5,297 research outputs found

    A survey on 3D CAD model quality assurance and testing

    Get PDF
    [EN] A new taxonomy of issues related to CAD model quality is presented, which distinguishes between explicit and procedural models. For each type of model, morphologic, syntactic, and semantic errors are characterized. The taxonomy was validated successfully when used to classify quality testing tools, which are aimed at detecting and repairing data errors that may affect the simplification, interoperability, and reusability of CAD models. The study shows that low semantic level errors that hamper simplification are reasonably covered in explicit representations, although many CAD quality testers are still unaffordable for Small and Medium Enterprises, both in terms of cost and training time. Interoperability has been reasonably solved by standards like STEP AP 203 and AP214, but model reusability is not feasible in explicit representations. Procedural representations are promising, as interactive modeling editors automatically prevent most morphologic errors derived from unsuitable modeling strategies. Interoperability problems between procedural representations are expected to decrease dramatically with STEP AP242. Higher semantic aspects of quality such as assurance of design intent, however, are hardly supported by current CAD quality testers. (C) 2016 Elsevier Ltd. All rights reserved.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).González-Lluch, C.; Company, P.; Contero, M.; Camba, J.; Plumed, R. (2017). A survey on 3D CAD model quality assurance and testing. Computer-Aided Design. 83:64-79. https://doi.org/10.1016/j.cad.2016.10.003S64798

    ENTRY-LEVEL SOLUTIONS FOR SMALL AND MEDIUM-SIZE ENTERPRISES IN SUPPLY CHAINS

    Get PDF
    The increasing need for customization, more efficient quality feedback, better supply chain coordination, etc. are all factors which demand for implementation of item-level tracking and tracing services across company borders. A platform enabling such operations has been developed under the acronym of TraSe

    The GOOSE Protocol

    Get PDF
    The majority of the electrical substations built today conform to the international standard IEC 61850 that uniformly defines the communication between the various intelligent electronic devices (IEDs) of the substation automation system. The success of the standard in substation automation has expanded its application to new areas, such as wind power, hydro power, and smart grids. For this thesis, the most intriguing use of the standard is its application to the communication between the control system of internal combustion engines and other equipment in a power plant. The main objective of this thesis is to gain early experience on the use of the Generic Object Oriented Substation Events (GOOSE) protocol, which is often considered the most prominent communication protocol of IEC 61850. In this thesis, the standard IEC 61850 is described, and its most fundamental concepts are illustrated by clear examples. An application based on open source software has been developed in the Linux-environment in conjunction with this thesis. The application enables two IEDs from different manufacturers to exchange GOOSE messages. The emphasis of the thesis is thus on the presentation of the GOOSE protocol and the developed application. The results show that the GOOSE protocol provides compatible interfaces for information exchange between IEDs provided by different manufacturers, and can be seen as a viable option as a future communication protocol. IEC 61850 will likely be put into service in engine power plants, in the near future. The schedule partially depends on the development of the markets and the requirements of the customers.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    Get PDF
    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive

    Introduction to IntelliSIM 1.0

    Get PDF
    IntelliSIM is a prototype for a new generation of knowledge-based simulation tool that has been developed by the Systems Simulation Laboratory at Arizona State University. This tool is a computer environment that allows non-simulation trained modelers to predict the performance of a manufacturing system for which the necessary data is available. The system provides predictive data on such items as throughput time, queue levels, equipment utilization, reactions to machine failures, etc. With IntelliSIM, the benefits of discrete-event simulation can be exploited without requiring the high level of expertise necessary to successfully conduct a sound simulation study. The approach offered with IntelliSIM is one which will offer substantial savings over currently available simulation tools. This document is Version 1 (1992) of the user manual for the IntelliSIM software

    Introduction to IntelliSIM 1.0

    Get PDF
    IntelliSIM is a prototype for a new generation of knowledge-based simulation tool that has been developed by the Systems Simulation Laboratory at Arizona State University. This tool is a computer environment that allows non-simulation trained modelers to predict the performance of a manufacturing system for which the necessary data is available. The system provides predictive data on such items as throughput time, queue levels, equipment utilization, reactions to machine failures, etc. With IntelliSIM, the benefits of discrete-event simulation can be exploited without requiring the high level of expertise necessary to successfully conduct a sound simulation study. The approach offered with IntelliSIM is one which will offer substantial savings over currently available simulation tools. This document is Version 1 (1992) of the user manual for the IntelliSIM software
    • …
    corecore