2,013 research outputs found

    Toward a real-time TCP SYN Flood DDoS mitigation using Adaptive Neuro-Fuzzy classifier and SDN Assistance in Fog Computing

    Full text link
    The growth of the Internet of Things (IoT) has recently impacted our daily lives in many ways. As a result, a massive volume of data is generated and needs to be processed in a short period of time. Therefore, the combination of computing models such as cloud computing is necessary. The main disadvantage of the cloud platform is its high latency due to the centralized mainframe. Fortunately, a distributed paradigm known as fog computing has emerged to overcome this problem, offering cloud services with low latency and high-access bandwidth to support many IoT application scenarios. However, Attacks against fog servers can take many forms, such as Distributed Denial of Service (DDoS) attacks that severely affect the reliability and availability of fog services. To address these challenges, we propose mitigation of Fog computing-based SYN Flood DDoS attacks using an Adaptive Neuro-Fuzzy Inference System (ANFIS) and Software Defined Networking (SDN) Assistance (FASA). The simulation results show that FASA system outperforms other algorithms in terms of accuracy, precision, recall, and F1-score. This shows how crucial our system is for detecting and mitigating TCP SYN floods DDoS attacks.Comment: 16 page

    Intrusion detection and prevention of web service attacks for software as a service:Fuzzy association rules vs fuzzy associative patterns

    Get PDF
    Cloud computing inherits all the systems, networks as well asWeb Services’ security vulnerabilities, in particular for software as a service (SaaS), where business applications or services are provided over the Cloud as Web Service (WS). Hence, WS-based applications must be protected against loss of integrity, confidentiality and availability when they are deployed over to the Cloud environment. Many existing IDP systems address only attacks mostly occurring at PaaS and IaaS. In this paper, we present our fuzzy association rule-based (FAR) and fuzzy associative pattern-based (FAP) intrusion detection and prevention (IDP) systems in defending against WS attacks at the SaaS level. Our experimental results have validated the capabilities of these two IDP systems in terms of detection of known attacks and prediction of newvariant attacks with accuracy close to 100%. For each transaction transacted over the Cloud platform, detection, prevention or prediction is carried out in less than five seconds. For load and volume testing on the SaaS where the system is under stress (at a work load of 5000 concurrent users submitting normal, suspicious and malicious transactions over a time interval of 300 seconds), the FAR IDP system provides close to 95% service availability to normal transactions. Future work involves determining more quality attributes besides service availability, such as latency, throughput and accountability for a more trustworthy SaaS

    Cyber security analysis of connected vehicles

    Get PDF
    \ua9 2024 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.The sensor-enabled in-vehicle communication and infrastructure-centric vehicle-to-everything (V2X) communications have significantly contributed to the spark in the amount of data exchange in the connected and autonomous vehicles (CAV) environment. The growing vehicular communications pose a potential cyber security risk considering online vehicle hijacking. Therefore, there is a critical need to prioritize the cyber security issues in the CAV research theme. In this context, this paper presents a cyber security analysis of connected vehicle traffic environments (CyACV). Specifically, potential cyber security attacks in CAV are critically investigated and validated via experimental data sets. Trust in V2X communication for connected vehicles is explored in detail focusing on trust computation and trust management approaches and related challenges. A wide range of trust-based cyber security solutions for CAV have been critically investigated considering their strengths and weaknesses. Open research directions have been highlighted as potential new research themes in CAV cyber security area

    Enriched Model of Case Based Reasoning and Neutrosophic Intelligent System for DDoS Attack Defence in Software Defined Network based Cloud

    Get PDF
    Software Defined Networking in Cloud paradigm is most suitable for dynamic functionality and reduces the computation complexity. The routers and switches located at the network's boundaries are managed by software-defined netwrking (SDN) using open protocols and specialised open programmable interfaces. But the security threats often degrade the performance of SDN due to its constraints of resource usage. The most sensitive components which are vulnerable to DDoS attacks are controller and control plane bandwidth. The existing conventional classification algorithms lacks in detection of new or unknown traffic packets which are malicious and results in degradation of SDN performance in cloud resources. Hence, in this paper double filtering methodology is devised to detect both known and unknown pattern of malicious packets which affects the bandwidth of the control panel and the controller. The case-based reasoning is adapted for determining the known incoming traffic patterns before entering the SDN system. It classifies the packets are normal or abnormal based on the previous information gathered. The traffic patterns which is not matched from the previous patterns is treated as indeterministic packet and it is defined more precisely using the triplet representation of Neutrosophic intelligent system. The grade of belongingness, non-belongingness and indeterminacyis used as the main factors to detect the new pattern of attacking packets more effectively. From the experimental outcomes it is proved that DDoS attack detection in SDN based cloud environment is improved by adopting CBR-NIS compared to the existing classification model

    Detection of Distributed Denial of Service Attacks Carried Out by Botnets in Software-Defined Networks

    Full text link
    Recent years witnessed a surge in network traffic due to the emergence of new online services, causing periodic saturation and complexity problems. Additionally, the growing number of IoT devices further compounds the problem. Software Defined Network (SDN) is a new architecture which offers innovative advantages that help to reduce saturation problems. Despite its benefits, SDNs not only can be affected by traditional attacks but also introduce new security challenges. In this context, Distributed Denial of Service (DDoS) is one of the most important attacks that can damage an SDN network's normal operation. Furthermore, if these attacks are executed using botnets, they can use thousands of compromised devices to disrupt critical online services. This paper proposes a framework for detecting DDoS attacks generated by a group of botnets in an SDN network. The framework is implemented using open-source tools such as Mininet and OpenDaylight and tested in a centralized network topology using BYOB and SNORT. The results demonstrate real-time attack identification by implementing an intrusion detection mechanism in the victim client. Our proposed solution offers quick and effective detection of DDoS attacks in SDN networks. The framework can successfully differentiate the type of attack with high accuracy in a short tim

    Preemptive modelling towards classifying vulnerability of DDoS attack in SDN environment

    Get PDF
    Software-Defined Networking (SDN) has become an essential networking concept towards escalating the networking capabilities that are highly demanded future internet system, which is immensely distributed in nature. Owing to the novel concept in the field of network, it is still shrouded with security problems. It is also found that the Distributed Denial-of-Service (DDoS) attack is one of the prominent problems in the SDN environment. After reviewing existing research solutions towards resisting DDoS attack in SDN, it is found that still there are many open-end issues. Therefore, these issues are identified and are addressed in this paper in the form of a preemptive model of security. Different from existing approaches, this model is capable of identifying any malicious activity that leads to a DDoS attack by performing a correct classification of attack strategy using a machine learning approach. The paper also discusses the applicability of best classifiers using machine learning that is effective against DDoS attack

    Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment

    Full text link
    [EN] Computer networks become complex and dynamic structures. As a result of this fact, the configuration and the managing of this whole structure is a challenging activity. Software-Defined Networks(SDN) is a new network paradigm that, through an abstraction of network plans, seeks to separate the control plane and data plane, and tends as an objective to overcome the limitations in terms of network infrastructure configuration. As in the traditional network environment, the SDN environment is also liable to security vulnerabilities. This work presents a system of detection and mitigation of Distributed Denial of Service (DDoS) attacks and Portscan attacks in SDN environments (LSTM-FUZZY). The LSTM-FUZZY system presented in this work has three distinct phases: characterization, anomaly detection, and mitigation. The system was tested in two scenarios. In the first scenario, we applied IP flows collected from the SDN Floodlight controllers through emulation on Mininet. On the other hand, in the second scenario, the CICDDoS 2019 dataset was applied. The results gained show that the efficiency of the system to assist in network management, detect and mitigate the occurrence of the attacks.This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Project 310668/2019-0, in part by the SETI/Fundacao Araucaria due to the concession of scholarships, and in part by the Ministerio de Economia y Competitividad through the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento, under Grant TIN2017-84802-C2-1-P.Novaes, MP.; Carvalho, LF.; Lloret, J.; Lemes Proença, M. (2020). Long Short-Term Memory and Fuzzy Logic for Anomaly Detection and Mitigation in Software-Defined Network Environment. IEEE Access. 8(1):83765-83781. https://doi.org/10.1109/ACCESS.2020.2992044S83765837818

    A classifier mechanism for host based intrusion detection and prevention system in cloud computing environment

    Get PDF
    Distributed denial-of-service (DDoS) attacks are incidents in a cloud computing environment that cause major performance disturbances. Intrusion-detection and prevention system (IDPS) are tools to protect against such incidents, and the correct placement of ID/IP systems on networks is of great importance for optimal monitoring and for achieving maximum effectiveness in protecting a system. Even with such systems in place, however, the security level of general cloud computing must be enhanced. More potent attacks attempt to take control of the cloud environment itself; such attacks include malicious virtual-machine (VM) hyperjacking as well as traditional network-security threats such as traffic snooping (which intercepts network traffic), address spoofing and the forging of VMs or IP addresses. It is difficult to manage a host-based IDPS (H-IDPS) because information must be configured and managed for every host, so it is vital to ensure that security analysts fully understand the network and its context in order to distinguish between false positives and real problems. For this, it is necessary to know the current most important classifiers in machine learning, as these offer feasible protection against false-positive alarms in DDoS attacks. In order to design a more efficient classifier, it is necessary to develop a system for evaluating the classifier. In this thesis, a new mechanism for an H-IDPS classifier in a cloud environment has desigend. The mechanism’s design is based on the hybrid Antlion Optimization Algorithm (ALO) with Multilayer Perceptron (MLP) to protect against DDoS attacks. To implement the proposed mechanism, we demonstrate the strength of the classifier using a dimensionally reduced dataset using NSL-KDD. Furthermore, we focus on a detailed study of the NSL-KDD dataset that contains only selected records. This selected dataset provides a good analysis of various machine-learning techniques for H-IDPS. The evaluation process H-IDPS system shows the increases of intrusion detection accuracy and decreases the false positive alarms when compared to other related works. This is epitomized by the skilful use of the confusion matrix technique for organizing classifiers, visualizing their performance, and assessing their overall behaviour

    Review of Detection Denial of Service Attacks using Machine Learning through Ensemble Learning

    Get PDF
    Today's network hacking is more resource-intensive because the goal is to prohibit the user from using the network's resources when the target is either offensive or for financial gain, especially in businesses and organizations. That relies on the Internet like Amazon Due to this, several techniques, such as artificial intelligence algorithms like machine learning (ML) and deep learning (DL), have been developed to identify intrusion and network infiltration and discriminate between legitimate and unauthorized users. Application of machine learning and ensemble learning algorithms to various datasets, consideration of homogeneous ensembles using a single algorithm type or heterogeneous ensembles using several algorithm types, and evaluation of the discovery outcomes in terms of accuracy or discovery error for detecting attacks. The survey literature provides an overview of the many approaches and approaches of one or more machine-learning algorithms used in various datasets to identify denial of service attacks. It has also been shown that employing the hybrid approach is the most common and produces better attack detection outcomes than using the sole approaches. Numerous machine learning techniques, including support vector machines (SVM), K-Nearest Neighbors (KNN), and ensemble learning like random forest (RF), bagging, and boosting, are illustrated in this work (DT). That is employed in several articles to identify different denial of service (DoS) assaults, including the trojan horse, teardrop, land, smurf, flooding, and worm. That attacks network traffic and resources to deny users access to the resources or to steal confidential information from the company without damaging the system and employs several algorithms to obtain high attack detection accuracy and low false alarm rates
    corecore