51,834 research outputs found

    Ask the GRU: Multi-Task Learning for Deep Text Recommendations

    Full text link
    In a variety of application domains the content to be recommended to users is associated with text. This includes research papers, movies with associated plot summaries, news articles, blog posts, etc. Recommendation approaches based on latent factor models can be extended naturally to leverage text by employing an explicit mapping from text to factors. This enables recommendations for new, unseen content, and may generalize better, since the factors for all items are produced by a compactly-parametrized model. Previous work has used topic models or averages of word embeddings for this mapping. In this paper we present a method leveraging deep recurrent neural networks to encode the text sequence into a latent vector, specifically gated recurrent units (GRUs) trained end-to-end on the collaborative filtering task. For the task of scientific paper recommendation, this yields models with significantly higher accuracy. In cold-start scenarios, we beat the previous state-of-the-art, all of which ignore word order. Performance is further improved by multi-task learning, where the text encoder network is trained for a combination of content recommendation and item metadata prediction. This regularizes the collaborative filtering model, ameliorating the problem of sparsity of the observed rating matrix.Comment: 8 page

    Toward a collective intelligence recommender system for education

    Get PDF
    The development of Information and Communication Technology (ICT), have revolutionized the world and have moved us into the information age, however the access and handling of this large amount of information is causing valuable time losses. Teachers in Higher Education especially use the Internet as a tool to consult materials and content for the development of the subjects. The internet has very broad services, and sometimes it is difficult for users to find the contents in an easy and fast way. This problem is increasing at the time, causing that students spend a lot of time in search information rather than in synthesis, analysis and construction of new knowledge. In this context, several questions have emerged: Is it possible to design learning activities that allow us to value the information search and to encourage collective participation?. What are the conditions that an ICT tool that supports a process of information search has to have to optimize the student's time and learning? This article presents the use and application of a Recommender System (RS) designed on paradigms of Collective Intelligence (CI). The RS designed encourages the collective learning and the authentic participation of the students. The research combines the literature study with the analysis of the ICT tools that have emerged in the field of the CI and RS. Also, Design-Based Research (DBR) was used to compile and summarize collective intelligence approaches and filtering techniques reported in the literature in Higher Education as well as to incrementally improving the tool. Several are the benefits that have been evidenced as a result of the exploratory study carried out. Among them the following stand out: • It improves student motivation, as it helps you discover new content of interest in an easy way. • It saves time in the search and classification of teaching material of interest. • It fosters specialized reading, inspires competence as a means of learning. • It gives the teacher the ability to generate reports of trends and behaviors of their students, real-time assessment of the quality of learning material. The authors consider that the use of ICT tools that combine the paradigms of the CI and RS presented in this work, are a tool that improves the construction of student knowledge and motivates their collective development in cyberspace, in addition, the model of Filltering Contents used supports the design of models and strategies of collective intelligence in Higher Education.Postprint (author's final draft

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    SIMDAT

    No full text

    CIMTDetect: A Community Infused Matrix-Tensor Coupled Factorization Based Method for Fake News Detection

    Full text link
    Detecting whether a news article is fake or genuine is a crucial task in today's digital world where it's easy to create and spread a misleading news article. This is especially true of news stories shared on social media since they don't undergo any stringent journalistic checking associated with main stream media. Given the inherent human tendency to share information with their social connections at a mouse-click, fake news articles masquerading as real ones, tend to spread widely and virally. The presence of echo chambers (people sharing same beliefs) in social networks, only adds to this problem of wide-spread existence of fake news on social media. In this paper, we tackle the problem of fake news detection from social media by exploiting the very presence of echo chambers that exist within the social network of users to obtain an efficient and informative latent representation of the news article. By modeling the echo-chambers as closely-connected communities within the social network, we represent a news article as a 3-mode tensor of the structure - and propose a tensor factorization based method to encode the news article in a latent embedding space preserving the community structure. We also propose an extension of the above method, which jointly models the community and content information of the news article through a coupled matrix-tensor factorization framework. We empirically demonstrate the efficacy of our method for the task of Fake News Detection over two real-world datasets. Further, we validate the generalization of the resulting embeddings over two other auxiliary tasks, namely: \textbf{1)} News Cohort Analysis and \textbf{2)} Collaborative News Recommendation. Our proposed method outperforms appropriate baselines for both the tasks, establishing its generalization.Comment: Presented at ASONAM'1
    • …
    corecore