
Title A social spider algorithm for global optimization

Author(s) Yu, JJ; Li, VOK

Citation Applied Soft Computing, 2015, v. 30, p. 614-627

Issued Date 2015

URL http://hdl.handle.net/10722/217035

Rights

Posting accepted manuscript (postprint):
© <year>. This manuscript version is made available under the
CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/; This work is
licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38080674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Social Spider Algorithm for Global Optimization

James J.Q. Yua,∗, Victor O.K. Lia

aDepartment of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong

Abstract

The growing complexity of real-world problems has motivated computer scientists to search for efficient problem-solving
methods. Metaheuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-
inspired solution techniques. Inspired by the social spiders, we propose a novel Social Spider Algorithm to solve global
optimization problems. This algorithm is mainly based on the foraging strategy of social spiders, utilizing the vibrations
on the spider web to determine the positions of preys. Different from the previously proposed swarm intelligence
algorithms, we introduce a new social animal foraging strategy model to solve optimization problems. In addition, we
perform preliminary parameter sensitivity analysis for our proposed algorithm, developing guidelines for choosing the
parameter values. The Social Spider Algorithm is evaluated by a series of widely-used benchmark functions, and our
proposed algorithm has superior performance compared with other state-of-the-art metaheuristics.

Keywords: Social spider algorithm, global optimization, swarm intelligence, evolutionary computation, meta-heuristic.

1. Introduction

With the fast growing size and complexity of modern
optimization problems, evolutionary computing is

becoming increasingly attractive as an efficient tool for op-
timization. Depending on the nature of phenomenon simu-
lated, evolutionary computing algorithms can be classified
into two important groups: evolutionary algorithms (EAs)
and swarm intelligence based algorithms. EAs, which mainly
draw inspiration from nature, have been shown to be very
successful for optimization among all the methods devised
by the evolutionary computation community. Currently
several types of EAs have been widely employed to solve
real world combinatorial or global optimization problems,
including Genetic Algorithm (GA), Genetic programming
(GP), Evolutionary Strategy (ES) and Differential Evolu-
tion (DE). These algorithms demonstrate satisfactory per-
formance compared with conventional optimization tech-
niques, especially when applied to solve non-convex opti-
mization problems [1][2].

In the past two decades, swarm intelligence, a new kind
of evolutionary computing technique, has attracted much
research interest [3]. The term swarm is employed in a
general manner to refer to any collection of interactive
agents. Swarm intelligence is mainly concerned with the
methodology to model the behavior of social animals and
insects for problem solving. Researchers devised optimiza-
tion algorithms by mimicking the behavior of ants, bees,
bacteria, fireflies and other organisms. The impetus of cre-
ating such algorithms was provided by the growing needs

∗Corresponding author
Email addresses: jqyu@eee.hku.hk (James J.Q. Yu),

vli@eee.hku.hk (Victor O.K. Li)

to solve optimization problems that were very difficult or
even considered intractable.

Among the commonly seen animals, spiders have been
a major research subject in bionic engineering for many
years. However, most research related to spiders focused
on the imitation of its walking pattern to design robots,
e.g. [4]. A possible reason for this is that a majority of
the spiders observed are solitary [5], which means that
they spend most of their lives without interacting with
others of their species. However, among the 35 000 spider
species observed and described by scientists, some species
are social. These spiders, e.g. Mallos gregalis and Oecobius
civitas, live in groups and interact with others in the same
group. Based on these social spiders, this paper formulates
a new global optimization method to solve optimization
problems.

Spiders are air-breathing arthropods. They have eight
legs and chelicerae with fangs. Spiders have been found
worldwide and are one of the most diverged species among
all groups of organisms. They use a wide range of strate-
gies for foraging, and most of them detect prey by sensing
vibrations. Spiders have long been known to be very sen-
sitive to vibratory stimulation, as vibrations on their webs
notify them of the capture of prey. If the vibrations are in
a defined range of frequency, spiders attack the vibration
source. The social spiders can also distinguish vibrations
generated by the prey with ones generated by other spi-
ders [6]. The social spiders passively receive the vibrations
generated by other spiders on the same web to have a clear
view of the web. This is one of the unique characteristics
which distinguishes the social spiders from other organisms
as the latter usually exchange information actively, which
reduces the information loss to some degree but increases

Preprint submitted to Elsevier February 10, 2015

ar
X

iv
:1

50
2.

02
40

7v
1

 [
cs

.N
E

]
 9

 F
eb

 2
01

5

the energy used per communication action [7].
The group living phenomenon has been studied inten-

sively in animal behavior ecology. One of the reasons that
animals gather and live together is to increase the possi-
bility of successful foraging and reduce the energy cost in
this process [8]. In order to facilitate the analysis of so-
cial foraging behaviour, researchers proposed two foraging
models: information sharing (IS) model [9] and producer-
scrounger (PS) model [10]. The individuals under the IS
model perform searching and seek for opportunity to join
other individuals simultaneously. In the PS model, the
individuals are divided into leaders and followers. Since
there is no leader in social spiders [11], the IS model is
more suitable to formulate the foraging behavior of social
spiders, and we use this model to control the searching
pattern of our proposed algorithm.

In this paper, inspired by the social behavior of the so-
cial spiders, especially their foraging behavior, we propose
a new metaheuristic for global optimization: the Social
Spider Algorithm (SSA). The foraging behavior of the so-
cial spider can be described as the cooperative movement
of the spiders towards the food source position. The spi-
ders receive and analyze the vibrations propagated on the
web to determine the potential direction of a food source
[12]. We utilize this natural behavior to perform optimiza-
tion over the search space in SSA.

The contribution of this paper is threefold:

• We propose a new nature-inspired swarm intelligence
algorithm based on social spiders. This population-
based general-purpose metaheuristic demonstrates out-
standing performance in the global optimization bench-
mark tests.

• We introduce a new social animal foraging model
into metaheuristic design. This is the very first at-
tempt of employing the IS model to solve optimiza-
tion problems. We also incorporate the information
loss schemes in the algorithm, which is a unique de-
sign of our proposed algorithm.

• We perform a series of experiments to investigate the
impact of different parameters and searching schemes
on the performance of the algorithm. The result of
these experiments may serve as important inputs for
further research.

The rest of this paper is organized as follows. We will
first present some related work on swarm intelligence and
bio-inspired metaheuristics in Section 2. Then we will for-
mulate and elaborate on SSA by idealizing and imitating
the foraging behavior of social spiders in Section 3. Section
4 introduces the benchmark functions we use for testing
the performance of SSA, with the experimental settings.
Section 5 presents the simulation results of SSA on the
benchmark functions and the comparison with other pop-
ular metaheuristics. Finally we will conclude this paper in
Section 6 and propose some future work.

2. Background

Swarm intelligence algorithms mimic the methods in
nature to drive a search for the optimal solution. At the
very beginning there are two major methods for this kind
of algorithms: ant colony optimization (ACO) [13] and
particle swarm optimization (PSO) [14].

ACO is inspired by the foraging behavior of ants, whose
goal is to find a shortest path from their colony to food
sources. In this metaheuristic, feasible solutions of the
optimization problem to be solved are represented by the
paths between the colony and food sources. The ants com-
municate with and influence others using pheromone, a
volatile chemical substance. When an ant finds a food
source, it deposits certain amount of pheromone along the
path and the amount is positively correlated with the qual-
ity of the food source. The pheromone laid down biases the
path selection of other ants, providing positive feedback.
Using the scheme of positive feedback, the algorithm leads
the ants to find the shortest path to a best food source
[13].

PSO is motivated by the movement of organisms as a
group, as in a flock of birds or a school of fishes. The
group is represented by a swarm of particles and PSO uses
their positions in the search space to represent the feasi-
ble solutions of the optimization problem. PSO manipu-
lates the movement of these particles to perform optimiza-
tion, utilizing the information of individual experience and
socio-cognitive tendency. These two kinds of information
correspond to cognitive learning and social learning, re-
spectively, and lead the population to find a best way to
perform optimization [14].

The above two metaheuristics have been applied to
solve a vast range of different problems, e.g. [15][16]. Mo-
tivated by such success, swarm intelligence algorithm de-
sign has attracted many researchers and several new algo-
rithms were devised. The most widely studied organism in
swarm intelligence is the bee [3]. Abbass proposed a Mar-
riage in honey Bees Optimization (MBO) in [17] and this
algorithm was applied to solve propositional satisfiability
problems (3-SAT problems). In MBO, the mating flight of
the queen bee is represented as the transitions in a state
space (search space), with the queen probabilistically mat-
ing with the drone encountered at each state. The prob-
ability of mating is determined by the speed and energy
of the queen, and the fitness of the drone. Karaboga and
Basturk proposed an Artificial Bee Colony optimization
(ABC) in [18]. ABC classifies the bees in a hive into three
types: “scout bees” that randomly fly without guidance,
“employed bees” that search the neighborhood of their po-
sitions, and “onlooker bees” that use the population fitness
to select a guiding solution for exploitation. The algo-
rithm balances exploration and exploitation by means of
using employed and onlooker bees for local search, and the
scout bees for global search. It also demonstrates satisfac-
tory performance in applications [19][20].

Besides the bees, other organisms have also been widely

2

studied [3]. Krishnanand and Ghose proposed a Glow-
worm Swarm Optimization (GSO) [21] based on the be-
havior of the firefly. In GSO, each firefly randomly se-
lects a neighbor according to its luminescence and moves
toward it. In general the fireflies are more likely to get
interested in others that glow brighter. As the movement
is only conducted locally using selective neighbor informa-
tion, the firefly swarm is able to divide into disjoint sub-
groups to explore multiple optima. Another firefly-based
technique is proposed by Yang et al. [22]. He reformu-
lated the co-movement pattern of fireflies and employed it
in optimization. Passino devised a Bacterial Foraging Op-
timization (BFO) [23] based on the bacterial chemotaxis.
In BFO, possible solutions to the optimization problem are
represented by a colony of bacteria. It consists of three
schemes, i.e., chemotaxis, reproduction, and elimination-
dispersal. The exploitation task is performed using the
first two schemes and the last one contributes to explo-
ration [24]. Researchers have also devised swarm intelli-
gence algorithms based on other organisms and they can
also generate satisfactory optimization performance [3].
To the best of our knowledge, only one spider-inspired
metaheuristic aiming at solving optimization problem has
been proposed, i.e. the Social Spider Optimization [25]
devised by Cuevas et al., which divides the spiders into
different genders and mimics the mating behavior for op-
timization. However, our proposed algorithm is totally dif-
ferent from this algorithm in their biological backgrounds,
motivations, implementations, and search behaviors. We
will further reveal the differences in Section 3.4.

3. Social Spider Algorithm

In SSA, we formulate the search space of the optimiza-
tion problem as a hyper-dimensional spider web. Each po-
sition on the web represents a feasible solution to the opti-
mization problem and all feasible solutions to the problem
have corresponding positions on this web. The web also
serves as the transmission media of the vibrations gener-
ated by the spiders. Each spider on the web holds a posi-
tion and the quality (or fitness) of the solution is based on
the objective function, and represented by the potential
of finding a food source at the position. The spiders can
move freely on the web. However, they can not leave the
web as the positions off the web represent infeasible solu-
tions to the optimization problem. When a spider moves
to a new position, it generates a vibration which is propa-
gated over the web. Each vibration holds the information
of one spider and other spiders can get the information
upon receiving the vibration.

3.1. Spider

The spiders are the agents of SSA to perform opti-
mization. At the beginning of the algorithm, a pre-defined
number of spiders are put on the web. Each spider s holds
a memory, storing the following individual information:

• The position of s on the web.

• The fitness of the current position of s.

• The target vibration of s in the previous iteration.

• The number of iterations since s has last changed its
target vibration.

• The movement that s performed in the previous it-
eration.

• The dimension mask1 that s employed to guide move-
ment in the previous iteration.

The first two types of information describe the individual
situation of s, while all others are involved in directing s
to new positions. The detailed scheme of movement will
be elaborated in Section 3.3.

Based on observations, spiders are found to have very
accurate senses of vibration. Furthermore, they can sepa-
rate different vibrations propagated on the same web and
sense their respective intensities [11]. In SSA, a spider will
generate a vibration when it reaches a new position differ-
ent from the previous one. The intensity of the vibration is
correlated with the fitness of the position. The vibration
will propagate over the web and other spiders can sense
it. In such a way, the spiders on the same web share their
personal information with others to form a collective social
knowledge.

3.2. Vibration

Vibration is a very important concept in SSA. It is one
of the main characteristics that distinguish SSA from other
metaheuristics. In SSA, we use two properties to define
a vibration, namely, the source position and the source
intensity of the vibration. The source position is defined
by the search space of the optimization problem, and we
define the intensity of a vibration in the range [0,+∞).
Whenever a spider moves to a new position, it generates
a vibration at its current position. We define the position
of spider a at time t as P a(t), or simply as P a if the time
argument is t. We further use I(P a,P b, t) to represent
the vibration intensity sensed by a spider at position P b

at time t and the source of the vibration is at position
P a. With these notations we can thus use I(P s,P s, t) to
represent the intensity of the vibration generated by spider
s at the source position. This vibration intensity at the
source position is correlated with the fitness of its position
f(P s), and we define the intensity value as follows:

I(P s,P s, t) = log(
1

f(P s)− C
+ 1) (1)

where C is a confidently small constant such that all pos-
sible fitness values are larger than C. Please note that we
consider minimization problems in this paper. The design
of (1) takes the following issues into consideration:

1The dimension mask is a 0-1 binary vector of length D, where D
is the dimension of the optimization problem

3

• All possible vibration intensities of the optimization
problem are positive.

• The positions with better fitness values, i.e. smaller
values for minimization problems, have larger vibra-
tion intensities than those with worse fitness values.

• When a solution approaches the global optimum, the
vibration intensity would not increase excessively,
and cause malfunctioning of the vibration attenu-
ation scheme.

As a form of energy, vibration attenuates over distance.
This physical phenomenon is accounted for in the design
of SSA. We define the distance between spider a and b as
D(P a,P b) and we use 1-norm (Manhattan distance) to
calculate the distance, i.e.,

D(P a,P b) = ||P a − P b||1. (2)

The standard deviation of all spider positions along each
dimension is represented by σ. With these definitions, we
further define the vibration attenuation over distance as
follows:

I(P a,P b, t) = I(P a,P a, t)× exp(−D(P a,P b)

σ × ra
). (3)

In the above formula we introduce a user-controlled pa-
rameter ra ∈ (0,∞). This parameter controls the atten-
uation rate of the vibration intensity over distance. The
larger ra is, the weaker the attenuation imposed on the
vibration.

3.3. Search Pattern

Here we demonstrate the above ideas in terms of an
algorithm. There are three phases in SSA: initialization,
iteration, and final. These three phases are executed se-
quentially. In each run of SSA, we start with the initializa-
tion phase, then perform searching in an iterative manner,
and finally terminate the algorithm and output the solu-
tions found.

In the initialization phase, the algorithm defines the
objective function and its solution space. The value for
the parameter used in SSA is also assigned. After setting
the values, the algorithm proceeds to create an initial pop-
ulation of spiders for optimization. As the total number of
spiders remains unchanged during the simulation of SSA,
a fixed size memory is allocated to store their informa-
tion. The positions of spiders are randomly generated in
the search space, with their fitness values calculated and
stored. The initial target vibration of each spider in the
population is set at its current position, and the vibration
intensity is zero. All other attributes stored by each spider
are also initialized with zeros. This finishes the initializa-
tion phase and the algorithm starts the iteration phase,
which performs the search with the artificial spiders cre-
ated.

In the iteration phase, a number of iterations are per-
formed by the algorithm. In each iteration, all spiders on
the web move to a new position and evaluate their fitness
values. Each iteration can be further divided into the fol-
lowing sub-steps: fitness evaluation, vibration generation,
mask changing, random walk, and constraint handling.

The algorithm first calculates the fitness values of all
the artificial spiders on different positions on the web, and
update the global optimum value if possible. The fitness
values are evaluated once for each spider during each it-
eration. Then these spiders generate vibrations at their
positions using (1). After all the vibrations are generated,
the algorithm simulates the propagation process of these
vibrations using (3). In this process, each spider s will re-
ceive |pop| different vibrations generated by other spiders
where pop is the spider population. The received infor-
mation of these vibrations include the source position of
the vibration and its attenuated intensity. We use V to
represent these |pop| vibrations. Upon the receipt of V , s
will select the strongest vibration vbests from V and com-
pare its intensity with the intensity of the target vibration
vtars stored in its memory. s will store vbests as vtars if the
intensity of vbests is larger, and cs, or the number of it-
erations since s has last changed its target vibration, is
reset to zero; otherwise, the original vtar is retained and
cs is incremented by one. We use P i

s and P tar
s to repre-

sent the source positions of V and vtar, respectively, and
i = {1, 2, · · · , |pop|}.

The algorithm then manipulates s to perform a random
walk towards vtars . Here we utilize a dimension mask to
guide the movement. Each spider holds a dimension mask
m, which is a 0-1 binary vector of length D and D is the
dimension of the optimization problem. Initially all values
in the mask are zero. In each iteration, spider s has a
probability of 1−pc

cs to change its mask where pc ∈ (0, 1)
is a user-defined attribute that describes the probability of
changing mask. If the mask is decided to be changed, each
bit of the vector has a probability of pm to be assigned with
a one, and 1−pm to be a zero. pm is also a user-controlled
parameter defined in (0, 1). Each bit of a mask is changed
independently and does not have any correlation with the
previous mask. In case all bits are zeros, one random value
of the mask is changed to one. Similarly, one random bit
is assigned to zero if all values are ones.

After the dimension mask is determined, a new follow-
ing position P fo

s is generated based on the mask for s.

The value of i-th dimension of the following position P fo
s,i

is generated as follows.

P fo
s,i =

{
P tar
s,i ms,i = 0

P r
s,i ms,i = 1

, (4)

where r is a random integer value generated in [1, |pop|],
and ms,i stands for the i-th dimension of the dimension
mask m of spider s. Here the random number r for two
different dimensions with ms,i = 1 is generated indepen-
dently.

4

With the generated P fo
s , s performs a random walk to

the position. This random walk is conducted using the
following equation.

P s(t+1) = P s+(P s−P s(t−1))×r+(P fo
s −P s)�R, (5)

where � denotes element-wise multiplication and R is a
vector of random float-point numbers generated from zero
to one uniformly. Before following P fo

s , s first moves along
its previous direction, which is the direction of movement
in the previous iteration. The distance along this direc-
tion is a random portion of the previous movement. Then
s approaches P fo

s along each dimension with random fac-
tors generated in (0, 1). This random factor for different
dimensions are generated independently. After this ran-
dom walk, s stores its movement in the current iteration
for the next iteration. This ends the random walk sub-
step.

The final sub-step of the iteration phase is the con-
straint handling. The spiders may move out of the web
during the random walk step, which causes the constraints
of the optimization problem to be violated. There are
many methods to handle the boundary constraints in the
previous literature, and the random approach, absorbing
approach, and the reflecting approach are three most widely-
adopted methods [26]. In this paper we adopt the re-
flecting approach for constraint handling and produce a
boundary-constraint-free position P s(t + 1) by

Ps,i(t + 1) =

{
(xi − Ps,i)× r if Ps,i(t + 1) > xi

(Ps,i − xi)× r if Ps,i(t + 1) < xi

, (6)

where xi is the upper bound of the search space in the i-th
dimension, and xi is the lower bound of the corresponding
dimension. r is a random floating point number generated
in (0, 1)

The iteration phase loops until the stopping criteria is
matched. The stopping criteria can be defined as the max-
imum iteration number reached, the maximum CPU time
used, the error rate reached, the maximum number of it-
erations with no improvement on the best fitness value, or
any other appropriate criteria. After the iteration phase,
the algorithm outputs the best solution with the best fit-
ness found. The above three phases constitute the com-
plete algorithm of SSA and its pseudo-code can be found
in Algorithm 1.

3.4. Differences between SSA and Other Evolutionary Com-
putation Algorithms

A number of swarm intelligence algorithms have been
proposed in the past few decades. Among them, PSO
and ACO are the two most widely employed and studied
algorithms. SSA may also be classified as a swarm intel-
ligence algorithm, but it has many differences from PSO
and ACO, elaborated below.

PSO, like SSA, was originally proposed for solving con-
tinuous optimization problems. It was also inspired by

Algorithm 1 Social Spider Algorithm

1: Assign values to the parameters of SSA.
2: Create the population of spiders pop and assign mem-

ory for them.
3: Initialize vtars for each spider.
4: while stopping criteria not met do
5: for each spider s in pop do
6: Evaluate the fitness value of s.
7: Generate a vibration at the position of s.
8: end for
9: for each spider s in pop do

10: Calculate the intensity of the vibrations V
generated by all spiders.

11: Select the strongest vibration vbests from V .
12: if The intensity of vbests is larger than vtars then
13: Store vbests as vtars .
14: end if
15: Update cs.
16: Generate a random number r from [0,1).
17: if r > pc

cs then
18: Update the dimension mask ms.
19: end if
20: Generate P fo

s .
21: Perform a random walk.
22: Address any violated constraints.
23: end for
24: end while
25: Output the best solution found.

5

animal behavior. However, the first crucial difference be-
tween SSA and PSO is in individual following patterns.
In PSO, all particles follow a common global best position
and their own personal best position. However in SSA,
all spiders follow positions constructed by others’ current
positions and their own historical positions. These fol-
lowing positions are not guaranteed to be visited by the
population before, and different spiders can have different
following positions. Since the global best position and spi-
ders’ current positions differ greatly during most time of
the optimization process, these two following patterns lead
to different searching behaviors. This may weaken the con-
vergence ability of SSA but can potentially strengthen the
capability of solving multi-modal optimization problems
with a great number of local optimums.

Besides the difference in the following pattern, the dif-
ference in their biology backgrounds is also very signifi-
cant. PSO was designed based on the model of coordi-
nated group animal motions of flocks of birds or schools
of fishes. This model serves as the design metaphor of
PSO. SSA is inspired by the social spider foraging strat-
egy, which belongs to the scope of general social animal
searching behavior. We use a general IS model as the
design framework. This difference is also a major distin-
guishing feature of SSA from other proposed algorithms.

A third difference between SSA and the original formu-
lation of PSO is in the information propagation method.
In PSO, the information propagation method is neglected,
and each particle is assumed to be aware of all the infor-
mation of the system without loss. Although the informa-
tion validity ranges are considered in some recent variants
of PSO, the information loss characteristic is still a unique
feature that distinguishes SSA from PSO variants. In SSA
we model the information propagation process through the
vibrations on the spider web. This process forms a gen-
eral knowledge system with information loss. Although
there is still no research on how the information loss will
impact the social foraging strategy employed in optimiza-
tion, it is possible that this information loss system par-
tially contributes to the performance improvement of SSA
over PSO.

Another difference is that in PSO, the common knowl-
edge of the group is all about the best particle in the sys-
tem. All remaining particles in the system do not consti-
tute the shared information of the group, which may lead
to neglecting some valuable information of the population.
In SSA, each spider generates a new piece of information
and propagates the information to the whole population.
There are also some PSO variants that shares personal best
position information with the population, but the main fo-
cus of PSO is on the best positions of the individuals and
the population. In SSA, the information generated and
propagated with the vibrations are the current positions
instead of the best-in-history positions, which may differ
greatly with the search.

Although both SSA and ACO draw their inspirations
from the social animal foraging strategy, there are still

some obvious differences. The foraging frameworks adopted
by the two algorithms are quite different: ACO utilizes the
ant foraging behavior to perform optimization. Ants find
food by laying down pheromone trails and collectively es-
tablishing positive feedbacks which bias the later path se-
lection, while spiders sense the vibration propagated by
the spider web to locate the prey. Another difference is
the presentation of feasible solutions. In SSA we use the
positions on the spider web to represent feasible solutions.
Similar representations have also been widely adopted in
the swarm intelligence algorithm. Meanwhile, ACO uses
the path between the ant hive and food sources to rep-
resent solutions to the optimization problems. Addition-
ally, ACO was originally designed to solve combinatorial
problems. Although in recent years there are ACO-variant
algorithms designed mainly to solve continuous problems
[27], the performance is not as good as the performance of
the original ACO in solving combinatorial problems like
the Traveling Salesman Problem. There are also infor-
mation propagation and searching pattern differences be-
tween SSA and ACO as described above.

There are also some other swarm intelligence algorithms
proposed to solve continuous problems, and SSA has some
unique characteristics. In most swarm intelligence algo-
rithms, e.g., ABC and GSO, the populations are struc-
tured into different types. Different types of individuals
perform different jobs and the whole population cooperates
to search the solution space. However in SSA, all individ-
uals (spiders) are equal. Each performs all the tasks that
would be executed by multiple types of the populations
in other algorithms. If we put SSA into the conventional
framework, it has the feature that the different types of
individuals can transform into other types very smoothly
and without the guidance of the user, which may poten-
tially contribute to the performance improvement.

As to Social Spider Optimization (SSO) [25], differ-
ences lie in all aspects of the algorithm design. A most
important difference is that in SSO the spiders are clas-
sified by gender. Male and female spiders have different
searching operations. However, the spiders in SSA share
the same searching operation, significantly reducing the
effort in implementation. SSA also incorporates the infor-
mation propagation model into its algorithm design, and
thus the social spider population in SSA fits the IS model.
Besides, SSA imitates the foraging behavior of social spi-
ders, while SSO imitates the mating behavior of social
spiders. The differences in algorithm implementation are
more patent. In SSO there are three spider movement
operators executed first in parallel and then in sequence.
The moving pattern of the third operator highly depends
on the first two operators. This design may potentially
increase the difficulty of analyzing the search behavior of
the algorithm. In SSA we implement one random move op-
erator, which combines both exploration and exploitation
behaviors in one move. In our design, the search behav-
ior is controlled by the parameters, thus providing a clear
view on the search behavior of the algorithm. The impact

6

of different parameters on the optimization performance
of SSA is further illustrated in Section 3.5.

Although EAs, like GA and ES, are also population-
based algorithms, and inevitably share some similarities
with the population-based SSA, they are quite different
general-purpose metaheuristics. They are inspired by com-
pletely different biological disciplines. EAs usually employ
different recombination and decomposition operators to
manipulate the solutions, which imitate the regeneration
of an organism.

As stated above, although we still do not know the ex-
act impact of information loss on the optimization process,
this feature of SSA may contribute to the optimum search
in some complex multimodal optimization problems. The
uniform structure of the population is another potential
advantage of SSA. In addition, the unique searching pat-
tern and its underlying social animal foraging strategy as
well as the IS foraging model contribute to the overall per-
formance of SSA.

3.5. Adjusting SSA Parameters

Choosing proper parameters of SSA for numerical and
real-world optimization problems can be time-consuming.
The trial-and-error scheme, or a parameter sweep test,
may reveal the best achievable performance over the pa-
rameter space at the expense of high computational cost.
In real-world optimization problems, evaluating the fitness
function may take a long time, much longer than evalu-
ating our benchmark functions, and one evaluation may
take several seconds or even minutes to finish, rendering
trial-and-error schemes impractical for parameter tuning.
As alternatives, researchers have proposed some schemes
to replace the trial-and-error parameter selection scheme.
These schemes can generally be classified into three groups
[28]:

• Fixed parameter schemes select a parameter combi-
nation before the simulation using empirical or theo-
retical knowledge of the characteristics of the param-
eters. This combination remains constant through-
out the whole search [29][30].

• Deterministic parameter schemes use some pre-defined
rules to change the parameter values throughout the
search [29][31].

• Adaptive parameter schemes change the parameter
values by adaptively learning the impact of changing
parameters on the searching performance through-
out the search [32]. Some schemes encode the pa-
rameters into the solution and evolve the parameters
together with the population [33].

In this paper we use the fixed parameter scheme to test
the performance of SSA compared with other algorithms.
We also use this scheme to perform a preliminary param-
eter sensitivity analysis in order to deduce some rules of
thumb on choosing parameters that can consistently lead

to satisfactory results on a wide range of functions with
different characteristics. This test can also discover some
of the features of the parameters when solving different
kinds of optimization problems. We carry out extensive
simulations on our benchmark functions, which cover a
wide range of optimization problems. Thus, the derived
rules of thumb can be expected to give generally good
performance on unknown problems.

In SSA we employ three user-controlled parameters to
guide the searching behaviour, namely,

• ra: This parameter defines the rate of vibration at-
tenuation when propagating over the spider web.

• pc: This parameter controls the probability of the
spiders changing their dimension mask in the random
walk step.

• pm: This parameter defines the probability of each
value in a dimension mask to be one.

In this section, we employ five 10-dimensional bench-
mark functions to investigate the impact of these param-
eters on the performance of SSA. These functions are the
Sphere, Schwefel 2.22, Rastrigin, Ackley, and Griewank
functions and the detailed definition of these functions can
be found in Section 4. All benchmark functions are not
shifted. The value of ra is selected from the set { 1

10 ,
1
5 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5, 10},

and the values of pc and pm are both selected from the
set {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}. So for
each function/parameter pair there are 11 data points for
analysis. The stopping criteria is set to 100 000 evaluations
and each function is tested for 20 times. The population
size is set to 10 in accordance with our later simulation/
The mean results are plotted in Fig. 1 with dots, and the
second-order polynomial regression curve for each func-
tion is also plotted for demonstration. As the Sphere and
Schwefel 2.22 functions are uni-modal functions while the
other three are multi-modal functions, we can obtain some
interesting observations from the mean results and the re-
gression curve.

From Fig. 1 we can see SSA is very robust in solving
unimodal problems when the three parameters change. All
six sub-figures indicate outstanding performance in terms
of fitness value. A general conclusion is that the value of
pc shall not be set to a very large value, e.g. 0.99.

When considering the multimodal problems, we can
observe some obvious impact of the parameters on the
performance. In terms of the vibration attenuation rate
ra, both the mean results and the regression curves favor
relatively small values. A generally preferred value is one,
while random values selected from (0, 3] shall also be able
to yield good results.

While ra presents relatively stable results in the mul-
timodal problem tests, pc has different impacts on differ-
ent problems. Rastrigin function favors a small pc while
Rosenbrock function prefers a medium-large one. It seems
that most pc values can generate good results on Ackley

7

0 2 4 6 8 10
ra

1.7

1.8

1.9

2.0

2.1

2.2 1e 31 Sphere

0 2 4 6 8 10
ra

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7 1e 31 Schwefel

0 2 4 6 8 10
ra

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Rastrigin

0 2 4 6 8 10
ra

0.0

0.2

0.4

0.6

0.8
1e 1 Ackley

0 2 4 6 8 10
ra

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4 1e 2 Rosenbrock

0.0 0.2 0.4 0.6 0.8 1.0
pc

0.2

0.0

0.2

0.4

0.6

0.8

1.01e 28 Sphere

0.0 0.2 0.4 0.6 0.8 1.0
pc

1

0

1

2

3

4

5 1e 16 Schwefel

0.0 0.2 0.4 0.6 0.8 1.0
pc

1

0

1

2

3

4

5 1e 2 Rastrigin

0.0 0.2 0.4 0.6 0.8 1.0
pc

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5 1e 14 Ackley

0.0 0.2 0.4 0.6 0.8 1.0
pc

1
0
1
2
3
4
5
6
7 1e 4 Rosenbrock

0.0 0.2 0.4 0.6 0.8 1.0
pm

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4 1e 31 Sphere

0.0 0.2 0.4 0.6 0.8 1.0
pm

2

3

4

5

6

7

8 1e 31 Schwefel

0.0 0.2 0.4 0.6 0.8 1.0
pm

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Rastrigin

0.0 0.2 0.4 0.6 0.8 1.0
pm

3.6

3.8

4.0

4.2

4.4
1e 15 Ackley

0.0 0.2 0.4 0.6 0.8 1.0
pm

1

0

1

2

3

4

5 1e 3 Rosenbrock

Figure 1: Parameter test results on ra, pc, and pm.

function. So the selection of pc highly depends on the
nature of the optimization problems to be solved.

As to pm, the simulation results reveal a similar ten-
dency with ra that the multimodal problems seem to prefer
a relatively small pm somewhere near 0.1. So we adopt the
parameter combination ra = 1, pc = 0.7, and pm = 0.1 in
all of our later simulations. Please note that this param-
eter combination is not guaranteed to be the best one for
solving all optimization problems, and parameter tuning
is essential to address unfamiliar problems.

Please note that the parameter sensitivity analysis in
this paper is a preliminary one. In this test only one pa-
rameter is tested while the remaining two is set unchanged,
i.e., ra = 1, pc = 0.7, and pm = 0.1. Although it is
not guaranteed that this set of parameters works best for
the benchmark functions, it is one that yields outstanding
performance, which will be demonstrated in Section 4. A
complete parameter sensitivity analysis is one of the future
research topics of SSA.

4. Benchmark Problems and Evaluation Method

In order to benchmark the performance of SSA, we
conduct simulations on 25 different benchmark functions.
These benchmark functions are all the base functions from
the latest Competition on Real-Parameter Single Objec-
tive Optimization Problems at CEC 2013 [34] and CEC

2014 [35]. The benchmark functions can be classified into
four groups:

• Group I: f1–f5 are unimodal functions.

• Group II: f6–f15 are multimodal functions.

• Group III: f16–f20 are rotated multimodal functions
whose base functions belong to Group II functions.

• Group IV: f21–f25 are hybrid multimodal functions
whose base functions belong to Group I – III func-
tions.

The benchmark functions are listed in Table 1. All bench-
mark functions, except f13 Schwefel’s Problem 2.26, are
shifted minimization problems and the search ranges are
scaled to [−100, 100]n, where n is the dimension of the
problem. Group I functions are used to test the fast-
converging performance of SSA. Group II functions all
have a large number of local minima points, and can be
used to test the ability of SSA to jump out of local optima
and avoid pre-mature convergence. Group III functions
are more complex than other functions and can push the
searching capability of SSA to a limit. Group IV func-
tions are employed to test the optimization performance of
handling problems consisting of different subcomponents
with different properties. The detailed implementation of
Group IV functions, i.e. hybrid multimodal functions, can

8

Table 1: Benchmark Functions

Function Transformation* Name

f1(z) =
∑n
i=1

z
2
i z = x − o Sphere Function

f2(z) =
∑n
i=1
|zi| +

∏n
i=1
|zi| z = (x − o) × 10/100 Schwefel’s Problem 2.22

f3(z) = z
2
1 + 10

6 ∑n
i=2

z
2
i z = x − o Cigar Function

f4(z) = 10
6
z
2
1 +

∑n
i=2

z
2
i z = x − o Discus Function

f5(z) =
∑n
i=1

ix
4
i + rand()+ z = (x − o) × 1.28/100 Quadratic Function with Noise

f6(z) =
∑n
i=1

(z
2
i − 10 cos(2πzi) + 10) z = (x − o) × 5.12/100 Rastrigin Function

f7(z) = −20 exp(−0.2

√
1

n

∑n
i=1

z2
i
) − exp[

1

n

∑n
i=1

cos(2πzi)] + 20 + e z = (x − o) × 32/100 Ackley Function

f8(z) =
1

4000

∑n
i=1

z
2
i −

n∏
i=1

cos(
zi
√
i
) + 1 z = (x − o) × 600/100 Griewank Function

f9(z) =
∑n−1
i=1

(100(zi+1 − z
2
i)

2
+ (zi − 1)

2
) z = (x − o) × 30/100 Rosenbrock Function

f10(z) = sin
2
(πy1) +

∑n−1
i=1

[(yi − 1)
2
(1 + 10(sin

2
yi+1))]+

(yn − 1)
2
(1 + sin

2
(2πyn)), yi = 1 +

1

4
(zi + 1)

z = (x − o) × 50/100 Levy Function

f11(z) =
1

10
[sin

2
(3πz1) +

∑n−1
i=1

(zi − 1)
2
(1 + sin

2
(3πzi+1))+

(zn − 1)
2
(1 + sin

2
(2πzn))] +

∑n
i=1

u(zi, 5, 100, 4)

u(zi, a, k,m) =

k(zi − a)

m for zi > a

0 for − a ≤ zi ≤ a
k(−zi − a)

m for zi < −a

z = (x − o) × 50/100 Penalized Function

f12(z) =g(z1, z2) + g(z2, z3) + · · · + g(zn−1, zn) + g(zn, z1)

g(x, y) = 0.5 +
(sin2(

√
x2 + y2) − 0.5)

(1 + 0.001(x2 + y2))2

z = x − o Schaffer’s Function F6

f13(z) = 418.9828872724338 ∗ n −
∑n
i=1

(zi sin
√
|zi|) z = x × 500/100 Schwefel’s Problem 2.26

f14(z) = [
1

n − 1

∑n−1
i=1

(
√
yi + sin(50y

0.2
i)
√
yi)]

2
, yi =

√
z2
i

+ z2
i+1 z = x − o Schaffer’s Function F7

f15(z) =min(
∑n
i=1

(zi − µ1)
2
, d × n + s ×

∑n
i=1

(zi − µ2)
2
)+

10
∑n
i=1

(1 − cos[2π(zi − µ1)])

s = 1 −
1

2
√
n − 8.2

, µ1 = 2.5, µ2 = −

√√√√µ21 − 1

s

z = (x − o) × 10/100 Lunacek Function

f16(z) = f8(Mz) z = (x − o) × 600/100 Rotated Griewank Function
f17(z) = f9(Mz) z = (x − o) × 30/100 Rotated Rosenbrock Function
f18(z) = f11(Mz) z = (x − o) × 50/100 Rotated Penalized Function
f19(z) = f12(Mz) z = x − o Rotated Schaffer’s Function F6
f20(z) = f15(Mz) z = (x − o) × 10/100 Rotated Lunacek Function
f21(z) = f1(z1) + f6(z2) + f13(z3) z = [z1, z2, z3] Hybrid Function 1
f22(z) = f6(z1) + f8(z2) + f9(z3) z = [z1, z2, z3] Hybrid Function 2
f23(z) = f3(z1) + f7(z2) + f9(z3) + f11(z4) z = [z1, z2, z3, z4] Hybrid Function 3
f24(z) = f6(z1) + f7(z2) + f8(z3) + f9(z4) + f13(z5) z = [z1, z2, z3, z4, z5] Hybrid Function 4
f25(z) = f1(z1) + f7(z2) + f10(z3) + f13(z4) + f15(z5) z = [z1, z2, z3, z4, z5] Hybrid Function 5

* o is a shifting vector and M is a transformation matrix. o and M can be obtained from [35].
+ rand() is a random number uniformly generated in (0, 1).

be found in [35]. In Table 1 we only list the subcomponents
of the hybrid functions.

All benchmark functions locate their global minimum
values at zero, and the fitness values smaller than 10−8 are
considered as 10−8 as required in [34] and [35]. We test
the benchmark functions in 10, 30, and 50 dimensions to
draw empirical conclusion on the scalability of SSA, and
each function is tested for 51 runs [35]. In each run, we
use a maximum number of 104×n function evaluations as
the termination criteria. In order to meet the requirement
set by [35], we use one fixed combination of parameters for
SSA in the simulation of all groups of functions. The pop-
ulation size is n, and other parameters are set according
to the analysis in Section 3.5.

To evaluate the performance of SSA, we compare the
simulation results with the state-of-the-art algorithms in
solving real-parameter optimization problems, including
the variances of Co-variance Matrix Adaptation Evolution
Strategies (CMA-ES) [36], adaptive Differential Evolution
algorithms (DE) [37], and a Global and Local real-coded
Genetic Algorithm (GL-25) [38]. CMA-ES and DE vari-
ants are arguably the most successful optimization algo-

rithms current in use [39]. In the latest Competition on
Real-Parameter Single Objective Optimization Problems
at CEC 2013, their variant algorithms possess nine po-
sitions in the top ten best performing algorithms. For
DE variants, we select JADE [40] and SaDE [32] for com-
parison due to their excellent performance demonstrated
in the CEC 2013 competition. All source codes are ob-
tained from the original author. We make some minor
changes to adapt them to our benchmark functions, but
the main body and logic of the algorithms are untouched.
The stopping criteria for all the compared algorithms are
set to 104× n function evaluations, and the parameters of
these algorithms are set according to the recommendation
made in the corresponding literature, i.e., CMA-ES in [41],
JADE in [40], SaDE in [32], and GL-25 in [38].

Besides these state-of-the-art algorithms, we also per-
formed simulations with other famous algorithms, namely,
Real-Coded Genetic Algorithm [42], Adaptive Particle Swarm
Optimization [43], Artificial Bee Colony Optimization [18],
Firefly Algorithm [22], Cuckoo Search [44], and Group
Search Optimizer [45]. As their overall performance in
terms of best fitness values achieved and convergence speed

9

is not comparable to SSA and the other four algorithms,
the detailed simulation results will not be presented in this
paper.

5. Numerical Experiments and Results

In this section we present the simulation results of SSA
on the benchmark functions identified in Section 4. We
perform comparison among SSA and other algorithms and
give statistical analysis on the simulation results.

5.1. Experimental Comparison with Other State-of-the-Art
Algorithms

We first conduct a series of simulations on the 30-
dimension optimization problems using SSA and other state-
of-the-art algorithms. The simulation results are plotted
in Fig. 2 and Table 2 reports the means and standard
deviations of the optimal fitness values achieved, with the
best mean result shaded. Besides, we also perform a series
of Wilcoxon rank sum tests on the null hypothesis that
SSA performs similarly with other algorithms when solv-
ing each benchmark function. The statistical test result
at 95% significance level is presented next to the standard
deviation of the corresponding algorithm, where a 	 in-
dicates that SSA performs significantly better than the
tested algorithm on the specified function, a ⊕ indicates
that SSA performs not as good as the tested algorithm,
and a � means that the Wilcoxon rank sum test cannot
distinguish between the simulation results of SSA and the
tested algorithm. The counts of the benchmark functions
that fall in these situations are shown at the bottom of the
table.

From Table 2, we observe that:

• SSA generally outperforms all compared algorithms
in terms of the statistical test. Among all 25 func-
tions, SSA generates better simulation results in 16,
12, 14, and 13 functions compared with CMA-ES,
JADE, SaDE, and GL-25, respectively. If we take
those functions with similar results, the advantage is
more obvious: SSA performs no worse than CMA-
ES, JADE, SaDE, and GL-25 in 22, 19, 24, and 22
functions, respectively.

• In the first group of benchmark functions, all com-
pared algorithms can obtain the global optimum val-
ues of f1–f4 in all runs, which means that the final
result test cannot reveal the best-performing algo-
rithms. We shall further employ the convergence test
to analyse the performance of compared algorithms.

• The performance of SSA in solving Group II multi-
modal optimization problems is superior, and it gen-
erates 7 best mean results out of the total 10. The
numbers for CMA-ES, JADE, SaDE, and GL-25 are
1, 4, 1, and 4, respectively. Besides, the mean re-
sults of the three functions where SSA is not the

best performing one are still very competitive and
comparable to the best results.

• SSA is not as competitive in solving rotated mul-
timodal functions as it does in unimodal and mul-
timodal functions. However, a careful investigation
on the mean results shows that the performance of
SSA is still comparable to all compared algorithm.
The reason of this phenomenon may be that dur-
ing the searching process of SSA, no correlation ma-
trix or differential vectors are employed to assist the
blind search in the solution space as in CMA-ES and
JADE. However, this disadvantage can be overcome
by employing these mentioned schemes into SSA or
via hybrid algorithms. This is a potential future re-
search direction.

• SSA is very powerful at solving hybrid functions where
different dimensions of the objective functions can be
un-related and there is no additional information like
correlation matrix available. In Group IV tests, SSA
achieved four out of the total five best mean results.

5.2. Scalability Test

In addition to the 30-dimension benchmark function
tests, we also performed a series of simulations on both
10- and 50-dimension benchmarks to test the scalability of
SSA. To make a thorough comparison, we also employed
the compared algorithms in this test. The simulation re-
sults are presented in Tables 3 and 4, using the same for-
mat and symbols as in Table 2. From the results we have
the following observations:

• The advantage of SSA over compared algorithms are
confirmed. SSA achieved all the best mean results in
10-D Group II tests and 50-D Group IV tests, and
have satisfactory performance compared with other
algorithms in all other groups.

• This advantage is also supported by the statistical
test. SSA can generate better results than CMA-ES,
JADE, SaDE, and GL-25 in 18, 15, 19, and 8 10-D
functions, respectively. The corresponding numbers
for 50-D functions are 17, 9, 12, and 15, respectively.
The statistical results will favor SSA more if we also
take those tests that have similar performance into
account.

• From the simulation results we can see GL-25 per-
forms very well in 10-D hybrid functions, JADE per-
forms very well in 50-D multimodal functions, when
compared with the remaining three algorithms. How-
ever, SSA can always outperform them in these tests,
which indicate the superior scalability of SSA.

5.3. Convergence Test

As stated in Section 5.1, the final result comparison
cannot completely describe the searching performance of

10

CMAES
JADE

SaDE
GL25 SSA

10-9

10-8

10-7 f1

CMAES
JADE

SaDE
GL25 SSA

10-9

10-8

10-7 f2

CMAES
JADE

SaDE
GL25 SSA

10-9

10-8

10-7 f3

CMAES
JADE

SaDE
GL25 SSA

10-9

10-8

10-7 f4

CMAES
JADE

SaDE
GL25 SSA

10-4

10-3

10-2

10-1

100 f5

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102 f6

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102 f7

CMAES
JADE

SaDE
GL25 SSA

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 f8

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103 f9

CMAES
JADE

SaDE
GL25 SSA

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101 f10

CMAES
JADE

SaDE
GL25 SSA

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101 f11

CMAES
JADE

SaDE
GL25 SSA

10-1

100

101

102 f12

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104 f13

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103 f14

CMAES
JADE

SaDE
GL25 SSA

101

102

103 f15

CMAES
JADE

SaDE
GL25 SSA

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 f16

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103 f17

CMAES
JADE

SaDE
GL25 SSA

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102 f18

CMAES
JADE

SaDE
GL25 SSA

101

102 f19

CMAES
JADE

SaDE
GL25 SSA

101

102

103 f20

CMAES
JADE

SaDE
GL25 SSA

10-1

100

101

102

103

104 f21

CMAES
JADE

SaDE
GL25 SSA

10-5

10-4

10-3

10-2

10-1

100

101

102

103 f22

CMAES
JADE

SaDE
GL25 SSA

10-4

10-3

10-2

10-1

100

101

102 f23

CMAES
JADE

SaDE
GL25 SSA

10-3

10-2

10-1

100

101

102

103

104 f24

CMAES
JADE

SaDE
GL25 SSA

10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104 f25

Figure 2: Box plot of raw simulation results.

11

0 78000
10-910-810-710-610-510-410-310-210-1100101102103104105 f1

0 81000
10-910-810-710-610-510-410-310-210-1100101102103104 f2

0 81000
10-9
10-7
10-5
10-3
10-1
101
103
105
107
109

1011
f3

0 78000
10-910-810-710-610-510-410-310-210-1100101102103104105 f4

0 300000
10-4

10-3

10-2

10-1

100

101

102 f5

0 300000
10-910-810-710-610-510-410-310-210-1100101102103 f6

0 300000
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102 f7

0 300000
10-910-810-710-610-510-410-310-210-1100101102103 f8

0 300000
10-9
10-7
10-5
10-3
10-1
101
103
105
107

f9

0 300000
10-910-810-710-610-510-410-310-210-1100101102103 f10

0 75000
10-9
10-7
10-5
10-3
10-1
101
103
105
107
109 f11

0 300000
10-1

100

101

102 f12

0 300000
10-810-710-610-510-410-310-210-1100101102103104 f13

0 300000
10-810-710-610-510-410-310-210-1100101102103104 f14

0 300000
101

102

103 f15

0 300000
10-910-810-710-610-510-410-310-210-1100101102103 f16

0 300000
10-9
10-7
10-5
10-3
10-1
101
103
105
107
109 f17

0 75000
10-9
10-7
10-5
10-3
10-1
101
103
105
107
109 f18

0 300000
101

102 f19

0 300000
101

102

103 f20

0 300000
10-810-710-610-510-410-310-210-1100101102103104 f21

0 300000
10-1
100
101
102
103
104
105
106 f22

0 300000
10-210-11001011021031041051061071081091010 f23

0 300000
10-1

100

101

102

103

104

105 f24

0 300000
100

101

102

103

104 f25

CMA-ES
JADE
SaDE
GL25
SSA

Figure 3: Median convergence test results.

12

an algorithm. So we further conduct a convergence test
on the five compared algorithms on each 30-D benchmark
function. We employ the raw simulation data generated in
Section 5.1. As each function is tested for 51 runs for each
algorithm, we select the convergence data of the run which
generates the median final result. The convergence data of
the five compared algorithms are plotted in Fig. 3. The x-
axis is the function evaluations consumed, and the y-axis
is the best-so-far fitness values found. The convergence
plots lead to the following observations:

• The convergence speed of SSA in solving unimodal
optimization problems is not as fast as CMA-ES,
JADE, and SaDE. This is because SSA performs
exploitation and exploration simultaneously during
the random walk process, and the former contributes
to a fast convergence speed but the latter obstructs
the population from moving into a small region in
the search space. However, the degree of exploration
in the random walk process can be effectively con-
trolled by the algorithm parameters as revealed in
Section 3.5. So it is highly possible that SSA can
also achieve a comparable convergence speed with
other algorithms if we adopt a set of suitable pa-
rameters designed for solving unimodal optimization
problems.

• When solving multi-modal optimization problems,
SSA generally converges as fast as or even faster than
the compared algorithms. This phenomenon can be
clearly observed in the Group II tests, where SSA
mostly generates a similar convergence curve with
others.

• The advantage of combining exploitation and explo-
ration in one searching process is revealed in the con-
vergence plot. Take f6 as an example, almost all al-
gorithms (except JADE) are trapped in local optima
shortly after the start of searching. However, SSA
managed to jump out of the optimum and success-
fully found the global optimum by the end of search-
ing. The manifestation of this searching characteris-
tic is that the algorithm convergences relatively slow
at the beginning, but then very fast as the search
continues. This phenomenon can also be observed in
some other instances, e.g. f13, f22, and f24.

5.4. Reliability Test

Another test which can examine the reliability of stochas-
tic algorithms is the success rate test and this test has
been adopted in many previous work, e.g. [32][43]. In
this part, we aim at further comparing and visualizing
the performance of all compared algorithms on all tested
benchmark functions by plotting the empirical cumulative
distribution of success rates. The plots are presented in
Fig. 4, where the x-axis is different success thresholds,
and the y-axis is the overall success rate. A simulation
run is considered successful if and only if the best-found

fitness value is smaller than or equal to the “successful
threshold”. The overall success rate is calculated by the
number of successful runs under a specific success thresh-
old divided by the total number of runs. Thus a larger
overall success rate implies a more reliable algorithm. By
comparing the distribution curves of different algorithms,
we can have a general view on which algorithm is reliable
at solving general optimization problems.

From the plots we have the following observations:

• SSA is generally more reliable than the compared al-
gorithms. The advantage is very significant in 10-D
and 50-D benchmark functions. While the reliabil-
ity of SSA is very similar to JADE in small suc-
cess threshold regions, SSA regains the lead in large
threshold regions.

• The plot also demonstrates the convergence charac-
teristic of SSA. SSA is able to find the global op-
timum whenever the algorithm is able to locate a
relatively small region near it. This conclusion is
drawn based on the observation that almost all runs
that obtained a fitness value smaller than 10−4 in
30-D functions, and 10−3 in 50-D functions are able
to converge to the global optimum point at 10−8.

5.5. Computational Complexity

Besides the previous tests, the computational complex-
ity is also a major factor for evaluating the efficiency of
an evolutionary computation algorithm. In this paper,
we employ the method stated in [34] and [35] to analyze
the computational complexity of the compared algorithms.
We use f6 in Table 1, which is the major component of the
testing methodology suggested by [35], as the benchmark
evaluation function, and the complexity analysis result is
as follows. The complexity values of CMA-ES, JADE,
SaDE, GL-25, and SSA are 40.47, 34.69, 75.72, 63.51, and
44.18, respectively. A smaller complexity value means that
the algorithm is less complex, which leads to a relatively
faster speed in execution under the same condition. From
the results we can see that although SSA is slightly more
complicated than JADE and CMA-ES, their complexities
are comparable. In addition, these three algorithms are
significantly less computationally complex than SaDE and
GL-25.

5.6. Discussion

As stated by the No-Free-Lunch (NFL) Theorem [46],
all meta-heuristics that search for extrema shall perform
exactly the same when all possible objective functions are
evaluated and averaged. It is further elaborated that it
is theoretically impossible to have a best general-purpose
universal optimization technique [47]. Superior performing
algorithms are available if particular classes of problems
are considered [47], or general but real-world ones [48].

13

10-810-710-610-510-410-310-210-1100101102103
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
10-D

10-810-710-610-510-410-310-210-1100101102103
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
30-D

10-810-710-610-510-410-310-210-1100101102103
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
50-DCMA-ES

JADE
SaDE
GL25
SSA

Figure 4: Empirical cumulative distribution of success rate test results.

However, the total number of possible problems are so
huge that there is still much room to develop new algo-
rithms. Though existing meta-heuristics have great suc-
cess in solving many optimization problems, it is always
worthwhile to develop new searching methodologies with
superior performance in particular classes of problems [49].
This is the motivation for us to propose SSA for solving
global numerical optimization problems.

6. Conclusion

In this paper we proposed a novel social spider algo-
rithm to solve global optimization problems. This algo-
rithm is based on the foraging behavior of social spiders
and the information-sharing foraging strategy. SSA is con-
ceptually simple and relatively easy to implement. SSA
can tackle a wide range of different continuous optimiza-
tion problems and has the potential to be employed to
solve real-world problems.

In order to evaluate the performance of SSA, we adopted
a set of 25 benchmark functions which cover a large vari-
ety of different optimization problem types. We compared
SSA with the state-of-the-art optimization algorithms, namely,
CMA-ES, JADE, SaDE, and GL-25. These algorithms
have been employed to solve a large set of different bench-
mark optimization functions and real-world problems, and
demonstrated outstanding performance. The results show
that the performance of SSA is outstanding compared with
the above listed algorithms in all three different groups of
functions. This conclusion was supported by both the sim-
ulation results and the statistics of the simulation data.

Future research on SSA can be divided into three cat-
egories: scheme research, algorithm research, and real-
world application. The random walk scheme in the current
SSA may be further improved using advanced optimiza-
tion techniques and hybrid algorithms with deterministic
heuristics or local search algorithms. New schemes can
also be applied in the searching process of SSA for per-
formance improvement. In terms of algorithm research,

SSA has the potential to be applied to solve combinato-
rial problems. We note that some other swarm intelli-
gence algorithms like PSO and ABC originally designed
to solve continuous optimization problems have been suc-
cessfully modified to solve combinatorial problem [50][51].
Although SSA only has three parameters besides the pop-
ulation size, it is still very interesting to develop adaptive
or self-adaptive schemes for SSA to control the parameters
and reduce the effort in tuning parameters. Last but not
least, it would be interesting to identify real-world appli-
cations which can be addressed using SSA effectively and
efficiently.

Acknowledgment

The authors would like to thank the anonymous re-
viewer for useful, constructive comments.

References

References

[1] E.-G. Talbi, Metaheuristics: From Design to Implementation,
Wiley, 2009.

[2] R. Mallipeddi, S. Mallipeddi, P. N. Suganthan, M. F. Tasge-
tiren, Differential evolution algorithm with ensemble of param-
eters and mutation strategies, Appl. Soft Comput. 11 (2011)
1679–1696.

[3] R. S. Parpinelli, H. S. Lopes, New inspirations in swarm intelli-
gence: a survey, Int. J. Bio-Inspired Computation 3 (1) (2011)
1–16.

[4] M. Yim, Y. Zhang, D. Duff, Modular robots, IEEE Spectrum
39 (2) (2002) 30–34.

[5] R. Foelix, Biology of Spiders, 198 Madison Ave. NY, New York,
10016: Oxford University Press, 1996.

[6] C. F. Schaber, S. N. Gorb, F. G. Barth, Force transformation
in spider strain sensors: White light interferometry., J. Royal
Society Interface 9 (71) (2012) 1254–1264.

[7] P. K. Stoddard, V. L. Salazar, Energetic cost of communication,
The Journal of Experimental Biology 214 (2011) 200–205.

[8] J. House, K. Landis, D. Umberson, Social relationships and
health, Science 241 (4865) (1988) 540–545.

14

[9] C. W. Clark, M. Mangel, Foraging and flocking strategies: Infor-
mation in an uncertain environment, The American Naturalist
123 (5) (1984) 626–641.

[10] C. Barnard, R. Sibly, Producers and scroungers: A general
model and its application to captive flocks of house sparrows,
Animal Behaviour 29 (2) (1981) 543–550.

[11] G. Uetz, Foraging strategies of spiders, Trends in Ecology and
Evolution 7 (5) (1992) 155–159.

[12] F. Fernndez Campn, Group foraging in the colonial spider
parawixia bistriata (araneidae): effect of resource levels and
prey size, Animal Behaviour 74 (5) (2007) 1551–1562.

[13] M. Dorigo, Optimization, learning and natural algorithms,
Ph.D. thesis, Politecnico di Milano, Italie (1990).

[14] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc.
IEEE Int. Conf. Neural Networks, Perth, WA, U.S., 1995, pp.
1942–1948.

[15] T. Liao, D. Molina, T. Stutzle, M. Oca, M. Dorigo, An ACO
algorithm benchmarked on the bbob noiseless function testbed,
in: Proc. 14th Int. Conf. GECCO, Philadelphia, U.S., 2012, pp.
221–228.

[16] U. Kirchmaier, S. Hawe, K. Diepold, A swarm intelligence in-
spired algorithm for contour detection in images, Appl. Soft
Comput. 13 (2013) 3118–3129.

[17] H. A. Abbass, MBO: marriage in honey bees optimization-a
haplometrosis polygynous swarming approach, in: Proc. IEEE
Congress on Evolutionary Computation (CEC), Seoul, Korea,
2001, pp. 207–214.

[18] D. Karaboga, B. Basturk, A powerful and efficient algorithm for
numerical function optimization: artificial bee colony, J. Global
Optim. 39 (3) (2007) 459–471.

[19] S. Omkar, J. Senthilnath, R. Khandelwal, G. N. Naik,
S. Gopalakrishnan, Artificial bee colony (abc) for multi-
objective design optimization of composite structures, Appl.
Soft Comput. 11 (2011) 489–499.

[20] B. Akay, A study on particle swarm optimization and artificial
bee colony algorithms for multilevel thresholding, Appl. Soft
Comput. 13 (2013) 3066–3091.

[21] K. Krishnanand, D. Ghose, Detection of multiple source loca-
tions using a glowworm metaphor with applications to collective
robotics, in: Proc. IEEE Swarm Intell. Symposium, Pasadena,
CA, U.S., 2005, pp. 84–91.

[22] X.-S. Yang, Nature-inspired metaheuristic algorithms, Luniver
Press, 2008, Ch. 10. Firefly Algorithm, pp. 81–96.

[23] K. M. Passino, Biomimicry of bacterial foraging for distributed
optimization and control, IEEE Control Syst. Mag. 22 (3)
(2002) 52–67.

[24] M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi,
Optimum placement of active power conditioner in distribu-
tion systems using improved discrete firefly algorithm for power
quality enhancement, Appl. Soft Comput. 23 (2014) 249–258.

[25] E. Cuevas, M. Cienfuegos, D. Zaldvar, M. Prez-Cisneros, A
swarm optimization algorithm inspired in the behavior of the
social-spider, Expert Systems with Applications 40 (16) (2013)
6374C–6384.

[26] W. Chu, X. Gao, S. Sorooshian, Handling boundary con-
straints for particle swarm optimization in high-dimensional
search space, Inform. Sci. 181 (20) (2011) 4569–4581.

[27] K. Socha, M. Dorigo, Ant colony optimization for continuous
domains, European Journal of Operational Research 185 (3)
(2008) 1155–1173.

[28] A. K. Qin, X. Li, Differential evolution on the CEC-2013 single-
objective continuous optimization testbed, in: Proc. IEEE
Congress on Evolutionary Computation (CEC), Cancun, Mex-
ico, 2013, pp. 1099–1106.

[29] A. Y. S. Lam, V. O. K. Li, J. J. Q. Yu, Real-coded chemical
reaction optimization, IEEE Trans. Evol. Comput. 16 (3) (2012)
339–353.

[30] K. Price, R. M. Storn, J. A. Lampinen, Differential Evolution -
A Practical Approach to Global Optimization, Springer, 2005.

[31] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H. S.-H.
Chung, Y. Li, Y.-H. Shi, Particle swarm optimization with an

aging leader and challengers, IEEE Trans. Evol. Comput. 17 (2)
(2013) 241–258.

[32] A. Qin, V. Huang, P. Suganthan, Differential evolution algo-
rithm with strategy adaptation for global numerical optimiza-
tion, IEEE Trans. Evol. Comput. 13 (2) (2009) 398–417.

[33] J. A. Vrugt, B. A. Robinson, J. M. Hyman, Self-adaptive multi-
method search for global optimization in real-parameter spaces,
IEEE Trans. Evol. Comput. 13 (2) (2009) 243–259.

[34] J. J. Liang, B.-Y. Qu, P. N. Suganthan, A. G. Hernndez-Daz,
Problem definitions and evaluation criteria for the CEC 2013
special session and competition on real-parameter optimiza-
tion, Technical Report 201212, Computational Intelligence Lab-
oratory, Zhengzhou University, Zhengzhou China and Nanyang
Technological University, Singapore (2013).

[35] J. J. Liang, B.-Y. Qu, P. N. Suganthan, Problem definitions and
evaluation criteria for the CEC 2014 special session and com-
petition on single objective real-parameter numerical optimiza-
tion, Technical Report 201311, Computational Intelligence Lab-
oratory, Zhengzhou University, Zhengzhou China and Nanyang
Technological University, Singapore (2014).

[36] N. Hansen, A. Ostermeier, Completely derandomized self-
adaptation in evolution strategies, Evolutionary Computation
9 (2) (2001) 159–195.

[37] R. Storn, K. Price, Differential evolution: A simple and effi-
cient heuristic for global optimization over continuous spaces,
J. Global Optim. 11 (4) (1997) 341–359.

[38] C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina,
A. Sanchez, Global and local real-coded genetic algorithms
based on parent-centric crossover operators, European Journal
of Operational Research 185 (2008) 1088–1113.

[39] S. Das, P. N. Suganthan, Differential evolution: A survey of the
sate-of-the-art, IEEE Trans. Evol. Comput. 15 (1) (2011) 4–31.

[40] J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolu-
tion with optional external archive, IEEE Trans. Evol. Comput.
13 (5) (2009) 945–958.

[41] I. Loshchilov, CMA-ES with restarts for solving CEC
2013benchmark problems, in: Proc. IEEE Congress on Evolu-
tionary Computation (CEC), Cancun, Mexico, 2013, pp. 369–
376.

[42] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, 1975.

[43] Z.-H. Zhan, J. Zhang, Y. Li, H. S.-H. Chung, Adaptive particle
swarm optimization, IEEE Trans. Evol. Comput. 39 (6) (2009)
1362–1381.

[44] X.-S. Yang, S. Deb, Engineering optimisation by cuckoo search,
International Journal of Mathematical Modelling and Numeri-
cal Optimisation 1 (4) (2009) 330–343.

[45] S. He, Q. H. Wu, J. R. Saunders, Group search optimizer: An
optimization algorithm inspired by animal searching behavior,
IEEE Trans. Evol. Comput. 13 (5) (2009) 973–990.

[46] D. Wolpert, W. Macready, No free lunch theorems for optimiza-
tion, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82.

[47] Y. C. Ho, D. L. Pepyne, Simple explanation of the no-free-lunch
theorem and its implications, J. Optim. Theory Appl. 115 (3)
(2002) 549–570.

[48] C. Garcia-Martinez, F. J. Rodriguez, M. Lozano, Arbitrary
function optimisation with metaheuristics: No free lunch and
real-world problems, Soft Comput. 16 (2012) 2115–2133.

[49] A. Y. S. Lam, V. O. K. Li, Chemical-reaction-inspired meta-
heuristic for optimization, IEEE Trans. Evol. Comput. 14 (3)
(2010) 381–399.

[50] J. Kennedy, R. C. Eberhart, A discrete binary version of the
particle swarm algorithm, in: Proc. IEEE Int. Conf. Syst. Man
Cyber., Orlando, FL, U.S., 1997, pp. 4104–4108.

[51] Q.-K. Pan, M. F. Tasgetiren, P. Suganthan, T. J. Chua, A dis-
crete artificial bee colony algorithm for the lot-streaming flow
shop scheduling problem, Information Sciences 181 (12) (2011)
2455–2468.

15

Biography

James J.Q. Yu received the B.Eng. degree in Electrical
and Electronic Engineering from the University of Hong
Kong, Pokfulam, Hong Kong, in 2011. He is now a Ph.D.
candidate at the Department of Electrical and Electronic
Engineering of the University of Hong Kong. His current
research interests include optimization algorithm design
and analysis, evolutionary computation and its applica-
tion, data mining, wireless communications, and power
system.
Victor O.K. Li received SB, SM, EE and ScD degrees in
Electrical Engineering and Computer Science from MIT in
1977, 1979, 1980, and 1981, respectively. He is Chair Pro-
fessor of Information Engineering and Head of the Depart-
ment of Electrical and Electronic Engineering at the Uni-
versity of Hong Kong (HKU). He also served as Associate
Dean of Engineering, and Managing Director of Versitech
Ltd., the technology transfer and commercial arm of HKU,
and on the board of China.com Ltd. He is now serving on
the boards of Sunevision Holdings Ltd. and Anxin-China
Holdings Ltd., listed on the Hong Kong Stock Exchange.
Previously, he was Professor of Electrical Engineering at
the University of Southern California (USC), Los Ange-
les, California, USA, and Director of the USC Commu-
nication Sciences Institute. Sought by government, in-
dustry, and academic organizations, he has lectured and
consulted extensively around the world. He has received
numerous awards, including the PRC Ministry of Educa-
tion Changjiang Chair Professorship at Tsinghua Univer-
sity, the UK Royal Academy of Engineering Senior Visiting
Fellowship in Communications, the Croucher Foundation
Senior Research Fellowship, and the Order of the Bronze
Bauhinia Star, Government of the Hong Kong Special Ad-
ministrative Region, China. He is a Registered Profes-
sional Engineer and a Fellow of the Hong Kong Academy of
Engineering Sciences, the IEEE, the IAE, and the HKIE.

T
a
b

le
2
:

S
im

u
la

tio
n

R
esu

lts
fo

r
3
0
-D

P
ro

b
lem

s

F
u
n
c
tio

n
C
M

A
-E

S
J
A
D
E

S
a
D
E

G
L
2
5

S
S
A

M
e
a
n±

S
td

D
e
v

M
e
a
n±

S
td

D
e
v

M
e
a
n±

S
td

D
e
v

M
e
a
n±

S
td

D
e
v

M
e
a
n±

S
td

D
e
v

f
1

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
2

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
3

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
4

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
5

6
.
8
5
E
-
0
2±

2
.
2
1
E
-
0
2	

1
.
3
9
E
-
0
3±

5
.
6
8
E
-
0
4⊕

8
.
2
3
E
-
0
3±

3
.
2
2
E
-
0
3	

1
.
7
7
E
-
0
3±

5
.
1
9
E
-
0
4⊕

3
.
1
8
E
-
0
3±

9
.
9
9
E
-
0
4

f
6

5
.
9
0
E
+
0
1±

1
.
5
6
E
+
0
1	

7
.
8
0
E
-
0
2±

2
.
7
0
E
-
0
1	

1
.
8
1
E
+
0
0±

1
.
5
9
E
+
0
0	

2
.
3
6
E
+
0
1±

6
.
1
0
E
+
0
0	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
7

4
.
3
4
E
+
0
0±

5
.
7
7
E
+
0
0	

8
.
8
6
E
-
0
2±

3
.
1
4
E
-
0
1	

8
.
5
7
E
-
0
1±

8
.
6
8
E
-
0
1	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
8

1
.
8
4
E
-
0
3±

4
.
5
9
E
-
0
3	

4
.
8
1
E
-
0
3±

1
.
3
9
E
-
0
2	

4
.
4
0
E
-
0
2±

9
.
2
2
E
-
0
2	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
9

5
.
4
7
E
-
0
1±

1
.
3
9
E
+
0
0⊕

3
.
7
2
E
+
0
0±

1
.
1
2
E
+
0
1	

3
.
2
2
E
+
0
1±

2
.
9
9
E
+
0
1	

2
.
1
2
E
+
0
1±

9
.
2
2
E
-
0
1	

1
.
4
8
E
+
0
0±

3
.
6
2
E
+
0
0

f
1
0

5
.
7
3
E
-
0
2±

2
.
3
1
E
-
0
1�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
1
1

6
.
4
6
E
-
0
4±

2
.
6
1
E
-
0
3�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

9
.
4
8
E
-
0
2±

3
.
7
9
E
-
0
1	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
1
2

1
.
3
7
E
+
0
1±

3
.
0
2
E
-
0
1	

9
.
3
0
E
-
0
1±

1
.
1
0
E
-
0
1⊕

1
.
2
2
E
+
0
0±

1
.
7
7
E
-
0
1�

1
.
0
4
E
+
0
1±

1
.
0
7
E
+
0
0	

1
.
2
7
E
+
0
0±

1
.
4
2
E
-
0
1

f
1
3

4
.
8
9
E
+
0
3±

6
.
1
5
E
+
0
2	

3
.
2
5
E
+
0
2±

1
.
8
6
E
+
0
2	

2
.
7
9
E
+
0
1±

5
.
6
0
E
+
0
1�

3
.
5
4
E
+
0
3±

7
.
9
8
E
+
0
2	

1
.
1
6
E
+
0
1±

3
.
5
6
E
+
0
1

f
1
4

4
.
2
1
E
+
0
1±

6
.
1
6
E
+
0
1	

6
.
0
5
E
-
0
5±

4
.
3
2
E
-
0
4�

2
.
4
6
E
-
0
1±

8
.
5
2
E
-
0
1	

4
.
0
1
E
-
0
1±

2
.
4
4
E
-
0
1	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
1
5

8
.
0
2
E
+
0
1±

1
.
4
8
E
+
0
1	

3
.
2
6
E
+
0
1±

1
.
5
7
E
-
0
1⊕

3
.
4
8
E
+
0
1±

2
.
2
2
E
+
0
0	

6
.
0
3
E
+
0
1±

7
.
0
2
E
+
0
0	

3
.
2
8
E
+
0
1±

2
.
3
0
E
-
0
1

f
1
6

2
.
3
2
E
-
0
3±

5
.
0
6
E
-
0
3	

1
.
4
9
E
-
0
2±

4
.
0
5
E
-
0
2	

3
.
7
6
E
-
0
2±

8
.
5
7
E
-
0
2�

1
.
6
1
E
-
0
5±

7
.
5
5
E
-
0
5⊕

6
.
7
6
E
-
0
4±

6
.
7
0
E
-
0
4

f
1
7

8
.
6
0
E
-
0
1±

1
.
6
6
E
+
0
0⊕

5
.
4
7
E
-
0
1±

1
.
3
9
E
+
0
0⊕

8
.
0
7
E
+
0
1±

9
.
0
8
E
+
0
1�

6
.
3
7
E
+
0
1±

3
.
3
2
E
+
0
1	

3
.
4
3
E
+
0
1±

2
.
3
8
E
+
0
1

f
1
8

2
.
8
0
E
-
0
3±

4
.
8
4
E
-
0
3	

8
.
6
2
E
-
0
4±

2
.
9
8
E
-
0
3	

6
.
9
4
E
-
0
1±

2
.
2
1
E
+
0
0	

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0�

1
.
0
0
E
-
0
8±

0
.
0
0
E
+
0
0

f
1
9

1
.
3
8
E
+
0
1±

2
.
8
4
E
-
0
1	

1
.
1
0
E
+
0
1±

3
.
2
4
E
-
0
1⊕

1
.
2
0
E
+
0
1±

4
.
2
3
E
-
0
1⊕

1
.
3
3
E
+
0
1±

6
.
1
6
E
-
0
1	

1
.
2
3
E
+
0
1±

2
.
4
2
E
-
0
1

f
2
0

8
.
5
4
E
+
0
1±

1
.
5
7
E
+
0
1⊕

7
.
5
2
E
+
0
1±

1
.
0
9
E
+
0
1⊕

9
.
5
0
E
+
0
1±

1
.
3
7
E
+
0
1⊕

1
.
1
7
E
+
0
2±

6
.
9
0
E
+
0
1	

1
.
0
1
E
+
0
2±

8
.
7
8
E
+
0
0

f
2
1

1
.
7
6
E
+
0
3±

3
.
4
7
E
+
0
2	

3
.
5
3
E
+
0
2±

1
.
9
3
E
+
0
2	

6
.
9
8
E
+
0
1±

9
.
8
2
E
+
0
1	

2
.
4
1
E
+
0
2±

1
.
7
7
E
+
0
2	

1
.
8
8
E
+
0
1±

4
.
3
4
E
+
0
1

f
2
2

1
.
5
5
E
+
0
2±

4
.
9
2
E
+
0
1	

9
.
8
1
E
+
0
0±

1
.
3
8
E
+
0
1	

1
.
3
2
E
+
0
1±

1
.
3
3
E
+
0
1	

1
.
1
1
E
+
0
1±

2
.
2
8
E
+
0
0	

1
.
4
6
E
+
0
0±

1
.
6
9
E
+
0
0

f
2
3

2
.
8
8
E
+
0
1±

6
.
8
9
E
+
0
0	

3
.
9
0
E
+
0
0±

6
.
5
7
E
+
0
0	

4
.
0
1
E
+
0
0±

4
.
3
8
E
+
0
0	

7
.
4
3
E
-
0
1±

1
.
0
3
E
+
0
0⊕

1
.
3
7
E
+
0
0±

4
.
3
2
E
+
0
0

f
2
4

1
.
3
0
E
+
0
3±

2
.
6
0
E
+
0
2	

2
.
5
8
E
+
0
2±

1
.
5
2
E
+
0
2	

3
.
5
4
E
+
0
1±

5
.
9
3
E
+
0
1	

2
.
3
8
E
+
0
1±

2
.
1
6
E
+
0
1	

1
.
0
6
E
+
0
1±

3
.
9
8
E
+
0
1

f
2
5

1
.
1
8
E
+
0
3±

3
.
0
7
E
+
0
2	

1
.
8
9
E
+
0
2±

1
.
3
5
E
+
0
2	

4
.
4
4
E
+
0
1±

6
.
7
7
E
+
0
1	

4
.
0
6
E
+
0
1±

4
.
7
1
E
+
0
1	

6
.
0
6
E
+
0
0±

3
.
3
5
E
+
0
0

	
1
6

1
2

1
4

1
3

-
⊕

3
6

2
3

-
�

6
7

9
9

-

16

T
a
b

le
3
:

S
im

u
la

ti
o
n

R
es

u
lt

s
fo

r
1
0
-D

P
ro

b
le

m
s

F
u
n
c
ti
o
n

C
M

A
-E

S
J
A
D
E

S
a
D
E

G
L
2
5

S
S
A

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

f
1

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
2

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
3

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
4

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
5

2
.
7
8
E
-
0
2
±
1
.
8
7
E
-
0
2
	

4
.
5
8
E
-
0
4
±
2
.
9
5
E
-
0
4
⊕

2
.
2
9
E
-
0
3
±
1
.
9
8
E
-
0
3
	

4
.
7
0
E
-
0
4
±
2
.
6
6
E
-
0
4
⊕

7
.
5
0
E
-
0
4
±
3
.
4
8
E
-
0
4

f
6

1
.
6
0
E
+
0
1
±
7
.
8
1
E
+
0
0
	

2
.
3
4
E
+
0
0
±
2
.
4
8
E
+
0
0
	

2
.
9
1
E
+
0
0
±
2
.
7
4
E
+
0
0
	

4
.
6
1
E
+
0
0
±
1
.
7
2
E
+
0
0
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
7

5
.
6
2
E
-
0
1
±
2
.
9
0
E
+
0
0
	

4
.
5
0
E
-
0
1
±
8
.
4
8
E
-
0
1
	

9
.
1
4
E
-
0
1
±
1
.
1
6
E
+
0
0
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
8

9
.
9
5
E
-
0
3
±
8
.
7
5
E
-
0
3
	

4
.
0
6
E
-
0
2
±
6
.
9
7
E
-
0
2
	

1
.
1
5
E
-
0
1
±
1
.
9
4
E
-
0
1
	

2
.
4
1
E
-
0
3
±
6
.
3
2
E
-
0
3
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
9

3
.
1
3
E
-
0
1
±
1
.
0
8
E
+
0
0
	

5
.
4
7
E
-
0
1
±
1
.
3
9
E
+
0
0
	

3
.
0
8
E
+
0
0
±
7
.
0
4
E
+
0
0
	

2
.
3
4
E
+
0
0
±
6
.
8
1
E
-
0
1
	

2
.
6
0
E
-
0
1
±
7
.
7
8
E
-
0
1

f
1
0

3
.
8
2
E
-
0
2
±
1
.
9
1
E
-
0
1
�

4
.
8
8
E
-
0
2
±
1
.
1
4
E
-
0
1
	

7
.
3
2
E
-
0
2
±
3
.
9
6
E
-
0
1
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
1

1
.
7
2
E
-
0
3
±
4
.
0
4
E
-
0
3
	

3
.
4
2
E
-
0
3
±
1
.
5
0
E
-
0
2
	

1
.
2
6
E
-
0
1
±
5
.
5
7
E
-
0
1
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
2

4
.
2
4
E
+
0
0
±
2
.
7
8
E
-
0
1
	

2
.
8
3
E
-
0
1
±
2
.
4
6
E
-
0
1
�

4
.
1
8
E
-
0
1
±
1
.
1
1
E
-
0
1
	

1
.
1
6
E
+
0
0
±
7
.
4
6
E
-
0
1
	

2
.
2
0
E
-
0
1
±
8
.
6
0
E
-
0
2

f
1
3

1
.
6
1
E
+
0
3
±
3
.
6
9
E
+
0
2
	

3
.
1
9
E
+
0
2
±
1
.
8
1
E
+
0
2
	

1
.
1
5
E
+
0
2
±
1
.
1
8
E
+
0
2
	

2
.
6
7
E
+
0
2
±
2
.
2
1
E
+
0
2
	

2
.
3
2
E
+
0
0
±
1
.
6
6
E
+
0
1

f
1
4

1
.
3
6
E
+
0
1
±
2
.
9
1
E
+
0
1
	

3
.
8
8
E
-
0
1
±
2
.
5
1
E
+
0
0
	

1
.
4
4
E
+
0
0
±
3
.
4
9
E
+
0
0
	

3
.
1
7
E
-
0
3
±
5
.
3
1
E
-
0
3
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
5

1
.
3
6
E
+
0
1
±
7
.
3
5
E
+
0
0
	

6
.
3
8
E
+
0
0
±
6
.
5
7
E
+
0
0
�

1
.
1
4
E
+
0
1
±
6
.
6
5
E
+
0
0
	

1
.
1
9
E
+
0
1
±
3
.
7
8
E
+
0
0
	

4
.
0
4
E
+
0
0
±
4
.
9
6
E
+
0
0

f
1
6

9
.
8
5
E
-
0
3
±
9
.
4
5
E
-
0
3
�

2
.
6
3
E
-
0
2
±
3
.
0
9
E
-
0
2
	

1
.
1
7
E
-
0
1
±
1
.
0
6
E
-
0
1
	

2
.
8
2
E
-
0
3
±
4
.
9
9
E
-
0
3
⊕

4
.
3
5
E
-
0
3
±
5
.
1
2
E
-
0
3

f
1
7

4
.
6
9
E
-
0
1
±
1
.
3
0
E
+
0
0
⊕

9
.
3
8
E
-
0
1
±
1
.
7
1
E
+
0
0
⊕

1
.
7
5
E
+
0
1
±
3
.
3
6
E
+
0
1
	

4
.
9
1
E
+
0
0
±
6
.
3
9
E
-
0
1
⊕

1
.
4
9
E
+
0
1
±
3
.
7
4
E
+
0
1

f
1
8

1
.
7
0
E
-
0
3
±
4
.
5
1
E
-
0
3
	

1
.
2
9
E
-
0
3
±
3
.
5
8
E
-
0
3
	

1
.
8
7
E
-
0
2
±
3
.
8
2
E
-
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
9

4
.
2
1
E
+
0
0
±
2
.
2
1
E
-
0
1
	

2
.
7
6
E
+
0
0
±
5
.
5
3
E
-
0
1
⊕

3
.
2
6
E
+
0
0
±
3
.
8
3
E
-
0
1
�

3
.
0
9
E
+
0
0
±
4
.
4
8
E
-
0
1
�

3
.
1
3
E
+
0
0
±
2
.
3
2
E
-
0
1

f
2
0

1
.
5
2
E
+
0
1
±
6
.
9
8
E
+
0
0
	

7
.
6
7
E
+
0
0
±
5
.
0
5
E
+
0
0
�

1
.
5
4
E
+
0
1
±
8
.
0
7
E
+
0
0
	

6
.
0
2
E
+
0
0
±
3
.
2
1
E
+
0
0
�

6
.
4
1
E
+
0
0
±
2
.
4
6
E
+
0
0

f
2
1

7
.
0
7
E
+
0
2
±
2
.
5
6
E
+
0
2
	

2
.
1
8
E
+
0
2
±
1
.
5
2
E
+
0
2
	

6
.
4
6
E
+
0
1
±
9
.
3
3
E
+
0
1
	

1
.
7
4
E
+
0
0
±
3
.
2
1
E
+
0
0
⊕

2
.
3
4
E
+
0
0
±
1
.
6
6
E
+
0
1

f
2
2

4
.
5
6
E
+
0
1
±
2
.
8
8
E
+
0
1
	

1
.
0
6
E
+
0
1
±
1
.
7
4
E
+
0
1
	

5
.
7
1
E
+
0
0
±
7
.
2
6
E
+
0
0
	

4
.
0
2
E
-
0
1
±
4
.
7
5
E
-
0
1
	

6
.
9
5
E
-
0
2
±
1
.
4
2
E
-
0
1

f
2
3

2
.
1
3
E
+
0
1
±
4
.
4
3
E
+
0
0
	

3
.
4
4
E
+
0
0
±
7
.
5
3
E
+
0
0
	

3
.
3
1
E
+
0
0
±
7
.
0
2
E
+
0
0
�

7
.
7
6
E
-
0
3
±
4
.
0
6
E
-
0
2
⊕

4
.
7
0
E
-
0
1
±
2
.
8
5
E
+
0
0

f
2
4

4
.
0
7
E
+
0
2
±
1
.
6
6
E
+
0
2
	

1
.
0
3
E
+
0
2
±
8
.
7
9
E
+
0
1
	

3
.
0
5
E
+
0
1
±
6
.
3
8
E
+
0
1
	

1
.
1
5
E
+
0
0
±
1
.
3
4
E
+
0
0
⊕

4
.
7
2
E
+
0
0
±
3
.
3
2
E
+
0
1

f
2
5

3
.
2
2
E
+
0
2
±
1
.
6
3
E
+
0
2
	

1
.
0
0
E
+
0
2
±
1
.
0
5
E
+
0
2
	

4
.
8
8
E
+
0
1
±
7
.
2
3
E
+
0
1
	

1
.
9
5
E
-
0
1
±
4
.
4
6
E
-
0
1
⊕

2
.
3
2
E
+
0
0
±
1
.
6
6
E
+
0
1

	
1
8

1
5

1
9

8
-

⊕
1

3
0

7
-

�
6

7
6

1
0

-

T
a
b

le
4
:

S
im

u
la

ti
o
n

R
es

u
lt

s
fo

r
5
0
-D

P
ro

b
le

m
s

F
u
n
c
ti
o
n

C
M

A
-E

S
J
A
D
E

S
a
D
E

G
L
2
5

S
S
A

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

M
e
a
n
±
S
td

D
e
v

f
1

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
2

1
.
3
2
E
-
0
8
±
1
.
6
9
E
-
0
8
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
3

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
4

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
5

7
.
8
8
E
+
0
0
±
5
.
5
5
E
+
0
1
	

2
.
2
5
E
-
0
3
±
8
.
1
7
E
-
0
4
⊕

1
.
6
5
E
-
0
2
±
6
.
0
8
E
-
0
3
	

4
.
2
2
E
-
0
3
±
1
.
4
5
E
-
0
3
⊕

6
.
2
6
E
-
0
3
±
1
.
3
2
E
-
0
3

f
6

1
.
8
6
E
+
0
2
±
2
.
7
6
E
+
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
3
1
E
+
0
0
±
1
.
1
0
E
+
0
0
	

4
.
9
8
E
+
0
1
±
1
.
1
8
E
+
0
1
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
7

1
.
3
8
E
+
0
1
±
8
.
1
7
E
+
0
0
	

1
.
6
0
E
-
0
1
±
3
.
7
8
E
-
0
1
	

9
.
6
0
E
-
0
1
±
6
.
5
7
E
-
0
1
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
8

5
.
8
0
E
-
0
4
±
2
.
0
1
E
-
0
3
	

8
.
1
3
E
-
0
3
±
1
.
7
0
E
-
0
2
	

3
.
8
9
E
-
0
2
±
6
.
6
4
E
-
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
9

1
.
5
6
E
-
0
1
±
7
.
8
2
E
-
0
1
⊕

1
.
0
2
E
+
0
0
±
1
.
7
5
E
+
0
0
⊕

7
.
3
6
E
+
0
1
±
2
.
8
1
E
+
0
1
	

4
.
1
3
E
+
0
1
±
1
.
2
5
E
+
0
0
	

4
.
3
4
E
+
0
0
±
9
.
4
5
E
+
0
0

f
1
0

3
.
3
5
E
+
0
0
±
1
.
2
2
E
+
0
1
	

2
.
4
4
E
-
0
3
±
1
.
2
2
E
-
0
2
�

3
.
6
6
E
-
0
3
±
1
.
9
3
E
-
0
2
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
1

8
.
6
2
E
-
0
4
±
2
.
9
8
E
-
0
3
	

2
.
1
5
E
-
0
4
±
1
.
5
4
E
-
0
3
�

2
.
8
2
E
-
0
1
±
9
.
7
7
E
-
0
1
	

6
.
5
7
E
-
0
2
±
1
.
0
9
E
-
0
1
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
2

2
.
3
9
E
+
0
1
±
8
.
2
9
E
-
0
1
	

1
.
7
3
E
+
0
0
±
1
.
9
6
E
-
0
1
⊕

4
.
8
4
E
+
0
0
±
1
.
3
3
E
+
0
0
⊕

1
.
9
1
E
+
0
1
±
1
.
5
3
E
+
0
0
	

6
.
3
0
E
+
0
0
±
6
.
3
5
E
-
0
1

f
1
3

8
.
4
5
E
+
0
3
±
7
.
9
8
E
+
0
2
	

1
.
1
4
E
+
0
2
±
1
.
1
8
E
+
0
2
	

4
.
6
4
E
+
0
0
±
2
.
3
2
E
+
0
1
�

7
.
3
9
E
+
0
3
±
8
.
7
6
E
+
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
4

1
.
9
0
E
+
0
2
±
1
.
4
0
E
+
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0
�

2
.
9
6
E
-
0
1
±
8
.
4
3
E
-
0
1
	

8
.
7
4
E
+
0
0
±
3
.
5
6
E
+
0
0
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
5

1
.
5
3
E
+
0
2
±
2
.
5
1
E
+
0
1
	

5
.
0
0
E
+
0
1
±
6
.
3
8
E
-
1
4
⊕

5
.
2
3
E
+
0
1
±
1
.
7
2
E
+
0
0
⊕

1
.
0
7
E
+
0
2
±
1
.
1
1
E
+
0
1
	

5
.
7
1
E
+
0
1
±
4
.
6
2
E
+
0
0

f
1
6

5
.
8
0
E
-
0
4
±
2
.
3
9
E
-
0
3
⊕

2
.
2
0
E
-
0
2
±
2
.
6
3
E
-
0
2
�

2
.
4
9
E
-
0
2
±
2
.
8
1
E
-
0
2
�

1
.
4
2
E
-
0
2
±
1
.
8
5
E
-
0
2
�

1
.
3
1
E
-
0
2
±
7
.
0
3
E
-
0
3

f
1
7

5
.
4
7
E
-
0
1
±
1
.
3
9
E
+
0
0
⊕

9
.
4
6
E
-
0
1
±
1
.
7
1
E
+
0
0
⊕

6
.
2
2
E
+
0
1
±
3
.
0
7
E
+
0
1
�

4
.
7
0
E
+
0
1
±
1
.
0
2
E
+
0
0
	

4
.
4
6
E
+
0
1
±
2
.
6
3
E
+
0
0

f
1
8

1
.
0
8
E
-
0
3
±
3
.
3
0
E
-
0
3
	

1
.
2
9
E
-
0
3
±
3
.
5
8
E
-
0
3
	

5
.
4
5
E
+
0
0
±
1
.
6
0
E
+
0
1
	

1
.
3
1
E
-
0
2
±
2
.
8
6
E
-
0
2
	

1
.
0
0
E
-
0
8
±
0
.
0
0
E
+
0
0

f
1
9

2
.
4
1
E
+
0
1
±
7
.
8
3
E
-
0
1
	

1
.
9
8
E
+
0
1
±
3
.
9
1
E
-
0
1
⊕

2
.
1
7
E
+
0
1
±
2
.
5
8
E
-
0
1
⊕

2
.
3
4
E
+
0
1
±
2
.
5
0
E
-
0
1
	

2
.
1
9
E
+
0
1
±
2
.
1
9
E
-
0
1

f
2
0

1
.
5
9
E
+
0
2
±
1
.
9
2
E
+
0
1
⊕

1
.
1
9
E
+
0
2
±
1
.
0
3
E
+
0
1
⊕

1
.
8
2
E
+
0
2
±
2
.
5
4
E
+
0
1
⊕

1
.
9
9
E
+
0
2
±
1
.
2
5
E
+
0
2
⊕

2
.
4
9
E
+
0
2
±
1
.
6
2
E
+
0
1

f
2
1

3
.
2
9
E
+
0
3
±
5
.
1
1
E
+
0
2
	

5
.
7
4
E
+
0
2
±
2
.
5
0
E
+
0
2
	

3
.
9
6
E
+
0
1
±
8
.
0
9
E
+
0
1
	

1
.
4
2
E
+
0
3
±
4
.
1
7
E
+
0
2
	

1
.
8
9
E
+
0
1
±
4
.
3
4
E
+
0
1

f
2
2

2
.
3
3
E
+
0
2
±
6
.
3
8
E
+
0
1
	

2
.
3
3
E
+
0
1
±
1
.
8
4
E
+
0
1
	

3
.
2
4
E
+
0
1
±
1
.
8
0
E
+
0
1
	

2
.
4
0
E
+
0
1
±
4
.
1
0
E
+
0
0
	

3
.
7
5
E
+
0
0
±
3
.
3
7
E
+
0
0

f
2
3

2
.
8
7
E
+
0
1
±
8
.
7
8
E
+
0
0
	

1
.
0
4
E
+
0
1
±
1
.
1
2
E
+
0
1
	

1
.
2
0
E
+
0
1
±
2
.
0
7
E
+
0
1
	

4
.
6
8
E
+
0
0
±
7
.
6
9
E
-
0
1
	

5
.
7
1
E
-
0
1
±
1
.
5
6
E
+
0
0

f
2
4

2
.
1
6
E
+
0
3
±
4
.
2
9
E
+
0
2
	

3
.
3
6
E
+
0
2
±
1
.
8
8
E
+
0
2
	

5
.
9
3
E
+
0
1
±
8
.
3
2
E
+
0
1
�

2
.
1
0
E
+
0
2
±
1
.
6
2
E
+
0
2
	

1
.
4
2
E
+
0
1
±
2
.
8
2
E
+
0
1

f
2
5

1
.
9
5
E
+
0
3
±
3
.
6
7
E
+
0
2
	

3
.
1
1
E
+
0
2
±
1
.
8
0
E
+
0
2
	

3
.
0
2
E
+
0
1
±
5
.
7
2
E
+
0
1
	

1
.
9
4
E
+
0
2
±
1
.
5
6
E
+
0
2
	

6
.
9
7
E
+
0
0
±
2
.
8
1
E
+
0
1

	
1
7

9
1
2

1
5

-
⊕

4
7

4
2

-
�

4
9

9
8

-

17

	1 Introduction
	2 Background
	3 Social Spider Algorithm
	3.1 Spider
	3.2 Vibration
	3.3 Search Pattern
	3.4 Differences between SSA and Other Evolutionary Computation Algorithms
	3.5 Adjusting SSA Parameters

	4 Benchmark Problems and Evaluation Method
	5 Numerical Experiments and Results
	5.1 Experimental Comparison with Other State-of-the-Art Algorithms
	5.2 Scalability Test
	5.3 Convergence Test
	5.4 Reliability Test
	5.5 Computational Complexity
	5.6 Discussion

	6 Conclusion

