10,466 research outputs found

    Efficient Supervision for Robot Learning via Imitation, Simulation, and Adaptation

    Full text link
    Recent successes in machine learning have led to a shift in the design of autonomous systems, improving performance on existing tasks and rendering new applications possible. Data-focused approaches gain relevance across diverse, intricate applications when developing data collection and curation pipelines becomes more effective than manual behaviour design. The following work aims at increasing the efficiency of this pipeline in two principal ways: by utilising more powerful sources of informative data and by extracting additional information from existing data. In particular, we target three orthogonal fronts: imitation learning, domain adaptation, and transfer from simulation.Comment: Dissertation Summar

    Dynamic visual servo control of a 4-axis joint tool to track image trajectories during machining complex shapes

    Get PDF
    A large part of the new generation of computer numerical control systems has adopted an architecture based on robotic systems. This architecture improves the implementation of many manufacturing processes in terms of flexibility, efficiency, accuracy and velocity. This paper presents a 4-axis robot tool based on a joint structure whose primary use is to perform complex machining shapes in some non-contact processes. A new dynamic visual controller is proposed in order to control the 4-axis joint structure, where image information is used in the control loop to guide the robot tool in the machining task. In addition, this controller eliminates the chaotic joint behavior which appears during tracking of the quasi-repetitive trajectories required in machining processes. Moreover, this robot tool can be coupled to a manipulator robot in order to form a multi-robot platform for complex manufacturing tasks. Therefore, the robot tool could perform a machining task using a piece grasped from the workspace by a manipulator robot. This manipulator robot could be guided by using visual information given by the robot tool, thereby obtaining an intelligent multi-robot platform controlled by only one camera.This work was funded by the Ministry of Science and Innovation of Spain Government through the research project DPI2011-22766 and DPI2012-32390

    Mathematical modeling and control of redundant robotic manipulators using biological analog

    Get PDF
    U ovom radu razmatran je problem realizacije novih matematičkih modela redudantnih sistema kao i upravljanja korišćenjem pogodnih bioloških analogona. Ideja je bila u tome da se imitira ljudsko ponašanje i to je posebno značajno za zadatke koji su slični onim zadacima karakterističnim za ljude. Prvo, može se primeniti biološki koncept distribuiranog pozicioniranja (DP) koji je zasnovan na inercijalnim osobinama i aktuatorskim mogućnostima zglobova redudantnih sistema. Drugo, predloženo je korišćenje biološkog analogona - sinergije koja je posledica postojanja invarijantnih osobina u izvršavanju funkcionalnih kretanja. Na kraju predloženo je korišćenje drugih bioloških principa kao što su: princip minimuma interakcije koji ima važnu ulogu u hijerarhijskoj strukturi upravljanja i principa samopodešavanja, koji dozvoljava efikasnu realizaciju upravljanja koje je zasnovano na iterativnom prirodnom učenju. .In this paper it is considered problem of realization new mathematical models of redundant systems as well as control using suitable biological analog. The idea was to try to imitate human behavior and this is specially convenient for tasks which are similar to those characteristic for humans (e.g., assembling in industry, different jobs at home and in health service). If we consider speed, accuracy and stability of motion then the overall performance (taking into account all three of parameters) with machines is still far behind human reaching and grasping. Human arm movements are considered to be stable, fast and accurate due to properties of muscles, musculo-skeletal structures and hierarchical control. It was observed in the execution of functional motions that certain trajectories are preferred from the infinite number of options. Such behavior of organisms can be only explained by the existence of inherent optimization laws in self-organized systems governing the acquisition of motor skills. Existence of invariant features in the execution of functional motions points out that central nervous system (CNS) uses synergy [Bernstein, 1967](i.e. rule(s) that can be developed by the CNS based on some principles). The control of arm movement in humans relies very much on distributed usage of different joints, and inherent optimization of muscles which are active. Analysis of multi joint coordination in humans is an important source of information for synthesis of dynamic patterns in machines. In that way, model of redundant system is obtained using biomechanical principle - synergy i.e. introducing linear or nonlinear relations between independent parameters or their first derivatives which uniquely define redundant system. Moreover, one can introduced hypothetical control using joint actuator synergy approach as suggested [Bernstein, 1967] •which imposes a specific constraints) on the control variables. Also, it can be applied biological concept called distributed positioning (DP) which is based on the inertial properties and actuation capabilities of joints of redundant system. The redundancy and DP concept [Potkonjak 1990] could be used for solving the trajectory that has problems with increased dynamic requirements. The concept of DP allows us to separate the smooth and accelerated components of required motions applying appropriate smoothing technique. The inverse kinematics of redundant robot has been solved at the coordination level via (DP) concept. Moreover, it is here proposed using other biological principles such as: principle of minimum interaction which takes a main role in hierarchical structure of control and self-adjusting principle, which allows efficiently realization of control based on iterative natural learning. Motor control is organized as a multilevel structure, is generally accepted. In assistive system involves man as the decision maker, a hierarchical control structure can be proposed with three levels from the left to right: -voluntary level, coordination level, actuator level. This imposes the system is decomposed into several sybsystems with strong coupling between subsystems. Explanation of previous can be understood using the principle of maximum autonomy or minimum information exchange [Tomović, Bellman, 1970]. According to this principle, the optimal solution is to delegate the execution of functional motions to the coordination level and local regulators once the task and the task parameters have been selected. Learning control for controlling dynamics systems, a class of tracking systems is applied where it is required to repeat a given task to desired precision. The common observation that human beings can learn perfect skills trough repeated trials motivations the idea of iterative learning control for systems performing repetitive tasks. Therefore, iterative learning control requires less a priori knowledge about the controlled system in the controller design phase and also less computational effort than many other kinds of control. For improving the properties of tracking is proposed applying biological analog -principle of self-adaptability, [Grujuc,1989 ] which introduce local negative feedback on control with great amplifying.

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    Mathematical modeling and control of redundant robotic manipulators using biological analog

    Get PDF
    U ovom radu razmatran je problem realizacije novih matematičkih modela redudantnih sistema kao i upravljanja korišćenjem pogodnih bioloških analogona. Ideja je bila u tome da se imitira ljudsko ponašanje i to je posebno značajno za zadatke koji su slični onim zadacima karakterističnim za ljude. Prvo, može se primeniti biološki koncept distribuiranog pozicioniranja (DP) koji je zasnovan na inercijalnim osobinama i aktuatorskim mogućnostima zglobova redudantnih sistema. Drugo, predloženo je korišćenje biološkog analogona - sinergije koja je posledica postojanja invarijantnih osobina u izvršavanju funkcionalnih kretanja. Na kraju predloženo je korišćenje drugih bioloških principa kao što su: princip minimuma interakcije koji ima važnu ulogu u hijerarhijskoj strukturi upravljanja i principa samopodešavanja, koji dozvoljava efikasnu realizaciju upravljanja koje je zasnovano na iterativnom prirodnom učenju. .In this paper it is considered problem of realization new mathematical models of redundant systems as well as control using suitable biological analog. The idea was to try to imitate human behavior and this is specially convenient for tasks which are similar to those characteristic for humans (e.g., assembling in industry, different jobs at home and in health service). If we consider speed, accuracy and stability of motion then the overall performance (taking into account all three of parameters) with machines is still far behind human reaching and grasping. Human arm movements are considered to be stable, fast and accurate due to properties of muscles, musculo-skeletal structures and hierarchical control. It was observed in the execution of functional motions that certain trajectories are preferred from the infinite number of options. Such behavior of organisms can be only explained by the existence of inherent optimization laws in self-organized systems governing the acquisition of motor skills. Existence of invariant features in the execution of functional motions points out that central nervous system (CNS) uses synergy [Bernstein, 1967](i.e. rule(s) that can be developed by the CNS based on some principles). The control of arm movement in humans relies very much on distributed usage of different joints, and inherent optimization of muscles which are active. Analysis of multi joint coordination in humans is an important source of information for synthesis of dynamic patterns in machines. In that way, model of redundant system is obtained using biomechanical principle - synergy i.e. introducing linear or nonlinear relations between independent parameters or their first derivatives which uniquely define redundant system. Moreover, one can introduced hypothetical control using joint actuator synergy approach as suggested [Bernstein, 1967] •which imposes a specific constraints) on the control variables. Also, it can be applied biological concept called distributed positioning (DP) which is based on the inertial properties and actuation capabilities of joints of redundant system. The redundancy and DP concept [Potkonjak 1990] could be used for solving the trajectory that has problems with increased dynamic requirements. The concept of DP allows us to separate the smooth and accelerated components of required motions applying appropriate smoothing technique. The inverse kinematics of redundant robot has been solved at the coordination level via (DP) concept. Moreover, it is here proposed using other biological principles such as: principle of minimum interaction which takes a main role in hierarchical structure of control and self-adjusting principle, which allows efficiently realization of control based on iterative natural learning. Motor control is organized as a multilevel structure, is generally accepted. In assistive system involves man as the decision maker, a hierarchical control structure can be proposed with three levels from the left to right: -voluntary level, coordination level, actuator level. This imposes the system is decomposed into several sybsystems with strong coupling between subsystems. Explanation of previous can be understood using the principle of maximum autonomy or minimum information exchange [Tomović, Bellman, 1970]. According to this principle, the optimal solution is to delegate the execution of functional motions to the coordination level and local regulators once the task and the task parameters have been selected. Learning control for controlling dynamics systems, a class of tracking systems is applied where it is required to repeat a given task to desired precision. The common observation that human beings can learn perfect skills trough repeated trials motivations the idea of iterative learning control for systems performing repetitive tasks. Therefore, iterative learning control requires less a priori knowledge about the controlled system in the controller design phase and also less computational effort than many other kinds of control. For improving the properties of tracking is proposed applying biological analog -principle of self-adaptability, [Grujuc,1989 ] which introduce local negative feedback on control with great amplifying.

    Telepresence and telerobotics

    Get PDF
    The capability for a single operator to simultaneously control complex remote multi degree of freedom robotic arms and associated dextrous end effectors is being developed. An optimal solution within the realm of current technology, can be achieved by recognizing that: (1) machines/computer systems are more effective than humans when the task is routine and specified, and (2) humans process complex data sets and deal with the unpredictable better than machines. These observations lead naturally to a philosophy in which the human's role becomes a higher level function associated with planning, teaching, initiating, monitoring, and intervening when the machine gets into trouble, while the machine performs the codifiable tasks with deliberate efficiency. This concept forms the basis for the integration of man and telerobotics, i.e., robotics with the operator in the control loop. The concept of integration of the human in the loop and maximizing the feed-forward and feed-back data flow is referred to as telepresence
    corecore