1,502 research outputs found

    A social spider algorithm for global optimization

    Get PDF
    The growing complexity of real-world problems has motivated computer scientists to search for efficient problem-solving methods. Metaheuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. Inspired by the social spiders, we propose a novel social spider algorithm to solve global optimization problems. This algorithm is mainly based on the foraging strategy of social spiders, utilizing the vibrations on the spider web to determine the positions of preys. Different from the previously proposed swarm intelligence algorithms, we introduce a new social animal foraging strategy model to solve optimization problems. In addition, we perform preliminary parameter sensitivity analysis for our proposed algorithm, developing guidelines for choosing the parameter values. The social spider algorithm is evaluated by a series of widely used benchmark functions, and our proposed algorithm has superior performance compared with other state-of-the-art metaheuristics.postprin

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

    Get PDF
    In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature- inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field

    A Brief Survey on Intelligent Swarm-Based Algorithms for Solving Optimization Problems

    Get PDF
    This chapter presents an overview of optimization techniques followed by a brief survey on several swarm-based natural inspired algorithms which were introduced in the last decade. These techniques were inspired by the natural processes of plants, foraging behaviors of insects and social behaviors of animals. These swam intelligent methods have been tested on various standard benchmark problems and are capable in solving a wide range of optimization issues including stochastic, robust and dynamic problems

    Comparative and comprehensive study of linear antenna arrays’ synthesis

    Get PDF
    In this paper, a comparative and comprehensive study of synthesizing linear antenna array (LAA) designs, is presented. Different desired objectives are considered in this paper; reducing the maximum sidelobe radiation pattern (i.e., pencil-beam pattern), controlling the first null beamwidth (FNBW), and imposing nulls at specific angles in some designs, which are accomplished by optimizing different array parameters (feed current amplitudes, feed current phase, and array elements positions). Three different optimization algorithms are proposed in order to achieve the wanted goals; grasshopper optimization algorithms (GOA), antlion optimization (ALO), and a new hybrid optimization algorithm based on GOA and ALO. The obtained results show the effectiveness and robustness of the proposed algorithms to achieve the wanted targets. In most experiments, the proposed algorithms outperform other well-known optimization methods, such as; Biogeography based optimization (BBO), particle swarm optimization (PSO), firefly algorithm (FA), cuckoo search (CS) algorithm, genetic algorithm (GA), Taguchi method, self-adaptive differential evolution (SADE), modified spider monkey optimization (MSMO), symbiotic organisms search (SOS), enhanced firefly algorithm (EFA), bat flower pollination (BFP) and tabu search (TS) algorithm
    • …
    corecore