, and
defines the transformation used. In Section 5 we prove that the cellular

decomposition of RP? copstructed in Section 3 is a complex.

We show in Section 6 that the computing time of our algorithm is
O(p(n.d)), for somé polyn_omial function p of the degree n of f and the
size d of its coeflicients. Polotovskii [Pol73a] gave a topological type algo-
rithm for curves of even degree. but did not establish a bound for it. His
approach is quite different from ours: he examines the curves
flzyz)+ez? (n= deg'ree(f }). for various small values of &. As noted by
Fuks [Fuka] and Delzell [DelBOa] one could get a topologmal type algorithm
from Tarski's decision procedure for elementary algebra and geometry
[TarB1a], but such an algorithm would have an exponential computing time
bound. We have recenlly learned of an-L independently developed topological
type algerithm by P. Gianni .and C. Traverso [Gia83a], which has some resem-

blance to our method, but does not make use of cell complexes,

Section 7 provides an example of our algorithm. Because the time of

our method depends almost entirely on the time required by the cad algo-

rithm, and because the cad algorithm has recently been implemented.

{Arn8ia], our algorilhm appesars to have some practical value. It could be

used, for example, to study examples relaling to Hilbert's 16th problem



[wil78a].
Our method existed in rough form in summer 1982. It was first fully

pr;esented at a Purdue University Symposium in February, 1983.

2 The change of coordinates.

Assume tha."c I is squa_refree; if not, we may replacz_a it with its grea.test
sqﬁarefree divisor h (i.e. the product of its distinet squa;efree factors).
since C; = Cp. (See [KaiB2a], p. 98. or [Col73a] for information on square-
free factofiza.tion). The line at infinity in RP2, written la. -consists'of all
points [z 4,0} in RP?. '

We want Cy to sat:isty l;he following conditions:

(1) Cfl has only simplé intersections with l. (this .will be the case if and only
it f (z.y.0) does no.t. have a raultiple factor).
(28) Cy does not contain the point [0.1,0].
If Cy does not satisfy these conditions initially, tben we will transform
flzyz)tonr polynomial E(U.V.#) such tha-t E is squarefree and homo-
geneous of the same degree. as f.Cris non-singuiar if-an_d only if Cg is non-
singular, Cy- and Cg have the same topological type. and E satisfies cqndi-
tions (1) and (). ‘\'fe ‘shall then assume, by replacin_é f by E‘ that condi-
tions (1) and () hold for f -

We show now how to obtain E. Let the degree of f be 7. and let

{zyz) = felzy )T F R CED

where 0<r<n, each f(z ) is homogeneous of degree i, and f,{z.¥)#0.

The more -Itypical situation is lhat in which I olzy)#0. ‘However let us pause




Then one has £(0,1,0) = f(A,1.0)

to consider our strategy in the event that f,(z,y) = 0. In this case
z|f(z.y,2z) but 224 f(z y.2) as f{z..2z) is squarefree. We can therefore

write f (z.y.2) = zf,(z,¥,2), where

Fizy.z) = fr(z-y)zn-r—:l + o+ faa(zay)

and f,_i(z,y)#0. Thus !.'.,- is contained in the curve Cy. Hence if ;. has any
point on {.. (that is, if either f,_,(0,1) = 0or f,_,(1,%) has a real root} then
Cr is a singular curve, and we report this fact and exit from the a.lgorith.m.'
If Cp does not meet l. then (; is non-singular if end only if Cp is non- .
singular. Moreover, if Cy, is non-singular, then Cy and ,C-"z have the same
number and arrangerhent of ovals. Hence we can replace f by f,; since C}“l
does not meet l., conditions (1) and (2) t;f are trivially satisfied.

Let us assume, then, that f,{z.y)#0. We will now transform f (z.7,z)
into F(X.Y.Z), where F(0,1,0)%0 (so the point [0,1,0] does not lie on the
curve Cp). We know f,,(‘:c.i);éo. as otherwise f,{z,%) = 0, a contradiction.

Thus there is an integer A such that f,(A\.1)#0. Define F(X,Y.Z) bsr

F(X.Y.Z) = F(X +A\Y.Y.Z)

Fn (A 1)#0.

Let G(X.,Y) = F(X.,Y,1) and let D(X) be the discriminant of G(X,Y).
Then D(X)#0 as G(X.Y) is squarefree. Find an integer a with D(a)#0, and

consider the following change of variables: X = ¥ + aqU, ¥ = V, Z = U.

- As ¥ = X-aZ, theline X = «Z (i.e. the affine line X = ) corresponds to

the line #=0 (i.e. the line at « in the U, V, I¥ coordinates). Let



E(U.V.F) = F(W +al, V. U)

Now E is clearly squarefree and homogeneous of the samé degree as f.
_Observe E(0,1.0) = F(0,1,0)#0. Now E(U.V,0) = F(aU.V,U), so that
E_(l.V.O).=‘F(a.V.1) = G(a.V). a squarefree polynomial (since D(a)#0).
Thus E(U,V.0) is squarefree. Hence the curve (g satisfies conditions (1)
and (2). It remains to show that (i) C, is non-singular if and only if Cg is
non-singular; and (if) C; and Cp have the same topological type. Let
T(z.y.2) = (2.4.z -az -Ay). Then T is an invertible linear transformation
of R? with inverse given by. T"‘(U.IV.W) = (W+aU+JtV.W). Note that we

have

E(U.V,W¥) = f(TYU.V.F)). | (2.1)

Applying the chain rule for differentiation one finds

£ [%"é];’
v| = 1 . 2.2
ol ooy . : ' - &3

[

Now the matrix on the left hand side of {2.2) is invertible. Hence (2.1) and

(2.2) imply that (U, V,#) is a singular point of C if and only if YU, V.F)is

a singular point of Cy. This proves (i). As T is an inve‘rt.ible linear transfor-

mation of RS, T induces a homeomorphism T:RP?+RP? given by

Flzy.z] = [T(z.y.2)]. By (4.2) T carries C; onto C. Thus C; and Cg
have the samé topological type: so (ii) is proved.

The reader may wonder why we do not transform Cy to a curve which
has no intersections with I.. It is stated in [RagO6a] that there exist curves

which, for any linear change of coordinates. will have points on L.




3. Cellular decomposition of the projective plane.

Our objectives in this section are to define a cellular decomposition Dy
of RP? such that some subset of Dy is a decompeosition for £y, and to
" describe how we construet the following information about D,: (1) a list of

the pairs of adjacent cells, and (2) a list of the cells contained in Cr.

Let g(z,y) = f(:c .y,;)._ Using algorithm CADA2 of [ArnB82b], we deter-
mine a proper g -invariant-cylindrical algebraie decomfosition (ead) D of R®,
CADAR produces a list of pairs of (the indices of) adjacent cells in the cad, a
list of t_l:.l.e (indices of the) cells on which g vanishes (these are exactly the -
sections .of the cad, identifiable by their indices), and sample points for the
cells, By exact evaluation of g;(z.y) and g, (z.y) at the O-cell sa.tﬁple points,
we determine whether they vanish simultaneously on some O-cell. If so, we
report that £ -is singular and exit from the topological type algorithm. If
not, we report that (y is non-singular and continue. (By Conditions (1) and

(2) of Section 2, Cy has ne singularities pn la).-
i

Recall that RP? is the disjoint union of U and i, where U is the image
of the afiine plane R? undér the patural embedding ¢: <z, y> » [z,y,1]
Thus the images of the cells of D under ¢ -are a cellular decomposition for
Ul Fu..rthermore the cells of D on which g vanishes are exactly the cells of
U contained in {,. Suppose that there are & = 0 points of C, on {.,. Since
[0,1,0] does not lie on Cy (by Section 2), these points can be written
[1,71.0].....[1,7%.0] , where 7, < - - < 7 are the real roots of f(1.y.0).
By isclating these roots [ColB82a]. we determine a cellular decomposition of

. consisting of the following elements: the points of €y on l., the point

! for convenience we will not distinguish between a cell € of D ond ¢(c ).
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[0,1,0], and the k+1 1-cells which comprise the remainder of {.. We can
assign indices to these cells (in the sense of [Arn8R2b]) in some arbitrary
fashion (cf. the example in Section 7). Thus we have defined D,, we have an
index for every cell, and we have {a list of the indices of) the cells which
belong to Cp.

The adjaﬁencies within U have been given to us by the cad algorithm.
The adjacencies of cells within {. are obvious. The following theorem is the

basis for determination of adjacency between a cell of ., and a cell of U (see
[Arn82b], Sec, 2 for the definitions of stack, section, and p-section):

THEOREM 3.1. Zet S and T be (respectively) the ';n’.ghtmast" and "leftmost"
stacks of D. Then -

(i) S has k sections, say s, < -+ <8, and T has k sections, éa’y
< Lty

(ii) if s; is the graph of the continuous realwalued function . and t; is the

graph of the continuous recl-valued function y, for 1<i<k , then

lim ﬂzi)— = y, and lim ﬂfl = Yot -

F = -m

Proof. Letn be the degree of f (z,y.2). By condition (1} of Section 2, each
7 is a simple root of f(i.y.0). Let G(X,¥)=F(1,Y.X). Then since

F(0,1,0)#0 by condition (2} of  Section 2,
G(X.Y) = go¥™ + gi(X)¥Y" 71+ -+ - + gna(X), for some constant go#0 and
soﬁe polynomials g,(X),....gn(X). Bince G(0,Y) = f(-l,Y.O),- G(0,Y) has
exactly & real roots 71 < -+ < %, each of then.;L simple, Hence by root

continuity, there is some §>0 such that | X | <& implies G(X,Y) has exactly &

real roots, each of them simple, the ' of which approaches y; as |X|-0.

Since g(z,y) =z"G(l/z.y/ x) for nonzero x, g(z i) has k real roots, each
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simple, for all-sufficiently large positive . Hence S has k£ sections. A simi-

lar argument shows that T has & sections.
For any z in the interval (a, + =) on which ¢ is defined, p(z) is the %

real root of g(z,¥). _Henc.e. for positive z greater than a, ﬂflis the i-th

real root of G(1/=,Y). Hence, as z approaches + o, ﬂf)—approaphes Y-
For any z in the interval (—«,8) in which 1 is defined, ¥(z) is the i-th real

root of g{z.y). Hence, for negative z less than 8, M_zi)—is the (k—i+1)-th

real root of G(1/z,Y). Hence, as ¢ approaches .- =, ﬂzi)—approaches Ye-t+1

Figu}e 3 in Section 7 illustrates the theorem. S and T each have four
sections. One sees timt the asymptotic slope of s;, namely 7;, is equal to the
asymptotic slope of £y _;4;.

Let P, = [1,9,0] for 1<i<k, let Py = Pey; = [0,1,0], and let g, denote
the i-cell in !, between F; and P, for 0=i<k. Note that
e; = eqUfP.Pis1]. Let R be any stack of D, say over the inte-rval I, with -
sections Top <71 < " - €T < Tiap where T = [ x | -oo} and
_ 741 = { x|} + =] are the infinite sections. For 0<i<I let ; denote the sec-

tor of & lying between 7, and'rﬂ.l.

Let 5 and 7T be as in Theorem 3.1, We now consider adjacencies between
cells of S anﬁ l., and cells of T and I.. In éeneral. < and T are distinct
stacks of I, however it is possible that S=?.‘ is the only stack of D. Suppose
S#T. We show that £ is a limit point of s; {and hence that s; is adjacent to
F;). Let [zy.¢{(z;},1] be a sequence of points in st.‘ with z; approaching + .

Then lim {z;,p(z;),1] = lim [1, q’f‘).ﬁ_—] ={1,7;.0] = P;. It can be shown that
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Py is in fact the. unique limit point of s; on {.. Similarly, Py.4s; is the unigue
limit poirt of £; en i.. If S = T, then s; = {; has exactly two limjt points 7
and P,_,, inl_. ' ‘

If S#7, it is evident that the portion of the boundary of §; contained in
I, is &. while the portion of the boundary of # contained in I. is Zj_;.
bs-:, <k (Figure 1) 1S = T isthe only stack of D, the portion of the boun-
dary of §; contained in I is &;|J&,—; (Figure 2). A sector of § or T is adja-
cent to exactly those cells in l. which belong to its boundary.

I;Tow let X be any stack of D besides 5 and 7. l:et T1< "+ <7 be the .
ﬂmte secl;ions of . Then clearly only 7 aﬁd 7, have limit points on {., and
each in fact has the unique limit point Py on!{... This completes the determi-

nation of all adjacencies between cells of I, and cells of U. -

"’eab ‘ | : gz M P?..
~ | S; N

£, _/_ _ €4

+ e p

5, |
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j ' o

HU“'

e Z Figure 1
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4, éir:'nple closed curves in the projective piane.

In this section we characterize the two possible imbeddings of a circle
in RP2. A simple czase&‘ curve is a topological space homeomorphic to 57,
i.e. a space which Iis essentially a cirr.:le. In the following, M? denotes the

clesed Moébius band, X denotes IRP?, and "~" denotes homeomorﬁhism.

THEOREM <.1. [lel C be o simple closed curve in X. Then eifher:

(i) X\ C has ezac;‘.l;y {wo connected components V.and W with common
boundary C (i.e. C = I_’\‘V = ¥\ W), such that, after inferchanging V
and W if necessary, V N B?and W ~ H?; or '

(i3) X \ C = Visconnécted, V= U? Cis the boundaryof V, and ¥V = X.
Proof. We make use of the fact (see [Mun?5a}, Sec. 8-7) that S? is a cover-
ing space of X, with covering map m: S + X given by w(z.y.2z) = [z.y.2].

It can be shown using the path lifting property (Lemma 4.1 in Ch. 8 of
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[Mun75a], that the subset 7~ Y(C) of S? consists of either one or two disjoint

simple closed curves. In the latter case, let £ and Cp be the two disjoint

simple closed curves comprising 7 *(C). By the Jordan curve_t.he_oreni and

the Schoenflies theorem (Sec. 8-13 of [Mun75al). €, and Cp separa.té the
sphere into three components V,. Vo and F, with V,~ Vp = B*, and
I?l =~ a closed annulus. Moreover, C, is the boundary of V. C‘z is the boun-
dary of Va, aﬁd €, Cz is the boundary of ¥;. Usi.ng.these facts it can be
shown that w(Vy) = w(Vz}, and that (i) holds, with -V ="w(V,) and
¥ = @w(#,) . In the former case, let C, be the simple closed curve a}{(C).
By the Jordan curve theorem, Cy separa'mtes the sphere into two components
v, and Va of which C; is the common boundary.. Moreover, by the
Schoentfties theorem,. 17, and 172' are each homeomorphic to BZ. One can show

that @(V,) = m(Vp) and that (ii} holds, with V' = a(V,) =

5. Cell‘ complex structure for the projective plane.

We prove that the cellular decomposition Dy of RP? defined in Section 3
pives RP? the structure of a finite ce1.1 complex (and hence, the structure of’
a finite CW-complex). For convenience, we review the definition of a com-
plex. Let EB"™ denote the n-dimensional closed unit ball in R®, U™ the n-
dimensional open unit ball in R?, gn-1 the (n - 1)-sphere in R*, [ the
closed n-cube in R®, A finife cell complez X is a Hausdorfl space which is
the union of finitely many disjoint open cells e}, (€ A ) such that to eachel

there corresponds & continuous map Xa:B'+X for which xa(S¥1) c X

(where X*~!, called the (i-1)skeleton of X, is the union of all cells of dimep-

sion £ i—1) and Xgql gt IS o homeomorphism from U* onto e’ . The map Xa is

called a characteristic map for gl. I'or more information on cell complexcs
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the reader can consult any of the following texts: [Hil3,a], Chapter 7

[Mas67a], Chapter 7 {Gra75a). Section 14.

The proof of the followmg theorem involves some of the basm notions of

eylindrical algebraic decompositions (e.g. sector, section), for which the
reader may wish to consult Section 2 of [ArnB2a].

TuEOREM 5.1, FEuwery cell of Dy hos o characleristic map. Dy thus gives RPE

the structure of a finite cell complexz.

Praof. Let X = RP?. Let us adopt the convention that [z, + «.2] = [z, -
w,z] = [0,1,0] for £ & z finite. Note that. as B* is homeomorphic to r
under a map carrying 5i-1 to 9(I*), it suffices to give charactenstw maps

from I* into X.

Characteristic maps for O-cells are trivial. Let e! be a 1-cell of D,.' elis .
contained either in L., or in the affine plane U (ct. Section 3). In the latter
case, it is a cell of the cad that we constructed in Section 2, and hence is_
either a sector over a point = = a, ci‘ fAnite (case 1) or a section over an

interval ( e,8) -==ax ﬁ_-ﬁ; + o (case 2). If el is contained in fw, then
el = {{ly0]JeX:y<y < 5}, some y, 5, ~© =7 < 5< +o. Let o:[0,1]2(7.6]
be a homeomorphism such that 0(0j= ¥, g{1) =8, Define x:[0,1]»X by
x(sy = [t.o(s).0] Clearly x is a characteristic map for e!. In case (1}

= {[eoy.1]EX 7 <y <8}, -esy<és v Let ¢:{0,1]»{7.6] be &
homeomorphism such that o(0) = 7. o(1) = 8. Define x:[0,1]2X Dby
x{s) = [@,0(s),1]. Clearly x is a characteristic map for ¢!, In case (2)

= {[zy1]eX:a<z <B.Y = p(x)}, where ~mZa<fs twandpisa
continuous function from (a.B) int.o R. Let o:70,1]»[c.p] be a homeomor-

phism with g{0) = a, a(l) = B Define x:(0,1)»X by
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x(s) = [o(s).p(o(s).1]. Clearly x is @ homec;morphism_ from (0.1) onto el.

Now x has a continuous extension to [0.1}: if « is finite, set x(0) = [a.y.l]..

where 7 = lim plz): Lf o is infinite { @ = - = ), set x{0) = [1.7.0]. where

7 = lim ﬂ—-L (this limit exists and is finite by Theorem 3.1). deﬁne x(1)

e -

similarly. Hence xis a characteristic map for e'.

let e? be a 2-cell of Dy. Then e? = {[z.y.1]leX:a<z <B,
p(z) <y <ylz)}. where - <a <.ﬂ < + o, and ¢ & ¥ ere continuous func-
" tions on (a.8), with ¢ <¥ (possibly p= -w.or P= + o). Let. a:[0,1]+[e.B] be 2
homeomeorphism such that o{0) ‘= @, o{1) = B. There are three cases to
consider. _
Case I. ¢ and. ¥ both fnite. For 0<s<1 and o=t=1 set
((o.6) = [o(s), 7(s.6).1] where 7(s.8) = pla(s)) + E((a(s)) - plole):
Clearly x maps (0,1)z (0. 1) homeomorphically onto e2, Now x has a continu-

ous extension to J? : if a is finite, ‘set x([}t) [ayJ- £(6 - )] where

v = =1j£n+ plz) & & = =hf.n+ Plz); if a is . inflnite (a_= -w), set
x(0.t) = [1y + £(5-7)0). where 7 = =1ir}1 5"—%)— and & = slir:rl MIE)—

define x(1.t) similarly.

_Case II. ¢.and ¥ both infinite (i.e. cp— - & Y= + «}. Suppose first that
either o or ﬁ is ﬂmte After a change of coordmates (of the type discussed
in Section 2), we may assume that both o« and § are ﬁmte We can define a
characteristic map x:I2+X for e® by x(s.t) = [o(s); 7(¢).1). where 7 is a
bomeomorphism from [0,1] oento [-e, + =] Suppose, on the other hand,
that both o and g are infinite {that is, a = -« &= + ) ﬁotice that in the

case €2 = X. The closed disk B? can be mapped into X as follows:
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x(z.y) = [z.4.V1-22-9?], (for z2 +y®< 1). The map xis a characteristic
map for e2. o _
Case JI]. either ¢ or ¥, not both, infinite. .Say p is finite & ¥= + o« . If either
o or # is finite then one ecan reduce as in Case II to the case in which both
and 8 are finite, a-nd easily write down a characteristic map for e?. Suppose,
then, that « and § are both infinite. Let D? be the closed semi-circular
region {{(z,y)eR%z? + yz'é 1,y=0}. Define a ruap from the portion of D? in

which 2 + gz < 1 into X by

x{z.y) = z Y o —= 1
e Vi-z?-y?' Vi-zf -yt V1-z2-42 |

Now y maps the interior of D? homeomorphically onto 22 But ¥ has a con-

tinuous extension to the whole of D% if 2+ 4% = 1 & z <0 then set

T+-®

x(z.y) = [1.y/::+y.0j] where ¥ = lim 50—(25)-' if 22+ y?% = 1 & >0 then

set x(z.y) = [ly/=z +'7'.0]. where ' = lim"ﬂfl: finally, set

x{0.1) = [0,1,0]. As D? is’ homeomorphic to B? under a map carrying 80%

onto 5!, we may regard x as an characteristic map for e2.

G. Computing time analysis.

We show that the maximum computing time of our algorithm is dnm-
inated by a polynomial function of n (the degree of f (z.y,z)) and d = log d,
where c'f is the su;ﬁ of the absolute values of the numerators and denomina-

tors of all rational coeflicients of f, i.e. the norm of f.

The steps of the algorithin te implement Section 2 are: carry out two
linear changes of coordinates, compute Lhe discriminant of a bivariate poly-

nomiial of degree n, and isolate the real roots of this discriminant. The




17

times for these operations are polynomial in 7 and d [Col'?ia. Col82a] When
we are done with these steps,we will have some (poseibly new) f{(z.y.z) of
degree m; let e denote its norm. loge is bounded by a pelyn'om'tal function
of n and d. -
Let g{z.y) = J (z 4,1). Collins [Col75a] established _the.t the time fer
construction ot a g-invariant .cad of E® is polynomial in 7 and log e. The cad
| algorithm in [ArnB2a, ArnBRb] is shghtly different from that which Cell.ins
analyzed, and in addition constructs adjacencies, but its computing time is
also so bounded. Furthermore, there are at most 0(n8) cells in the cad con-
structed by the algorithm, as we now show: since [0.1.0] is not on Cy,
S (= ;y.z) = cy" + (terms of lower degree in y), for some rational number
c, so g(= !y) = cy™ + (terms of lower degree .in y). hence
PROJ(g) = discriminant(g), and degree (discriminant(g)). = O(nz). (See
[ArnB2a] for the definition of PROJ). The evaluation of g; and g, at O-cell
sample points of the cad takes polynomlal time. '
We determine how many points C_, has on L by 1solatmt, the real roots
of fn(1.y). This takes time polynomial in n and log e [ColB2a]. There are at

most n such roots. Hence D, has O(n?) cells.

The sections of Dy are precisely the cells of Dy on which f vanishes, so

we can determine whether f vanishes on a cell by examining its cell index
- 3
(constant time per cell; 0(n®) célls). There are 0([’5 ]) = 0(n®) adjacencies.

Hence in time 0(n?) we can determine the equivalence classes of E(CJ-).

For each component of Cy, we can find the equivalence classes of
E(complemem(())) in time O(n%) For each component which is an oval, we

can compﬁte the Euler characteristics of D, and Da'by merely scanning the
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lists of their O(n%) cells and calculating their dimensions (from the cell
indices, see [ArnBRa), Section 4) in constant {(or at most O(logn) ) time.
Sinee, by Harna-.ck's Theorem [Wil78a], C; has O(n?) components, the total
time for step 5 is O(n8). -

We have thus shown that the total time required by our algorithm is

O(p(n, a)), for some polynomial function p(n, d).

7. Example.

We now do an example of our algerithm. Let the input polynomial be:

Flzy.z) = 9% - 2zy3 - z%2% + 2z% + y%22? + z%2% - 24
S is irreducible, hence squarefree. f(z,y.0) Has no multiple factors, and
[0,1,0] doces not lie on Cf, so we need not change coordinates.

Let g(z.y} = f(z.y.1). A proper g-invariant cad D of R? looks as [ol-

lows:



The indices of these cells are:

(1,9
(1.8)
(L.7)
(L8
(1,5)
(1.4)
(1.3)
)
)

We find that g;(z.7) and g,(z.y) do not vanish simultaneously at any C-cell

(.7)
(2.8)

(.5)

(2.9)

(.3}
(2,2)

(2.1)

(3.5)

(8.4)
(3.3)
(3.2)

(3.1)

(&)

(4.6)
(4.5)
(4.4)
(4.3)
(4.2)

(4.1)

‘of D, so C; is nonsingular.

Pigure 3

(5.9)
(5.8)
(57)
(5.6)
(5.5)
(5.4)
(5.3)
(5.2)

(5.1)

14




20

Continuing, we find that
f(z.y.0) = y (y-z) (y+z) (y—2=z),

and so Cy has the four points-[1,0,0], [1,1,0], [1,-1,0]. and [1,2.0] on l.. Thus
Dy consists of the (imbec.ldings in RP? of the) cells of D, the four just-listed
points of i. plus [0,1,0], and the remaining 1-cells that make up .. Let us
use the convention that (0.0) is the ce].l.index of [0,1,0], (0,21) is the cell
index of the cell in I, corresponding to the ¢** real root of f(1,4,0), and the
i-cells in I, have It‘he nat.u_rally induced indices consistent with these 0-cell

indices. Thus the indices of the cells in Dy which make up I, are:
(0.0). (0.1), (0.2), (0.3). (0.4). (0.5). (0.8). (0,7). (0.8), (0.8)
We find that C; has'two components, composed of the following collections of

cells (these are the equivaience classes of E(C_r) ):

{ (1.2), (2.2). (1.4). (0.B). (5.8}, (4.6). (5.8), (0.6) }

[ (1,6). (2.4). (3.2). (4.2), (5.2). (0.2). (1,B), (2.6). (3.4). (4,4). (5.4), (0.4) ]

Since f has even degree, both are ovals. .

Consider the first component of Cy above.- We get two equivalence

classes K, and K, for '§(complement(0)):_
[(18), 0.7, (5.7) ]

[ (0.0). (1.8): (5.9), (0.8), (1L8). (1.7). (2.7), (4.7)
(1,6}, (2,8). (1.5). (2,5). (3.5). (4,5). (5,5); (0.5),
(2.). (3.4). (4.9). (5.4), (0.4), (2.3), (3.9). (4,3,
(5.3). (03). (3.2). (4.2), (5.2), (0.2), |
(1), @1, (3.1, (6,1, (5.1). (0.1) ]
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'No_te that the dimension of a cell is equal to the sum of the parities (even=0,

odd=1) of the components of its cell index, e.g. (1,9) is a 2-cell, (4,4) is a O~
cell. Thus we see that the Euler charactéristic of the complex consisting of
the cells of K together with the cells of the oval is x = 4-5 +2 = 1, For
the complex consisting of the cells of Kz plus the cells of the oval we have
x = 11-22+ 11 = 0. Hence the flrst cluster is th'e interior, and the
second the exterior, of this oval. '

Now consider the second oval of Cp. Again we get two classes K, and K;

for R (complement(0)):
{ (1.7, (2.5), (3.3). (4.3). (5.3), (0.3) }

{ (0,0), (1.8), (5.9), (0.9), (5.8), {0.,8). {2,7), (&7). (5.7).(0.7), . -
(4.6). (5.6), (0.8). (1.5), (3.5). (4.5, (5.5). (0.5), (1.4),
(1,3). (2.3), (1.2), (2.2), (1.1), (B.1), (B:1), (&1), (5.1). (0.1) ]

The Euler characteristic of the complex consisting of X, plus the cells of the
oval sy = 6-8+ 3 = 0. For the con{plex consisting of Kz plus the cells of
the oval we have ¥ = 11-20+ 10 = 1. Hence the first cluster is the exte-

rior, and the second the mtenor of this oval.

We now see by inspection that the cells comprising the first oval oceur
- among the cells comprising the interior of the second oval. LEquivalently,
the cells comprising the second oval occur among the cells comprising the
exterior of the first oval. Hence the topological type of C_f may be speclﬁed

_ by saying that it consists of two ovals, one inside the other.
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