

CICERO RD38: A Distributed Information System for HEP Controls

J-M Le Goff

CERN, Geneva, Switzerland

R McClatchey

Dept. of Computing, Univ. West of England, Bristol, UK

Abstract

Large scale, distributed industrial and scientific systems share many technical problems
in the implementation of their control systems. With the advent of standards in
distributed object technology, it is now feasible to reuse control objects across control
systems. The CERN CICERO project aims to use object-oriented methods to design the
main building blocks of a generic control information system based on the distributed
object standard, CORBA [1]. CICERO is producing an integrating environment (Cortex
[2]) into which distributed user control objects will ultimately be 'plugged and played'
and a supporting information system for the configuration and management of that
environment. Cortex has been designed to be sufficiently generic in nature to allow its
reuse by any future control system used at CERN and potentially by medium to large
scale industrial control systems such as power systems, satellite control and
telecommunications network management. This paper describes the main design
concepts behind Cortex and the enabling technology and the software engineering
methods used in implementing Cortex.

1 Introduction

The latest experiments in particle physics at the CERN laboratory in Geneva are composed of
large numbers of sophisticated detectors and devices each potentially constructed by geo-
graphically separated development teams using disparate electronics and software. Each
detector requires software to control the acquisition of data and the supervision and operation
of great numbers of sensors and actuators. Control activities include monitoring devices,
maintaining the safety of the experimental setup and the control of low level automation loops
to automatically maintain devices in operational conditions. To reduce development costs
physicists are looking for partially reusable solutions to their technical problems such as the
incorporation of industrial products with home-grown products [3] for tasks in the control sys-
tem. However, in the recent past it has proved difficult to integrate commercial products
together (e.g. PLCs with VME) and to integrate these products with existing CERN-made
control (sub-)systems. In essence, what is required is an overall framework to facilitate inte-
gration between control system elements. Such a framework (or software integration plat-
form) should go beyond defining standard interfaces, it should guarantee that commercial
products can exchange information and collaborate regardless of the organisation of the over-
all control system.

The next generation of CERN experiments at LHC - the Large Hadron Collider [4] - will
involve collaborations of many tens of institutes and over 1,000 physicists, engineers and
computer scientists from around the world. The knowledge required to construct and monitor
the experimental (sub-) detectors will be distributed between these institutes making it diffi-
cult to impose standards. There will consequently be significant problems of information
transfer to ensure that each (sub-) detector retains autonomy of control but can work with
other (sub-) detectors for data-acquisition. In addition, the LHC detectors will be required to
have a long lifecycle since the experiments will take data for several years and, as a conse-
quence, maintainability will be an important consideration. The experimental groups will also
be working to very tight time and cost schedules. As the experiments grow, so the control sys-
tem should grow from an initial lab-based test system to test-beam operation and to the fully-
fledged experimental system. The Cortex element of the CICERO project intends to provide
an integrating scheme (Cortex [2]) to enable the building of distributed control systems where

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25189711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

responsibilities are distributed amongst control elements that have to collaborate together.

Experience of the development of control systems for the LEP experiments [5] and anticipa-
tion of the increased demands which will be generated by the new and larger experiments for
LHC has identified the main constraints for the design of such an integrating scheme. Firstly,
since the LHC experiments will be equipped with > 100,000 sensors and activators, the

man-
agement of control system complexity

 is a major consideration. Object-oriented design tech-
niques embodying abstraction, inheritance and the use of classes and objects will aid the
design here. Secondly the problem of

concurrent and collaborative software engineering

requires addressing. This is particularly true when the development of the control software is
carried out by engineers who are separated geographically. Thirdly, the software developed
should provide

stability, flexibility and availability

 of control system elements so that sys-
tem down-time (such as that for upgrades) is minimised. Finally, the control system software
should provide

balanced, distributed processing

 in the heterogeneous environment of High
Energy Physics (HEP) control systems.

The next section identifies the characteristics of control systems as used in HEP and illustrates
how the concepts of

hierarchy

 and

collaboration

 are important in control. The design philoso-
phy behind the construction of Cortex is identified in the sections that follow showing how
those design constraints identified above have been addressed. The enabling object-based
technology and standards used in the design and development of Cortex are later investigated
before the current status and future development plans for Cortex are described.

2 Control Systems Structure in High Energy Physics

From the point of view of control, a HEP accelerator or experiment can be visualised as a set
of devices (muon detector, electromagnetic calorimeter, etc.) and systems (data acquisition
system, gas system, etc.) performing specific functions and collaborating, by the exchange of
control information, in order to achieve the accelerators’s or experiment’s objectives. Each of
these devices and systems, are usually decomposed into subsystems, with specific functions,
different information needs and different degrees of autonomy. These subsystems could be
further subdivided, to the appropriate level of granularity required by the underlying hardware
or by functional decomposition (Figure 1).

In order to properly specify the collaborative distributed control system, two basic features are
required to be offered to the users of the control system. On the one hand, the users need to be
able to organise hierarchically the different elements of the collaborative distributed control
system. On the other hand, the user must be able to specify the collaboration needs between
these elements, independently of their hierarchical organisation.

In the first case, the hierarchical organisation of the control system reflects the layout of the
experimental setup, supports detector-specific global operations (e.g. for data taking or beam
operation) and local operations (for calibration and test purposes e.g. ramp-up high voltage)
and provides a representation which allows apparent complexity of the experiment to be hid-
den from the user. In the second case, the collaboration aspects provides the user with facili-
ties to specify which information is to be shared between control elements and how that
information is to be shared. This includes definition of the formats of shared data or services
and the form of transport of the data. Two major mechanisms for data transfer and service
invocation are required:

multicast communication

 which can be used for functions such as
start calibration or the distribution of monitoring data from a single producer to multiple con-
sumers and

point-to-point communication

 which can be used for interlocking front-ends or the
dispatch of a command for invocation between a requester and a performer (e.g. operator asks
the muon system to ramp down its high voltage to 2 KV).

All the above needs can be abstracted by two orthogonal relationships which must be satisfied
by any system used for controls in HEP:

• the “composition” relationship which describes the hierarchical organisation of control ele-
ments to support global behaviour. For instance, the “Experiment” element is composed of the
“Muon detector”, “Run control”, “Gas system”, “Cooling and ventilation”, “Security”,
“Tracker”, “ECAL”, and “HCAL” elements and the “Muon Detector” itself is composed of
“High Voltage”, “Low Voltage”, “Discriminator System”, “TDC” and “Alignment System”
elements and

• the “collaboration” relationship which is the hierarchy independent communication between
elements to support dedicated information and command exchanges. For instance, the “Muon
detector” element is collaborating with the “Gas system” element.

Figure 1:

 An experiment hierarchy

3 Scope and Constraints in Cortex

HEP experiments and accelerators are normally developed by various teams with specific task
assignments. Usually, the different parts of a HEP experiment are developed by different insti-
tutes in their laboratories and gathered together later after being tested. The experiments are
tuned up at CERN before new tests, or calibration and operation. For instance, the gas system
and the high voltage system of a muon detector may be produced and tested by two different
teams. Cortex must support an equivalent life cycle for the collaborative distributed control
systems of these experiments or accelerators. In particular, it should be possible to develop
control systems and later to integrate them in a collaborative distributed control system with-
out major code modifications. Users should only have to configure the existing collaborative
control system, by introducing their part of the development and specifying the information
and commands to be exchanged with this part in the global control system.

Central
Control

Security

Cooling/
Ventil.

Gas

Magnet

ECAL HCAL

Muon
Detector

High
Voltage

Low
Voltage

Discrim.
System TDC

Align.
System

VME PLC

Cryogenic System

Power Supply

Quench Protection

Magnetic Field
Tracker

Vacuum Pumping
Station

Although the different elements of a HEP experiment are operated globally during data tak-
ing, sometimes some subsystems or devices have to be operational while some others are not.
For example, during calibration and test, the muon detector and the gas system can be opera-
tional while the magnet is switched off. Cortex shall promote the modularity of distributed
control systems in order to allow some integrated control systems to be operational while
some others are not. Malfunctioning hardware may lead control elements to send incorrect
information to other elements, which can consequently take inadequate actions. If the hard-
ware cannot be repaired immediately, Cortex shall allow operators to prevent this incorrect
information from being broadcasted. Cortex will also support users during the reengineering
phases of the integrated control systems by allowing them to reuse and integrate existing soft-
ware.

Cortex is required to support the entire collaborative distributed control system life cycle by:

• providing a multi user development environment,

• supporting the testing and simulation of users’ control elements with respect to the integra-
tion within the Cortex control system,

• offering tools to operate and protect the control system from faulty processes implementing
some control elements,

• allowing the integration of already existing control systems,

• allowing collaboration with other autonomous control systems.

Cortex intends to provide a control system designer with the ability to integrate his particular
control system efficiently and with minimal cost and effort.

The architecture of any distributed control system will change during the lifetime of the accel-
erator or the experiment it is operating. The control system integrating platform, Cortex, must
therefore support a mechanism to allow a new version of the distributed control system to be
in preparation while an older one is operated on-line. It shall also support the backup and the
restore of a given version of the collaborative distributed control system. Furthermore, tests
and validation (and possibly simulations) of a new configuration will be needed before it is
applied to the operating on-line system.

4 The Cortex Design Philosophy

• The above constraints have led to a so-called dual-face approach (see figure 2.) being taken
in Cortex:

• an off-line Cortex representation is required to handle the logical descriptions of the archi-
tecture of the distributed control system and to describe the various information and com-
mands to be exchanged between the different control elements. This so-called

Repository

 also
holds the description of the hardware model from which the on-line distributed control system
is constructed, and

• an on-line Cortex representation is also required through which the control elements can
exchange information and commands in a pseudo- 'plug-and-play' fashion. Control elements
operating within the Cortex Infrastructure can access the Cortex Repository through this so-
called

 Infrastructure.

 A generation mechanism is provided to facilitate updates of the on-line
Infrastructure according to the Repository contents.

The responsibility of Cortex is twofold: on the one hand it has to support the description of the
architecture of the distributed control system and the definition of the information and com-
mands to be exchanged between the control elements. The off-line representation of the con-
trol system therefore addresses the issues of the

 management of control system complexity

and that of

concurrent and collaborative software engineering

 identified earlier. On the
other hand, Cortex must transport and distribute these data and commands to the appropriate

control elements when part or all of the distributed control system is in operation. This distri-
bution must be independent of the number of hardware elements on which the various control
elements are operating. The integrating framework must be flexible enough to support the
addition or removal of control elements, without deteriorating the operation of the rest of the
distributed control system. The on-line Cortex Infrastructure thereby addresses the demands
of

stability, flexibility and availability

 of control system elements and that of providing

bal-
anced and distributed processing

 for the control system.

Figure 2:

 The dual-face approach

5 Cortex off-line

5.1 Components

Off-line a Cortex control system is visualised as a collection of collaborating components.
These components map onto those on-line processes in a control system which produce or
consume information and they can be of various kinds. They may or may not be “control com-
ponents”. For example gas systems or high voltage systems are managed by software that are
control components. Each has a read-out system and has responsibility for the hardware.
Indeed some control components may need real time capabilities, for instance, elements inter-
facing front-ends performing interlocks. On the other hand, an on-line documentation element
or a user interface element are “non-control elements” - they do not have responsibility for the
hardware. They may, however, support high level control functionalities such as alarm filter-
ing, user assistance, preventative maintenance etc. Cortex can therefore be used to integrate
software which implements facilities common to any kind of control element such as loggers,
archivers, retrievers, DUIs, final state machines, etc.

5.2 Compositeness and Collaborative Groups

Compositeness is the mechanism proposed in Cortex to support the logical encapsulation of a
distributed control system. Components may be composed of smaller components. Such com-
ponents are referred to as composite components and are often used to separate functions or to
provide the granularity required by the underlying hardware (figure 3). Users must be able to
operate the complete control system from a global standpoint or operate each component
independently via the composite components. Additionally, users must be able to specify
communication requirements at any level of component, regardless of the inherent hierarchi-
cal organisation. In practice then a composite component may be chosen either:

• to represent a global control process when it will support global operations such as those to
start/stop the global control process or

• to represent a local control process when it will support operations such as start/stop for any
specific encapsulated component.

Grouping is a complementary mechanism to Compositeness proposed in Cortex to allow
specification of information and command exchange at any level of granularity. A collabora-
tion group is composed of a set of components that make available certain information and
services to the other components in the group. Two components will be able to exchange
information and commands if and only if they belong to the same collaboration group. Com-
ponents can be part of more than one group. Collaboration groups can be established across
encapsulations of sub-systems. The combination of compositeness and collaboration groups
allows the user to refine and optimise the communication at an appropriate level of control
system component.

5.3 Publishing and Subscribing

Within a collaboration group, a component can provide information to other components by
publishing items (data or services). If granted permission by the publisher, any component of
a collaboration group (other than the publisher) can access this information by subscribing to
the published items. The set of published and subscribed items handled by a component
within a collaboration group is called a component interface. A component usually has a dif-
ferent interface for each collaboration group in which it is a member.

A component can subscribe in one collaboration group and republish in another collaboration
group. The publish and subscribe mechanisms are fully asynchronous. In particular, an item
can be depublished while it is still subscribed by other components. If this situation is propa-
gated to the on-line system, the corresponding on-line Infrastructure will support such incon-

Muon
Detector

High
Voltage

Discrim
System TDCs

Alignment
System

Low
Voltage

Run
Control

Cooling &
Ventilation

Gas
System

Experiment

Key: Groups are represented by ellipses, Components by

Composite Components are shown as double rectangles.

Figure 3: (Composite) Components & Grouping

.

rectangles and Component interfaces by shaded boxes.

sistencies and inform the appropriate subscriber components. Compositeness and
collaboration grouping are the mechanisms for supporting information abstraction in Cortex:
some of the collaboration groups can be organised to enforce encapsulation of sub-systems
(so-called

strict encapsulation

). This will allow composite components to subscribe within
their encapsulation and publish refined information to other composite components in other
collaboration groups.

6 Cortex on-line

The Cortex on-line Infrastructure is a set of entities responsible for the distribution of infor-
mation and for the transmission of commands (service invocation) to the appropriate compo-
nents, according to the Cortex Repository specifications.

The Cortex Infrastructure provides two selectable ways of data exchange between compo-
nents. The

push mechanism

 which allows components to push new information into the Infra-
structure or to receive information from the Infrastructure and the

pull consumer mechanism

which allows components to retrieve information from the Infrastructure at their convenience.
The push mechanism is recommended for security information such as alarms. The pull
mechanism is more suitable for monitoring components offering refreshed information upon
users’ request. In both cases, only information specified in the Cortex Repository will be
transported and delivered to the appropriate components. Version inconsistency between the
information sender and the information receiver are handled by the Infrastructure at message
level. For example, a component may pull from the Infrastructure items which are no longer
published (in the Repository). The dynamic information contained in these items is no longer
refreshed and the corresponding component will be informed. Time stamps will contain the
last time these items have ben refreshed.

The on-line architecture supports a separated set of messages to handle service invocation
called command messages. Commands are persistent in the Infrastructure from the moment
they have been issued until they are completed (successfully or not) or refused by performers.
Two basic types of services are available. Firstly services can be cancellable or non-cancella-
ble: a requesting component can cancel its request while the component offering the service is
processing the command. Secondly services can be multi- or single-requestable: more than
one requesting components can issue a command to the same performer component.

More than one requesting component can invoke the same single-requestable command hence
addressing the same performing component. The on-line architecture handles possible access
conflicts using an internal protocol based on locking. Commands are not direct implementa-
tions of operations in the OMG Object Model, which do not support some specific control
functionalities such as authentication, availability and progress report features.

7 Enabling Technology

In an effort to maximise the reusability of code in Cortex and to provide an incremental devel-
opment route, object standards have been followed in developing Cortex. In particular the
Cortex on-line Infrastructure is based on the Object Management Architecture (OMA) and the
Cortex off-line Repository on the Object Database Management Group (ODMG) standard.
The following sections introduce these standards and identify the important aspects of the
standard-gauge Cortex. The use of the OMA standards are considered in the next section of
this paper where reusability of control system components is considered.

7.1 The OMG Object Management Architecture Standard

The Object Management Group (OMG) is an industry consortium dedicated to creating object
management standards necessary to achieve the goal of interoperability between heterogene-

ous, distributed object based systems. The Object Management Architecture (OMA) [6] is the
reference model for the OMG standards and identifies three major categories of specifications
or architectures:

• Common Object Request Broker Architecture (CORBA)[7]

• Common Object Services Specification (COSS)[8]

• Common Facilities Architecture (CFA)[9]

In the OMA object model, objects provide services to clients as shown in figure 4. An inter-
face is a description of a set of the possible services that a client may request and is specified
in Interface Definition Language (IDL). Clients are not written in IDL but in the implementa-
tion language for which mappings have been provided. IDL mappings are currently available
for C and C++.

The initial focus of the OMG was on the specification of the Object Request Broker (ORB) as
detailed in the Common Object Request Broker Architecture (CORBA) document. The ORB
forms the key part of the architecture by describing how objects are located, operations
accessed and arguments passed transparently and flexibly such that integration of a variety of
distributed object based systems can be achieved. CORBA specifies IDL, the object invoca-
tion interfaces together with an interface Repository on the client side, object adaptors (OA)
on the server side and the ORB core. It is the ORB core which does the object location, mes-
sage delivery and binding between clients and object implementations. There are two ways
that a client can make an object invocation request, one is through a static interface and the
other through a dynamic interface. Whichever invocation interface is used a target object can-
not tell which method was used. The important difference between the invocation interfaces
will be the amount of time taken to invoke the implementation object.

The actual object implementations are constructed from programs which could be executable
scripts or loadable modules. An implementation object can be designed so that a single pro-
gram implements the whole objects interface behaviour or one program can be used to imple-
ment each of the methods. The method binding interface to the ORB core is through
skeletons. However the object implementation interacts with the ORB core in a variety of
ways, for example, to register itself, to request an object reference and to invoke ORB serv-

Application Objects
(Specific to particular end-user)

Common Facilities

Object Request Broker

(Classes and objects for general
purpose capabilities e.g. DB)

Encapsulation Location Independent exchange
of services

Object Services
(Basic functions for realising and maintaining objects)

Infrastructure aspects of distributed object management

Figure 4: The OMG/CORBA Model for CICERO.

Application objects: Cortex Infrastructure objects.
Common facilities: OODBMS, Real-Time controls

ices. This interface is provided by the Object Adapter (OA). The OA defines most of the serv-
ices from the ORB core that the Object Implementation can depend on such as activation,
deactivation and access control to object implementations. Different ORBs and different oper-
ating environments will provide different services and levels of service, if the ORB service is
available then the OA simply provides an interface to it and if the service is not available then
the OA must provide it. The CORBA specification suggests that it is not necessary for all
object adaptors to provide the same interface or functionality an example of a special OA
interface would be one that connects to objects stored in an object-oriented database.There is
one OA that all CORBA implementations must provide and that is the Basic Object Adapter
(BOA). The BOA is concerned with activation, deactivation and access control of object
implementations and thus the main responsibilities are:

• Generation and interpretation of object references

• Authentication of the principal making the call

• Activation and deactivation of the implementation

• Activation and deactivation of individual objects

CORBA provides the basic communication channel through which objects interact however
the system services it provides are limited. Fundamental system services such as naming, rep-
lication, security, transactions and time are key to building distributed applications. The Com-
mon Object Services Specification (COSS) defines in terms of interfaces and objects a
collection of these services. COSS volume 1 covers Naming which provides the ability to
attach textual names to object references, Event Notification which provides an event notifica-
tion service for unexpected events, Life Cycle Support for creating, deleting, copying and
moving of objects and a Persistent Object Service. COSS volume two which is expected in
mid 1995 will specify transactions, externalisation, relationships and concurrency services.
COSS Volume 3 will feature Security and Secure Time Service and COSS Volume 4 will
include Object Query and Object Properties services. These later two volumes are expected
later in 1995.

The Common Facilities Architecture (CFA) is the third and final area of OMA to be defined
(interfaces and objects) and is a collection of higher level services which may be broadly
applicable to many applications. Four major horizontal domains for such facilities have been
identified so far: User Interface, Systems Management, Information Management which cov-
ers the modelling, definition, storage, retrieval, management and interchange of information,
and Task Management which covers the automation of work. Vertical Market Facilities repre-
sents technology that supports various vertical markets such as retailing, telecoms, CAD or
health care. Each Common Facility interface is defined in IDL and as such may inherit behav-
iour of the more fundamental Common Object Services. Similarly implementers building dis-
tributed applications can make extensive reuse of Object Services and Common Facilities by
OMG IDL based inheritance.

7.2 The Object Database Standard (ODMG)

The Object Database Management Group (ODMG) has put forward a set of standards allow-
ing an Object Database Management System (ODBMS) user to write portable applications,
i.e. applications that could run in more than one ODBMS product (the schema will be portable
as well as the application accessing it). The proposed standard will, eventually, be helpful in
allowing interoperability between different ODBMS products, allowing the development of
distributed heterogeneous database communicating through the OMG Object Request Broker.

The ODMG defines an ODBMS to be a Data Base Management System (DBMS) that inte-
grates database capabilities with object-oriented programming language capabilities. An
ODBMS makes database objects appear as programming language objects, extending the lan-
guage with transparently persistent data, concurrency control, data recovery, associative que-

ries and other database capabilities. The major components of an ODBMS are the following:

• the Object Model. This is based on the OMG Object Model. An ODBMS Profile has been
created as an extension of the OMG Core Object Model to support the ODBMS specific needs
(e.g. Relationships),

• the Object Definition Language (ODL). This is the data definition language for the
ODBMSs. It is based on the OMG Interface Definition Language,

• the Object Query Language (OQL). This is a declarative language for querying and updating
database objects. It is based on the relational standard SQL,

• the C++ Language Binding. This explains how to write portable C++ code that manipulates
persistent objects. It is called the C++ Object Manipulation Language. The binding also
includes a version of the ODL that uses the C++ syntax, a mechanism to invoke OQL and pro-
cedures for operation on database and transactions.

• the SmallTalk Language Binding (in preparation).

The current version of the standard is ODMG-93, ODMG-95 is in a draft version. ODMG-93
foresees the ability to access an ODMG-compliant product through an ORB using a special
Object Adapter for this ODMG product. Users have to design this adapter or intermediate
objects that can make use for instance, of C++ OML and of the OMG C++ Language Map-
ping.

7.3 Mapping Enabling Technology onto the Cortex Design Philosophy

In Cortex, an ODBMS is being used as the vehicle for the off-line Repository to support a
standardised access for the CORBA objects in the on-line Infrastructure. The Repository has
been designed to support the notions of Compositeness and Collaboration Groups, Publishing
and Subscription and Components as described in an earlier section. ODBMSs provide per-
sistence of object information, and all the advantages of DBMS systems such as version man-
agement, concurrency control, security and recovery. This enables control system designers to
save a full description of the experimental setup in an object base and to modify that descrip-
tion over time as the experiment grows.

The Cortex on-line Infrastructure is instantiated as a set of CORBA objects responsible for the
distribution of information and for the transmission of commands to the appropriate compo-
nents, according to the description resident in the Cortex Repository. On-line objects in Cor-
tex are written in C++ and use Iona Technologies implementation of CORBA, called Orbix,
for object location, access and communication services. The physical location of the compo-
nents and the Infrastructure will depend on the hardware setup available. This setup may
evolve with time for performance reasons or for maintenance purposes. In these cases, the
system functionalities must be maintained when part of the hardware is changing. This opera-
tion should take place without disturbing the operation of the parts of the distributed control
system which are not involved in this upgrade. The location transparency is fully supported by
CORBA. CORBA makes no provisions for message sender identification. Any program can
potentially send a message to a CORBA object. To avoid unpredictable overloads, Cortex pro-
vides an authentication mechanism to ensure that for any new starting process is effectively
representing a component known to the Cortex Repository.

As an example of the use of the OMA standard in Cortex the next section investigates how
Cortex provides reusability both of control system components and complete control sub-sys-
tems.

7.4 Reusability and Cortex

The basis for re-use in the CICERO project is through the use of CORBA IDLs and ORBs.
Reusability can be exploited in CICERO both at a level internal to components and at a level

external to components. Firstly at the internal level, consider the re-use of component code as
the hardware of the control system is evolving. By using IDL stubs for client invocation and
an IDL skeleton to package the existing (component) code for CORBA compliance, the con-
trol system can be allowed to grow whilst reusing existing components. As an example, con-
sider the incorporation into a UNIX-based control system of an existing data logger which
runs on VMS/ORACLE. To reuse this component it is necessary only to build an IDL inter-
face to this logger, using an ORB which supports VMS. Then a UNIX component will be able
to send messages such as store and retrieve through this interface to log information without
having to know the complexities of UNIX-VMS translation. In addition, such a component
will be able to log any additional Cortex messages issued by any other existing components
according to the description stored in the Cortex Repository.

Using CORBA IDL for interface specification permits the sub-division of a large software
module into smaller, easier to manage units with simpler functionality. This facilitates reusa-
bility in that it supports:

• the evolution and partial upgrade of complex control systems and

• the re-use of existing (legacy) systems through CORBA objects.

In this example of reusability, partial re-engineering of component code is again required
since the IDL specification takes place inside the component code.

CICERO is also able to exploit reusability at a level external to components. This can be
achieved through the use of so-called Reusable Components. These can be regarded as tem-
plates for components with logical input/output which can be instantiated as many times as
there are physical devices. At the time of instantiation, there may be no hardware assignment -
only at the time of assignment will the desired functionality become apparent and the compo-
nent code reused. For example, consider a 16-channel Analogue to digital Converter (ADC)
read-out component coupled with an ADC Converter component. The first component is hard-
ware independent, except for the ADC gain, and can be reused as many times as ADCs are
needed in the system. The second component is context dependent and can evolve with the
hardware of the system. If the second component is data driven and obtains its configuration
data from the Repository, then the ADC/ADC Converter pair can be reused with no code mod-
ification in any subsystem of the experimental setup. Cortex offers the possibility of decom-
posing a complex control system into data acquisition components, command components
and automation loop components offering the possibility of reusing or sharing components in
different control systems.

Another example of reusable components is possible in CICERO when whole sets of compo-
nents are reused at the control system level. Here, consider two Cortex control systems devel-
oped independently and merged at a point in time. For example, a development or test setup
which has been locally setup and then physically moved to be made part of (integrated with) a
larger control environment. In this case since there is compliance at the Cortex level, no code
modification whatsoever is required and the integration takes place through the addition of an
intermediate component which resolves the match between the two Cortex systems. That is,
the intermediate component subscribes to the items of the test control system and republishes
the converted items for the larger control system. In addition, it is possible to split the two
control systems for independent running at a later point in time without code modification.

8 Software Engineering Standards in the Development of Cortex.

The previous sections noted the object-based standards adhered to in the development of Cor-
tex and investigated reuse of control system components based on these standards. This sec-
tion describes the methods that were followed in implementing Cortex and in particular
concentrates on the software engineering techniques used which enabled the development of
Cortex.

8.1 The ESA PSS-05 Standard

As HEP systems become more complex, the need for rigor in software engineering increases
in importance. In addition, as the development of these complex systems is increasingly car-
ried out remotely from CERN or by developers on short-term contracts at CERN, the need for
clearly defined deliverables and interfaces between (sub-)systems also becomes crucial. As a
consequence, software engineering standards have been investigated in the last few years by
large groups of developers in HEP. Work at the European Southern Observatory [10] and the
European Space Operation Centre [11] into standards has recommended the use of the Euro-
pean Space Agency's software engineering standards alongside those from the IEEE and IEE.

The European Space Agency Procedures, Specifications and Standards [12] method is an
essential feature of CICERO. This standard has been developed for the European Space
Agency to ensure that any project has the best chances of a successful outcome. There are two
major parts: the products themselves and the procedures to produce them. The products are
the documents and software used to create, use and maintain software. The procedures guide
the system developer in project management, software configuration management, software
verification and validation and software quality assurance.The documentation for this stand-
ard includes both mandatory and optional sections, divided into three levels. In order to meet
the ESA standard, all mandatory operations must be carried out or documentation produced as
appropriate. The process of production is divided into six phases, following the standard
waterfall life-cycle model of User Requirements Definition, Software Requirements Defini-
tion, Architectural Design, Detailed Design and Production, Transfer and Operations & Main-
tenance. In addition there are documents on Structured Analysis, Fortran Coding, Ada Coding
& C Coding standards.

Management of the software lifecycle is catered for in the ESA standards through the use of a
Software Configuration Management Plan (SCMP), a Software Verification and Validation
Plan (SVVP) and through Software Quality Assurance (SQA). These plans are detailed in [12]
and provide the project manager with requirements for identifying, controlling, releasing and
changing software releases and for recording their status. The SVVP provides for the review,
testing and auditing of the delivered software products. Further, the project manager can
ensure quality is being maintained in software delivery by following the recommendation of
the SQA plan.

The ESA standards were originally based on the ‘Waterfall Model’ of the software lifecycle,
following a phased approach to software development. Modified forms of this approach
include the incremental delivery and evolutionary development models. In the development
of Cortex an

evolutionary

 approach has been adopted which overcomes some of the limita-
tions of the waterfall model. The evolutionary approach allows for the planned delivery of
multiple releases of Cortex, with each release incorporating the experiences of earlier releases
in a manner analogous to the ‘Spiral Model’ of software development suggested by Boehm
[13].

8.2 The OMT Methodology

The CICERO project has selected the European Space Agency standard PSS-05-01 [12] as the
life-cycle model to support the development of its software. Within that framework more spe-
cific software engineering methods are being used. Foremost amongst these is the object-ori-
ented design method developed by James Rumbaugh and colleagues, OMT [14].

The OMT method comprises a number of models which are developed and enhanced as the
project moves from requirements analysis through design to implementation. There are sev-
eral CASE tools available for generating OMT diagrams, but, since it is not a standard but a
methodology, the tools need to be embedded in a full standard such as ESA. OMT involves
several stages, and is in some ways an extension to the Entity Relationship approach for
designing and documenting systems. It is based strongly on the relationship between objects

and nouns in a textual description and on the behaviour of the object and the verbs to analyse
the requirements.

Of widest use on the CICERO project have been the Object/Class model (a form of Extended
Entity Relationship model showing static data relationships in the software), event traces
(showing sequences of messages sent between objects to accomplish a given function) and the
Dynamic Model (State Charts to define the temporal ordering of events impinging on a given
object). These models have been supported by the use of a diagramming tool, Select. In addi-
tion, the CICERO project has used a code generation tool, OBLOG, which supports the OMT
methodology, to generate User Components (in C++) from the OMT Object/Class model. The
OBLOG tool integrates concepts from semantic data modelling and concurrent processing,
employing objects as a unifying concept and aiming at a conceptually seamless methodology
from requirements to implementation [15].

9 Experience of Applying Object Technology in Cortex

Having identified the technology and software engineering techniques used in the develop-
ment of Cortex, conclusions made be drawn in their use.

9.1 Use of OMA standards

The main conclusions that can be drawn in Cortex from the experience of the use of OMA and
CORBA are that:

• CORBA has successfully demonstrated the ability to allow the designers to wrap up existing
legacy software systems, some of them shell scripts, as CORBA objects and integrate them
into the Cortex system.

• the CORBA interface inheritance has allowed reuse of object behaviour.

• considering that the collaboration team is spread across the far corners of Europe and
beyond with each group working on its own part of the prototype the “plugging” together of
the components using CORBA to construct the prototype was a notable success.

• the CORBA tools (Orbix) have caused a few minor problems particularly time-out of object
connections. However most of these problems have appeared to be resolved in the more
recent version 1.3.

• none of the OMG fundamental object services (COSS) have been implemented as yet, in fact
most of them have yet to be fully specified. This presents a dilemma as the CICERO team has
proceeded to the design stage and have commenced specifying and designing its own object
services. It will be interesting to see how long it takes for the OMG object services to be bun-
dled into existing commercial CORBA Orbs.

• similarly the OMG Common Facilities Architecture has only just been published. However
this document is intended more as a management tool intended for controlling development of
and positioning Common Facilities and their specifications. The experience of using the OMG
OMA within the CICERO Project may well provide the basis for the collaboration team to
submit suggestions to the Common Facilities Task Force as to candidate common facilities
within the control systems vertical market.

9.2 Use of ESA and OMT

The use of the ESA methods during the prototype development undoubtedly helped to clarify
the design of the first release of Cortex. Such use of the ESA standards requires experience,
especially when identifying the boundaries between the different phases of the lifecycle. In
principle, ESA standards do not enforce any particular methodology. In practice, however, the
ESA guidelines are clearly supporting a functional breakdown of the problem statement and

hence implicitly imply non object-oriented methodologies. Some trade-offs had to be made to
support the OMT methodology, especially in the Architectural and Detailed Design phases of
the ESA standards. One example is in resolving the relationship between the demands on the
documentation produced in accordance with the ESA standards, particularly in the promi-
nence given to natural language in the User and Software Requirements documents and the
need for more precise semantics demanded by the OMT modelling approach. Guidelines are
needed to help in the integration of these two standards.

Software produced for a pilot project is similar to production software with respect to robust-
ness and reliability. Therefore management guidelines supporting the software lifecycle as
enhanced by the ESA-PSS 05 standard must be strictly followed. In particular, as stated ear-
lier, a complete set of Software Project Management, Software Configuration Management,
Software Verification and Validation and Software Quality Assurance plans must be produced
in parallel with the software lifecycle documents.

The OMT notation is strong in describing the abstract design but is lacking when describing
the implemented system. This failing was felt during the Architectural and Detailed Design
phases yet it is here, when the volume of design information increases substantially, that nota-
tions to capture the design and tools for their manipulation are essential. Work on design nota-
tions and the capture and re-use of designs is the focus of some researchers in the OO field
and the results of this work should be made accessible to the CICERO team. OMT is not par-
ticularly targeted at the design of real-time systems and is not sufficient to handle concur-
rency. As a result, the treatment of some issues of concern in the development of Cortex are
inadequately addressed. Some of these issues are better handled by later developments of the
OMT approach, notably the Syntropy method [16]. Syntropy provides additional rigor to the
OMT method, particularly in the design of cooperating processes.

It was clear during the prototype development phase that in normal discourse about Cortex,
designers and users make great use of concrete examples of usage of the system and specific,
telling, examples of message sequencing within the implemented system. It is felt that the effi-
ciency of the design process and of communication of the design to the users could be
improved by the incorporation of scenarios and use cases into the formal documentation and
design process following the Jacobson approach [17].

The quality of tools support for methods remains an issue for the Cortex developers. Platform
specific tools, difficult access to design repositories and the lack of support for multi-user and
multi-site development, lead to a loss of efficiency. In particular, it generates additional con-
version and cross-checking tasks. Managing versions of documents, supporting relationships
between models from different viewpoints on the design and tracking the process of design
decision making are all desirable in the selected tallest. As yet there is no obvious single tool
for supporting the use of OMT in developing control systems. Varsamidis et al. [18] advocate
the combination of individual software tools, each specialised in a particular aspect of the
design process for control systems. Tool evaluation, selection and guidelines in their use in an
integrated manner remain tasks for the next phase of the Cortex development.The use of
CASE tools like OBLOG for the automated generation of CORBA compliant component
code will be investigated further, especially to increase the generated codes performance, to
deal with more complex data types and to support concurrent access.

10 Closing Comments

The CICERO project was approved as a CERN research and development project (RD-38) in
February 1994. Since then the project has grown and continues to attract further commercial
and academic research interest. Following the ESA standards, the Cortex element of CICERO
has gone through preliminary User and Software Requirements specification followed by
Architectural and Detailed Design [19] for a demonstrable prototype.

The Cortex approach of integrating processes in its Infrastructure, allows for the abstraction

of control system information through the encapsulation of the underlying system compo-
nents. This provides for ease of interfacing between the active objects in a Cortex control sys-
tem and facilitates the provision of standard software modules to perform the activities of
communication and control. In addition, this abstraction enables the generation of such code
automatically from the description of the system in the off-line Repository.

CICERO is not only addressing the re-use of existing control system software, it is also more
widely addressing the reuse of existing control and automation facilities or functionalities. It
offers a smooth Infrastructure to support scalability and partial software and system re-engi-
neering.

Within a year, the CICERO collaboration has demonstrated that it was possible to build an
heterogeneous distributed control application using Object Oriented techniques (OO program-
ming languages, CORBA and OODBMS), commercial products and high level functionalities
like alarm filtering, user assistance and on-line documentation to help the user operate the
control system [20]. Much work remains in CICERO Phase II to provide a system which
could be used in practice. This phase is expected to span a period of 22 months starting in
March 1995. It is expected that CICERO Phase II will reach this goal and will prepare the
ground for a final consolidation phase yielding a set of software building blocks to enable the
implementation both of LHC experiment control systems and industrial complex control sys-
tems.

11 Acknowledgements

In a collaborative project such as CICERO RD38, each collaborator deserves the thanks of the
authors. Rather than cite each contributor thanks are extended to members of RD38 from
BARC (Bombay, India), CERN (Geneva, Switzerland), CIEMAT (Madrid, Spain), IVO Inter-
national (Helsinki, Finland), KFKI (Budapest, Hungary), OBLOG (Lisbon, Portugal), SEFT
(Helsinki, Finland), SpaceBel (Brussels, Belgium), UID (Linkoping, Sweden), USDATA
(Dallas, USA), UWE (Bristol, UK), Valmet Automation (Tampere, Finland) and VTT (Oulu,
Finland). Special thanks go to those involved with the development of Cortex.

12 References

[1] J. R. Rymer, ‘Common Object Request Broker - OMG’s New Standard for Distributed
Object Management’,

Network Monitor

 Vol. 6, No 9, pp 3-27 (1991)

[2] R. Barillere et al., ‘The Cortex Project: A Quasi- Real-Time Information System to Build
Control Systems for High Energy Physics Experiments’,

 NIM A

352

, pp 492-496 (1994)

[3] L.R. Dalesio et al., ‘The Experimental Physics and Industrial Control System Architecture:
Past, Present and Future’,

NIM A

352

, pp 179-184 (1994)

[4] LHC: ‘The Large Hadron Collider Accelerator Project’, CERN AC 93-03 (1993).

[5] R. Barillere et al., ‘Ideas on a Generic Control System Based on the Experience of the
Four LEP Experiments Control Systems’, Proceedings of the ICALEPCS ‘91 Conference,
Tsukuba, Japan pp 246-253 (1991).

[6] OMG: ‘The Object Management Architecture (OMA Guide)’, Revision 2.0, Object Man-
agement Group Inc., OMG TC Document 91.11.1 (1992).

[7] CORBA: ‘Common Object Request Broker Architecture and Specification (CORBA)’,
Revision 1.2, Object Management Group Inc., OMG TC Document 93.12.43 (1993).

[8] OMG: ‘Common Object Services Specification (COSS) Vol. 1’, Revision 1.0, Object
Management Group Inc., First Edition (1994).

[9] OMG: ‘Common Facilities Architecture (CFA)’, Revision 4.0, Object Management Group

Inc., OMG TC Document 95-1-2 (1995).

[10] G. Filippi, ‘Software Engineering for ESO’s VLT Project’,

NIM A

352

 pp 386-389
(1994).

[11] C. Mazza, ‘Controlling Software Development’,

NIM A

352

 pp 370-379 (1994).

[12] ESA: ‘Guide to the Software Engineering Standards’, ESA Board for Software Standard-
isation & Control (BSSC), (1991).

[13] B. W. Boehm, ‘A Spiral Model of Software Development and Enhancement’, IEEE
Computer

21

 (5), pp 61-72 (1988).

[14] J. Rumbaugh et al.,

Object-Oriented Modelling & Design

, Prentice Hall, (1991).

[15] H-D. Ehrich, ‘Fundamentals of Object-Oriented Information Systems Specification and
Design: the OBLOG / TROLL Approach’,

NIM A

352

 pp 375-378 (1994).

[16] S. Cook & J. Daniels,

Designing Object Systems - Object Oriented Modelling with
Syntropy

, Prentice Hall (1994).

[17] I. Jacobson,

Object-Oriented Software Engineering - A Use Case Approach

, Addison-
Wesley (1992).

[18] T. Varsamidis et al., ‘Information Management for Control Systems Designers’, Proceed-
ings of the IEE International Conference on Control, Coventry, UK (1994).

[19] R. Barillere et al., ‘Cortex User Requirements V2.1b’, CERN RD-38/D/94-4-1 (1994, R.
Barillere et al., ‘Cortex Software Requirements V2’, CERN RD-38/94-8-1 (1994), E. Bernard
et al., ‘Cortex System Design Document’, SpaceBel Inc., SBI-CORTEX-ADD-001 & E.Ber-
nard et al, ‘Cortex Detailed Design Document’, SpaceBel Inc., SBI-CORTEX-DDD-001

[20] G. Govindarajan et al., ‘CICERO: 1994 Status Report’, CERN RD-38/LHCC/95-15.

