Iraqi Journal for Computers and Informatics
Not a member yet
    197 research outputs found

    Evaluation of Image Cryptography by Using Secret Session Key and SF Algorithm

    Get PDF
    In the unreliable domain of data communication, safeguarding information from unauthorized access is imperative. Given the widespread application of images across various fields, ensuring the confidentiality of image data holds paramount importance. This study centers on the session keys concept, addressing the challenge of key exchange between communicating parties through the development of a random-number generator based on the Linear Feedback Shift Register. Both encryption and decryption hinge on the Secure Force algorithm, supported by a generator. The proposed system outlined in this paper focuses on three key aspects. First, it addresses the generation of secure and randomly generated symmetric encryption keys. Second, it involves the ciphering of the secret image using the SF algorithm. Last, it deals with the extraction of the image by deciphering its encrypted version. The system’s performance is evaluated using image quality metrics, including histograms, peak signal-to-noise ratio, mean square error, normalized correlation, and normalized absolute error (NAE). These metrics provide insights into both encrypted and decrypted images, analyzing the extent to which the system preserves image quality. This assessment underscores the system’s capability to safeguard and maintain the confidentiality of images during data transmission

    DYNAMIC THRESHOLDING GA-BASED ECG FEATURE SELECTION IN CARDIOVASCULAR DISEASE DIAGNOSIS

    Get PDF
    Electrocardiogram (ECG) data are usually used to diagnose cardiovascular disease (CVD) with the help of a revolutionary algorithm. Feature selection is a crucial step in the development of accurate and reliable diagnostic models for CVDs. This research introduces the dynamic threshold genetic algorithm (DTGA) algorithm, a type of genetic algorithm that is used for optimization problems and discusses its use in the context of feature selection. This research reveals the success of DTGA in selecting relevant ECG features that ultimately enhance accuracy and efficiency in the diagnosis of CVD. This work also proves the benefits of employing DTGA in clinical practice, including a reduction in the amount of time spent diagnosing patients and an increase in the precision with which individuals who are at risk of CVD can be identified

    DIAGNOSE EYES DISEASES USING VARIOUS FEATURES EXTRACTION APPROACHES AND MACHINE LEARNING ALGORITHMS

    Get PDF
    Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. With the use of the fundus images, it could be difficult for a clinician to detect eye diseases early enough. By other hand, the diagnoses of eye disease are prone to errors, challenging and labor-intensive. Thus, for the purpose of identifying various eye problems with the use of the fundus images, a system of automated ocular disease detection with computer-assisted tools is needed. Due to machine learning (ML) algorithms\u27 advanced skills for image classification, this kind of system is feasible. An essential area of artificial intelligence)AI (is machine learning. Ophthalmologists will soon be able to deliver accurate diagnoses and support individualized healthcare thanks to the general capacity of machine learning to automatically identify, find, and grade pathological aspects in ocular disorders. This work presents a ML-based method for targeted ocular detection. The Ocular Disease Intelligent Recognition (ODIR) dataset, which includes 5,000 images of 8 different fundus types, was classified using machine learning methods. Various ocular diseases are represented by these classes. In this study, the dataset was divided into 70% training data and 30% test data, and preprocessing operations were performed on all images starting from color image conversion to grayscale, histogram equalization, BLUR, and resizing operation. The feature extraction represents the next phase in this study ,two algorithms are applied to perform the extraction of features which includes: SIFT(Scale-invariant feature transform) and GLCM(Gray Level Co-occurrence Matrix), ODIR dataset is then subjected to the classification techniques Naïve Bayes, Decision Tree, Random Forest, and K-nearest Neighbor. This study achieved the highest accuracy for binary classification (abnormal and normal) which is 75% (NB algorithm), 62% (RF algorithm), 53% (KNN algorithm), 51% (DT algorithm) and achieved the highest accuracy for multiclass classification (types of eye diseases) which is 88% (RF algorithm), 61% (KNN algorithm) 42% (NB algorithm), and 39% (DT algorithm)

    The Detection of Students\u27 Abnormal Behavior in Online Exams Using Facial Landmarks in Conjunction with the YOLOv5 Models

    Get PDF
    The popularity of massive open online courses (MOOCs) and other forms of distance learning has increased recently. Schools and institutions are going online to serve their students better. Exam integrity depends on the effectiveness of proctoring remote online exams. Proctoring services powered by computer vision and artificial intelligence have also gained popularity. Such systems should employ methods to guarantee an impartial examination. This research demonstrates how to create a multi-model computer vision system to identify and prevent abnormal student behaviour during exams. The system uses You only look once (YOLO) models and Dlib facial landmarks to recognize faces, objects, eye, hand, and mouth opening movement, gaze sideways, and use a mobile phone. Our approach offered a model that analyzes student behaviour using a deep neural network model learned from our newly produced dataset" StudentBehavioralDS." On the generated dataset, the "Behavioral Detection Model" had a mean Average Precision (mAP) of 0.87, while the "Mouth Opening Detection Model" and "Person and Objects Detection Model" had accuracies of 0.95 and 0.96, respectively. This work demonstrates good detection accuracy. We conclude that using computer vision and deep learning models trained on a private dataset, our idea provides a range of techniques to spot odd student behaviour during online tests

    ENSEMBLE MACHINE LEARNING APPROACH FOR IOT INTRUSION DETECTION SYSTEMS

    Get PDF
    The rapid growth and development of the Internet of Things (IoT) have had an important impact on various industries, including smart cities, the medical profession, autos, and logistics tracking. However, with the benefits of the IoT come security concerns that are becoming increasingly prevalent. This issue is being addressed by developing intelligent network intrusion detection systems (NIDS) using machine learning (ML) techniques to detect constantly changing network threats and patterns. Ensemble ML represents the recent direction in the ML field. This research proposes a new anomaly-based solution for IoT networks utilizing ensemble ML algorithms, including logistic regression, naive Bayes, decision trees, extra trees, random forests, and gradient boosting. The algorithms were tested on three different intrusion detection datasets. The ensemble ML method achieved an accuracy of 98.52% when applied to the UNSW-NB15 dataset, 88.41% on the IoTID20 dataset, and 91.03% on the BoTNeTIoT-L01-v2 dataset

    Coronavirus Classification using Deep Convolutional Neural Network, Models. and Chest ,X-ray images

    Get PDF
    The COVID-2019 virus, which was discovered for the first time in December 2019 in the city of Wuhan, China, went on to become a pandemic after rapidly spreading around the globe. As there are currently no reliable automated toolkits on the market, there has been an increase in the demand for supplementary diagnostic tools for COVID19 patients. It may be possible to improve the accuracy of the diagnosis of covid19 disease by making use of more recent developments in artificial intelligence (AI) approaches and radiological imaging. In this research, three different convolution neural networks were applied to raw chest x-rays before the histogram filter was used for the basic pre-processing. The goal was to automatically detect COVID-19. The results that we obtained using the three suggested models indicate that the ResNet50 model provides the greatest classification performance with 96% accuracy , while the InceptionV3 model only achieves 95% accuracy, and the Inception-ResNetV2 model only achieves 82% accuracy

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    EDIBLE FISH IDENTIFICATION BASED ON MACHINE LEARNING

    Get PDF
    Automated fish identification system has a beneficial role in various fields. Fish species can usually be identified based on visual observation and human experiences. False appreciation can cause food poisoning. The proposed system aims to efficiently and effectively identify edible fish from poisonous ones based on three machine learning (ML) techniques. A total of 300 fish images are used, collected from 20 species with differences in shapes, sizes, and colors. Hybrid features were extracted and then fed to three types of ML techniques: k-nearest neighbor (K-NN), support vector machine (SVM), and neural networks (NN). The 300 fish images are divided into two: 70% for training and 30% for testing. The accuracy rates for the presented system were 91.1%, 92.2%, and 94.4% for KNN, SVM, and NNs, respectively. The proposed system is evaluated using four terms: precision, sensitivity, F1-score, and accuracy. Results show that the proposed approach achieved higher accuracy compared with other recent pertinent studies

    LUNG CANCER DETECTION IN LOW-RESOLUTION IMAGES

    Get PDF
    One of the most important prognostic factors for all lung cancer patients is the accurate detection of metastases. Pathologists, as we all know, examine the body and its tissues. On the existing clinical method, they have a tedious and manual task. Recent analysis has been inspired by these aspects. Deep Learning (DL) algorithms have been used to identify lung cancer. The developed cutting-edge technologies beat pathologists in terms of cancer identification and localization inside pathology images. These technologies, though, are not medically feasible because they need a massive amount of time or computing capabilities to perceive high-resolution images. Image processing techniques are primarily employed for lung cancer prediction and early identification and therapy to avoid lung cancer. This research aimed to assess lung cancer diagnosis by employing DL algorithms and low-resolution images. The goal would be to see if Machine Learning (ML) models might be created that generate higher confidence conclusions while consuming fractional resources by comparing low and high-resolution images. A DL pipeline has been built to a small enough size from compressing high-resolution images to be fed into an or before CNN (Convolutional Neural Network) for binary classification i.e. cancer or normal. Numerous enhancements have been done to increase overall performance, providing data augmentations, including augmenting training data and implementing tissue detection. Finally, the created low-resolution models are practically incapable of handling extremely low-resolution inputs i.e. 299 x 299 to 2048 x 2048 pixels. Considering the lack of classification ability, a substantial reduction in models’ predictable times is only a marginal benefit. Due to an obvious drawback with the methodology, this is disheartening but predicted finding: very low resolutions, essentially expanding out on a slide, preserve only data about macro-cellular structures, which is usually insufficient to diagnose cancer by itself

    DDOS ATTACK DETECTION USING HYBRID (CCN AND LSTM) ML MODEL

    Get PDF
    LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Networks) are two types of deep learning algorithms; by combining the strengths of LSTM and CNN, researchers have developed deep learning models that can effectively detect SDN (Software-Defined Network) attacks including Distributed Denial of Service. These models effectively analyze network traffic, encompassing temporal and spatial characteristics, resulting in precise identification of malicious traffic.In this research, a hybrid model composed of CNN and LSTM is used to detect the DDoS attack in SDN network. Where the CNN component of the model can identify spatial patterns in network traffic, such as the characteristics of individual packets, while the LSTM component can capture temporal patterns in traffic over time, such as the timing and frequency of traffic bursts. The proposed model has been trained on a labeled network traffic dataset, with one class representing normal traffic and another class representing DDoS attack traffic. During the training process, the model adjusts its weights and biases to minimize the difference between its predicted output and the actual output for each input sample. Once trained, the hybrid model classifies incoming network traffic in the dataset as either normal or malicious with an initial accuracy of (78.18%) and losses of (39.77%) at the 1st epoch till it reaches an accuracy of (99.99%) with losses of (9.29×10-5) at the epoch number 500. It should be mentioned that the hybrid model of CNN and LSTM for DDoS detection is implemented using Python Anaconda platform with an ETA 28ms/step

    187

    full texts

    197

    metadata records
    Updated in last 30 days.
    Iraqi Journal for Computers and Informatics
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇