2,826 research outputs found

    Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review

    Get PDF
    Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nano -biosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associ-ated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharma-ceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence tech-nology, material chemistry, coordination polymers, and related research areas

    Metal Nanostructures for Environmental Pollutant Detection Based on Fluorescence

    Get PDF
    Heavy metal ions and pesticides are extremely dangerous for human health and environment and an accurate detection is an essential step to monitor their levels in water. The standard and most used methods for detecting these pollutants are sophisticated and expensive analytical techniques. However, recent technological advancements have allowed the development of alternative techniques based on optical properties of noble metal nanomaterials, which provide many advantages such as ultrasensitive detection, fast turnover, simple protocols, in situ sampling, on-site capability and reduced cost. This paper provides a review of the most common photo-physical effects impact on the fluorescence of metal nanomaterials and how these processes can be exploited for the detection of pollutant species. The final aim is to provide readers with an updated guide on fluorescent metallic nano-systems used as optical sensors of heavy metal ions and pesticides in water

    Fluorescent nanoparticles for sensing

    Full text link
    Nanoparticle-based fluorescent sensors have emerged as a competitive alternative to small molecule sensors, due to their excellent fluorescence-based sensing capabilities. The tailorability of design, architecture, and photophysical properties has attracted the attention of many research groups, resulting in numerous reports related to novel nanosensors applied in sensing a vast variety of biological analytes. Although semiconducting quantum dots have been the best-known representative of fluorescent nanoparticles for a long time, the increasing popularity of new classes of organic nanoparticle-based sensors, such as carbon dots and polymeric nanoparticles, is due to their biocompatibility, ease of synthesis, and biofunctionalization capabilities. For instance, fluorescent gold and silver nanoclusters have emerged as a less cytotoxic replacement for semiconducting quantum dot sensors. This chapter provides an overview of recent developments in nanoparticle-based sensors for chemical and biological sensing and includes a discussion on unique properties of nanoparticles of different composition, along with their basic mechanism of fluorescence, route of synthesis, and their advantages and limitations

    Nanocomposite-Based Graphene for Nanosensor Applications

    Get PDF
    Nanocomposites based on carbon nanomaterial particularly in graphene oxide, graphene quantum dots, and doped graphene quantum dots with improved biocompatibility have been increasing interests in the field of drug delivery, biosensor, energy, imaging and electronic. These nanomaterials as new kinds of fluorescent probes and electrochemical sensors all display ultrasmall size, good photostability, and excellent biocompatibility. In this chapter, we summarize an updated advance in the development of graphene and its related derivatives of synthesis methods and biomedical applications as nanosensors for detection of metal ions, inorganic ions, amino acids, proteins, saccharides and small molecules, drug molecules, and so on

    Nitrogen, Cobalt Co-doped Fluorescent Magnetic Carbon Dots as Ratiometric Fluorescent Probes for Cholesterol and Uric Acid in Human Blood Serum

    Get PDF
    Detection of cholesterol and uric acid biomarkers is of great importance for clinical diagnosis of several serious diseases correlated with their variations in human blood serum. In this study, a new kind of well selective and highly sensitive ratiometric fluorescent probe for cholesterol and uric acid determination in human blood serum was innovatively developed on the basis of the inner filter effect (IFE) process of nitrogen, cobalt co-doped carbon dots (N,Co-CDs) with 2,3-diaminophenazine (DAP). DAP was the oxidative product during the oxidation reaction between ophenylenediamine and H2O2. Fluorescent magnetic N,Co-CDs possessing blue emission and magnetic property were prepared through a facile one-pot hydrothermal strategy by using citric acid, diethylenetriamine, and cobalt(II) chloride hexahydrate as precursors. N,Co-CDs exhibited good ferromagnetic property and excellent optical properties even in extremely harsh environmental conditions, implying the huge potential applications of such N,Co-CDs in biological areas. On the basis of the IFE process between N,Co-CDs and DAP, N,Co-CDs were applied to establish ratiometric fluorescent probes for the indirect detection of cholesterol and uric acid that participated in enzyme-catalyzed H2O2-generation reactions. The established IFEbased fluorescent probes exhibited relatively low detection limits of 3.6 nM for cholesterol and 3.4 nM for uric acid, respectively. The fluorescent probe was successfully utilized for the determination of cholesterol and uric acid in human blood serum with satisfying results, which provided an informed perspective on the applications of such doped CDs to explore the specific and sensitive nanoprobe in disease diagnoses and clinical therapy

    Applications of Graphene Quantum Dots in Biomedical Sensors

    Get PDF
    Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Subsequent monitoring of ferric ion and ascorbic acid using graphdiyne quantum dots-based optical sensors

    Get PDF
    Graphdiyne (GDY) as an emerging carbon nanomaterial has attracted increasing attention because of its uniformly distributed pores, highly π-conjugated, and tunable electronic properties. These excellent characteristics have been widely explored in the fields of energy storage and catalysts, yet there is no report on the development of sensors based on the outstanding optical property of GDY. In this paper, a new sensing mechanism is reported built upon the synergistic effect between inner filter effect and photoinduced electron transfer. We constructed a novel nanosensor based upon the newly-synthesized nanomaterial and demonstrated a sensitive and selective detection for both Fe3+ ion and ascorbic acid, enabling the measurements in real clinical samples. For the first time fluorescent graphdiyne oxide quantum dots (GDYO-QDs) were prepared using a facile ultrasonic protocol and they were characterized with a range of techniques, showing a strong blue-green emission with 14.6% quantum yield. The emission is quenched efficiently by Fe3+ and recovered by ascorbic acid (AA). We have fabricated an off/on fluorescent nanosensors based on this unique property. The nanosensors are able to detect Fe3+ as low as 95 nmol L−1 with a promising dynamic range from 0.25 to 200 μmol L−1. The LOD of AA was 2.5 μmol L−1, with range of 10–500 μmol L−1. It showed a promising capability to detect Fe3+ and AA in serum samples

    Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing

    Get PDF
    Funding Information: The authors are would like to thank the Department of Chemistry, Government VYT PG Autonomous College Durg, Chhattisgarh, sponsored by DST-FIST (New Delhi), India and the Fundação para a Ciência e a Tecnologia (FCT), Portugal, for the Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018) and the Associate Laboratory for Green Chemistry-LAQV, financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/5006/2020). Publisher Copyright: © 2022 by the authors.Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in recent years due to their attractive features such as tunable photoluminescence, cost effectiveness, nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good cell-membrane permeability, and simple operation. CDs and their composites have a large potential for sensing contaminants present in physical systems such as water resources as well as biological systems. Tuning the properties of CDs is a very important subject. This review discusses in detail heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and biosensing are reviewed.publishersversionpublishe

    Recent advances in chemical sensors using porphyrin-carbon nanostructure hybrid materials

    Get PDF
    Porphyrins and carbon nanomaterials are among the most widely investigated and applied compounds, both offering multiple options to modulate their optical, electronic and magnetic properties by easy and well-established synthetic manipulations. Individually, they play a leading role in the development of efficient and robust chemical sensors, where they detect a plethora of analytes of practical relevance. But even more interesting, the merging of the peculiar features of these single components into hybrid nanostructures results in novel materials with amplified sensing properties exploitable in different application fields, covering the areas of health, food, environment and so on. In this contribution, we focused on recent examples reported in literature illustrating the integration of different carbon materials (i.e., graphene, nanotubes and carbon dots) and (metallo)porphyrins in heterostructures exploited in chemical sensors operating in liquid as well as gaseous phase, with particular focus on research performed in the last four years

    Chemical probes for studying cyclooxygenase-2 and nitric oxide in living systems

    Get PDF
    Molecular imaging enables the direct detection of analytes and biomolecular species within their native biological environment. Although the field derives from diagnostic biomedical imaging, there has been a significant shift over the past couple decades towards using imaging to evaluate and discover biology. In general, molecular imaging relies on the development of chemical or biochemical tools that accumulate at the site of interest or under undergo a selective, observable change following target engagement. Activity-based sensing is a powerful expansion of molecular imaging because it measures chemical reactivity rather than concentration. Chapter 1 serves as an introduction to molecular imaging with a historical tone. It also defines and highlights key examples of binding-based and activity-based sensing probes to contextualize the following chapters. Chapter 2 discusses the design and validation of a fluorescent probe for detecting cyclooxygenase-2 activity with live cells, as well as the discovery of oxygen-dependent regulation that is not observed on the protein expression level. Chapter 3 summarizes our progress towards the development of photoacoustic probes for imaging nitric oxide within live animals. Topics include the preparation of a photoacoustic probe for imaging nitric oxide in a small animal model of inflammation, the optimization of the aza-BODIPY dye platform to detect cancer-derived nitric oxide, and progress towards a multimodal dye platform for photoacoustic and fluorescence imaging
    corecore