13,519 research outputs found

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Continuous Interaction with a Virtual Human

    Get PDF
    Attentive Speaking and Active Listening require that a Virtual Human be capable of simultaneous perception/interpretation and production of communicative behavior. A Virtual Human should be able to signal its attitude and attention while it is listening to its interaction partner, and be able to attend to its interaction partner while it is speaking – and modify its communicative behavior on-the-fly based on what it perceives from its partner. This report presents the results of a four week summer project that was part of eNTERFACE’10. The project resulted in progress on several aspects of continuous interaction such as scheduling and interrupting multimodal behavior, automatic classification of listener responses, generation of response eliciting behavior, and models for appropriate reactions to listener responses. A pilot user study was conducted with ten participants. In addition, the project yielded a number of deliverables that are released for public access

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems

    Get PDF
    International audienceA person's emotions and state of mind are apparent in their face and eyes. As a Latin proverb states: "The face is the portrait of the mind; the eyes, its informers.". This presents a huge challenge for computer graphics researchers in the generation of artificial entities that aim to replicate the movement and appearance of the human eye, which is so important in human-human interactions. This State of the Art Report provides an overview of the efforts made on tackling this challenging task. As with many topics in Computer Graphics, a cross-disciplinary approach is required to fully understand the workings of the eye in the transmission of information to the user. We discuss the movement of the eyeballs, eyelids, and the head from a physiological perspective and how these movements can be modelled, rendered and animated in computer graphics applications. Further, we present recent research from psychology and sociology that seeks to understand higher level behaviours, such as attention and eye-gaze, during the expression of emotion or during conversation, and how they are synthesised in Computer Graphics and Robotics

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukĂŒnftigen Zuhauses sein. Sie werden uns bei alltĂ€glichen Aufgaben unterstĂŒtzen, uns unterhalten und uns mit hilfreichen RatschlĂ€gen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunĂ€chst ĂŒberwunden werden mĂŒssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche FĂ€higkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natĂŒrliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. DarĂŒber hinaus mĂŒssen Roboter auch die individuellen Vorlieben der Benutzer berĂŒcksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprĂ€gt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter fĂŒhrt. Roboter haben jedoch keine menschliche Intuition - sie mĂŒssen mit entsprechenden Algorithmen fĂŒr diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestĂ€rkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die BedĂŒrfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle ĂŒber die multimodale Verhaltenserzeugung des Roboters, ein VerstĂ€ndnis des menschlichen Feedbacks und eine algorithmische Basis fĂŒr maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen fĂŒr die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestĂ€rkendem Lernen entwickelt. Er bietet eine ĂŒbergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird fĂŒr mehrere AnwendungsfĂ€lle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen fĂŒhrt, die in Labor- und In-situ-Studien evaluiert werden. Diese AnsĂ€tze befassen sich mit typischen AktivitĂ€ten in hĂ€uslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an
    • 

    corecore