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A B S T R A C T   

Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile 
optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nano-
biosensors to detect various biological and chemical agents. These sensors are superior to other analytical 
instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary 
electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. 
Moreover, several reports have also highlighted their application in the early detection of biomarkers associ-
ated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively 
overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, 
carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules 
based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino 
acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and 
electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, 
cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms 
were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and 
capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharma-
ceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent 
nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many 
challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors 
with an emphasis on their commercial developments. We believe that the current review can foster the wider 
incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence tech-
nology, material chemistry, coordination polymers, and related research areas.   

1. Introduction 

Biological and chemical agents are composed of proteins and 

chemical structures for receiving and transducing signals for biological 
system integration [1]. Measuring some of these analytes in serum 
[including proteins, acute phase proteins, neurotransmitters, serum 
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enzymes, carbohydrates, lipids, hormones, circulating nucleic acids, 
vitamins, ions, electrolytes, and blood gases], urine, and other clinical 
samples appear to be necessary for disease detection, monitoring, and 
management [2–12]. These biological, chemical and pharmaceutical 
agents can bind to receptors and induce biological- and tissue-based 
responses that develop into the modification of the cell's electrical ac-
tivity [13,14]. 

Biosensors work via surface-dependent mechanisms. Hence, the 
larger the surface area and higher the electron transfer proficiency and 
biocompatibility, the better the sensing ability and utility [15,16]. 
Piezoelectric or thermal transducers are pivotal components in sensing 
concentrations and physical properties of all types of agents into analog 
voltage signals followed by conversion into digital signals [17]. As 
promising tools, biosensors help detect several biological agents and are 
currently gaining momentum by the low instrumentation cost, reason-
able sensitivity, high accuracy, and easy operation. [18]. The most 
common sensing techniques involved are optical- and electrochemical- 
sensing. Optical sensing is based on the use of spectrophotometer and 
electrodes like pH, and conduction ions are electrochemical sensing 
[19]. The major shortcoming of these conventional approaches is the 
requirement of specific biosensor devices, leading to costly and non- 
specified sensing [20]. 

Nanomedicine has helped formulate innovative methods for targeted 
delivery of drugs and developing ultra-sensitive nanosensors for accu-
rate detection of various biological agents [21–36]. Nanomaterials 
(NMs) have provided an extended range of powerful sorbents for sepa-
ration strategies of purification, bio-sensing, and bio-imaging of bio-
logical analytes [37–39]. Nanosensors are promising analytical tools for 
understanding biological features providing advanced sensing proper-
ties [40]. 

Fluorescence analysis using fluorescent nanosensors can be used for 
qualitative and quantitative analysis of biological, pharmaceutical, and 
chemical agents [41]. Fluorescence-based nanosensors are superior to 
various other analytical instrumentation techniques like gas chroma-
tography, high-performance liquid chromatography, and capillary 
electrophoresis for being more economical, operational, and sensitive 
[42]. Fluorescent probes are based on organic molecules, fluorescent 
dyes, fluorescent molecules, florescent nanocarriers, and rare earth 
metals [43]. Some most practicing florescent nanosensors include 
quantum dots (QDs) and carbon dots (CDs) [44]. Lately, a new type of 
glowing carbon NMs, CDs, have been developed and gained much 
attention due to their distinctive properties, such as strong chemical 
inertia, stable lighting, and low toxicity and biocompatibility. These 
features make CDs a great candidate for developing new and sensitive 
sensors. Fluorescent CDs with responsive ion properties that can selec-
tively respond to specific ions are highly regarded among intelligent 
sensors due to the critical role of ions in life and health processes 
[45–47]. These nanosensors are biodegradable, eco-friendly, and act 
theranostically against various infectious diseases and cancers [48,49]. 

Because of their simplicity, high sensitivity, and rapid response, trace 
amounts of analytes can be detected by fluorescent methods, which are 
exploited for biomedical imaging and bioanalysis. There are a lot of 
fluorescent NMs that have been introduced recently, but CDs are the 
most unique and robust method having low cytotoxicity, attractive 
photostability, easy functionalization, and ideal biocompatibility [50]. 
Nobel-metal nanocarriers are mild, possess controlled fluorescence, 
biocompatibility, and targeted theranostic activity against various car-
cinomas [51]. Similarly, nanoscaled metal-organic frameworks (MOFs) 
are diverse in their functionality, possess controlled fluorescence 
biocompatibility, and are widely used for cancer imaging, biosensing, 
and therapy [52]. Moreover, triplet annihilation-based florescent probes 
help detect potassium levels in the body [53], while lysine sensing via 
florescent graphene QDs is efficient in detecting tumor markers [54]. 
CDs-based florescent nanosensors help determine the quality and 
assessment of food nutrients [55]. Florescent nanosensors have also 
been found to detect physicochemical properties and multi- 

functionalization aspects of DNA [56]. A well-distinguished approach 
is also to determine exhalation kinetics for volatile cancer biomarkers by 
florescent nano-probes [42]. Finally, fluorescent nanosensors are 
involved in detecting the pesticide/herbicide residues, human proteins, 
and contents of pollutants in pharmaceutical-related samples [57]. 

The rapid development of nanosensors revolutionized tissue moni-
toring, pharmaceutical detection, and in-vivo sensing [58–60]. Previous 
studies have reviewed recent advancements in NMs fabricated paper- 
based [61], DNA-functionalized graphene oxide [62], aggregation- 
induced emission (AIE)-based [63], luminescent MOF [64], as well as 
innovative “turn-on” [65] fluorescent-based sensors for analysis of 
environmental, biological, clinical, and food samples. However, the 
majority of these studies have reviewed different strategies to design 
novel fluorescent sensors to sense heavy metals, ions, and nutrients 
[66–69]. To the best of our knowledge, this is the first comprehensive 
review casting light on the recent trends in nanotechnology-based ap-
proaches towards monitoring various biological, chemical, or pharma-
ceutical agents exploiting selective fluorescent-based probes and 
providing the broadest panorama of the state-of-the-art in this field. We 
also discuss some technical barriers that may limit their commerciali-
zation and practical application in the clinic. 

2. Fluorescent nanosensors for the detection of different 
analytes 

The fluorescence imaging method has gained increasing attention to 
detect numerous biomolecules in real-time and in-situ because of its 
high sensitivity, selectivity, fast feedback, and excellent spatiotemporal 
resolution. Recently, many different fluorescent probes have been 
manufactured for imaging and bioassay by using different fluorophores. 
Resorufin is a robust fluorophore with long emission and excitation 
wavelength, high fluorescence quantum yield, and distinct capability in 
both colorimetric and fluorescent analysis. The rapidly growing devel-
opment in analytical chemistry contributes to medical and biological 
identification by giving fast analytical procedures to recognize 
numerous biomolecules (biomarkers) [70–73]. Fluorescence bioanalysis 
and imaging process using novel personalized probes have been exten-
sively accepted in biomedicine, preclinical and diagnostics areas, and 
other life sciences because of its high sensitivity, outstanding selectivity, 
high resolution, simplicity, and ability non-invasive and real-time 
recognition [74–78]. Thanks to these features, fluorescent-based sen-
sors have provided significant advantages over conventional methods to 
detect a variety of biological macromolecules. Table 1 summarizes the 
literature review of different fluorescent-based nanobiosensors con-
cerning their biological, chemical, and pharmaceutical utilizations. 

2.1. Amino acids, proteins, and peptides 

Some detection techniques, i.e., fluorescence resonance energy 
transfer (FRET) and enzyme-linked immunosorbent assay (ELISA), have 
been formerly established to sense serum proteins [88,89]. Meanwhile, 
chromatography was introduced as the gold standard method to detect 
amino acids (AAs) in biological samples [90,91]. Recently, the FRET- 
related protease recognition method using hybrid biological nano-
material (NM) sensors has been developed to sense protein and its de-
rivatives. These FRET sensors are highly sensitive and have a unique 
detection scheme [92]. For instance, Zhou and coworkers have inves-
tigated fluorescent nanosensors to detect cysteine in skeletal muscles 
associated with paracetamol-induced pro-sarcopenic effects [93]. 

Graphene oxide (GO) has unique benefits such as pragmatic surface 
modification, high water solubility, and large surface that can be utilized 
to design innovative nanosensors to detect proteins or peptides, mainly 
due to outstanding quenching efficiency [94,95]. In one study, GO was 
prepared by the oxidation process of graphene and combined with 
fluorescence-labeled biomolecules to detect a specific protease. GO, and 
fluorescent-labeled peptides are conjugated to form unique bacteria and 
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protease nanosensors. To achieve this conjugated sensor, GO was used to 
adsorb fluoropeptides and quench their fluorescence. These fluoropep-
tides were sliced in the presence of a particular protease to retrieve the 
fluorescent signals. A linear relationship was found between protease 
concentration and fluorescence signals. Bacteriophages that were syn-
thesized to hold a gene for tobacco etch virus (TEV) protease were used 
to spot the bacteria. Phages are specific viruses that contaminate the 
host bacteria, replicate within them, and lyse them. After lysis, the TEV 
protease was unconfined into the sample and caused peptide cleavage. 
The combination of peptide-GO with engineered phages to analyze the 
bacteria was the first study of its kind ever [96]. 

Alzheimer's disease (AD) is considered the leading cause of dementia 
in the elderly [97]. AD is explained with various pathogenesis reasons, 
but the leading cause is still unknown. An LSPR (Localized Surface 

Plasmon Resonance) linked optical nanosensor was developed by 
triangular silver nanoparticles (TSNPs) for the discovery of amyloid-β 
peptide, which is known as the initial stage in the pathogenesis of AD. A 
label-free LSPR nanobiosensor was constructed to detect DNA and tumor 
necrosis factors (TNFs) using silica nanoparticles (NPs). These NPs were 
capped with gold (Au) on a glass substrate treated with peptides. The 
absorbance strength increased after hybridization with DNA, and it was 
an indication of the increase in the biomolecular layer. The limit of 
detection (LOD) was 0.677 pmol/L for the examined DNA. The designed 
LSPR was used to discover whole cells, receptors, and proteins with high 
sensitivity [58]. 

Today, a lot of analytical and instrumental methods such as Fourier 
transform infrared spectroscopy (FTIR), high-performance liquid chro-
matography (HPLC) [98], mass spectrometry, as well as capillary 

Table 1 
The biological, chemical, and pharmaceutical applications of various fluorescent-based nanosensors.  

Nanosensors Examples Characteristics/advantages Applications Analytes In-vitro/in-vivo studies Ref 

Electrochemical GQDs and CQDs Robustness, selectivity, and 
sensitivity, lower toxicity, 
higher solubility, strong 
chemical inertness, high 
specific surface areas 

Biological imaging, drug/ 
gene delivery, antibacterial, 
and antioxidant activity 

Dopamine, tyrosine, 
epinephrine, 
norepinephrine, 
serotonin and 
acetylcholine 

Mitochondria isolation, 
CQD loading, in-vitro 
imaging, the NIR 
fluorescent CQD 
development, daylight 680, 
loading CQD-Dy680 into 
the mitochondria (Mito- 
CQD-Dy680) for in-vivo 
imaging 

[79] 

Optical or 
electrochemical 
antifouling 
sensors 

Semiconducting QDs, 
metallic nanoparticles, 
mesoporous particles, 
and metal oxide 
particles 

Highly selective, capable of 
operating in complex 
sample matrix (serum) 

Chemical, physical and 
biological applications 

Proteins, nucleic 
acids, cells, neuronal 
transmitters 

PEG-based SAMs, 
zwitterions, SAMs on gold 
(in-vitro), antifouling in 
vivo nanovectors for the 
development of in-vivo 
nanosensors 

[80] 

Optical/ 
electrochemical 
sensors 

NMs Food safety Real-time and non-invasive 
optical bioimaging 

Food-borne pathogens 
and toxins 

NM-assisted in-vitro 
detection methods for 
pathogens and toxins, in- 
vivo quantification of target 
pathogens or toxins and 
their behaviors inside the 
living body 

[81] 

Luminescent/ 
optical polymer 
dot oxygen 
transducer 

Glucose-oxidase- 
functionalized polymer 
dots 

Specific and sensitive, large 
dynamic range, strong 
luminescence signal 

Transdermal detection, 
responsive to blood glucose 

Small molecules, 
glucose detection 

Glucose detection in cell 
and tissue environments, in 
vivo detection and 
quantitative determination 
of a variety of small 
molecules 

[82] 

Biosensors Nano‑carbons Fast, efficient, sensitive, 
specific and real-time 
detection, real-life clinical 
applications 

Targeting, therapeutic, and 
diagnostic functions 

Detection of bacteria Towards novel routes in 
clinical diagnosis 

[83] 

Biosensors Chitosan, collagen, 
graphene, carbon 
nanotubes, metallic 
nanoparticles, quantum 
dots, and various 
polymer composites 

High sensitivity, specificity, 
portability, cost- 
effectiveness, possibilities 
for miniaturization, mass 
production, high efficacy, 
biocompatibility, and 
biofouling 

Biomedical research, drug 
discovery, the environment, 
pharmaceutical, 
nutraceutical and process 
industries, cancer, and bio- 
imaging 

Biomaterials and 
enzymes 

Point-of-care diagnostic 
testing and/or in-vivo and 
in-vitro diagnostics 

[84] 

Nano-biosensors AuNPs and QDs Diagnosis at the single cell 
and molecule level can be 
incorporated in the current 
molecular diagnostics such 
as biochips 

Molecular diagnostics and 
enable point-of-care diagnosis 
as well as the development of 
personalized medicine, 

Biomarker research, 
cancer diagnosis, and 
detection of infectious 
microorganisms 

Have the potential to be 
incorporated in clinical 
laboratory diagnosis 

[85] 

Electrochemical 
and optical 
sensors 

MIP-based sensors Robustness, high affinity, 
specificity, and low-cost 
production 

Medical and forensic 
diagnostics, cell imaging 

Biomolecules, drugs 
of abuse, explosives, 
natural antibodies 

in-vitro diagnostics and in- 
vivo applications 

[86] 

Optical DF-HSI Versatility, high-throughput 
quantitative molecular 
analyses 

Targeted drug delivery during 
chemotherapies, 
photodynamic therapy, and 
immunotherapy, 
spectroscopic and 
microscopic imaging, cancer 
diagnosis and treatment, 
microbiology, surgical 
procedures 

Microorganisms, 
single-cell, and 
proteins 

To understand the cellular 
uptake and transport of 
these materials in cells, 
tissues, and 
environment 

[87]  
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electrophoresis [99] are applied to detect AAs. Despite their acceptable 
selectivity and accuracy, many disadvantages (complicated operation, 
high cost, and time-consuming process) make them a less reliable choice 
[100,101]. Fluorescence-based detection methods are more straight-
forward, realistic, and sensitive; that is why they are preferred nowadays 
[102,103]. Among the fluorescence-based detection methods, the most 
important has been given to the fluorescent quenching (turn-off) 
mechanism [104,105]. However, the turn-on fluorescent probes show 
greater signal to noise in dim background [106–108], which might be 
why they have more practical applications. The pioneer one is the 
aggregation-induced emission (AIE) method projected by Lou et al. in 
2001. DMBFDPS molecule was proposed as an aldehyde-functionalized 
AIE fluorescent probe. The AIE properties could be displayed with 
greater emission after the reaction of DMBFDPS with cysteine (Cys) 
[109]. 

Zhang et al. presented the tetraphenylethene (TPE) into the supra-
molecular coordinatelectrolyte cages. Cysteine (Cys), a thiol-bearing 
amino acid, and glutathione were both detected when AIE properties 
were adjusted, and cages displayed outstanding turn-on fluorescence 
[110]. In recent times, Liu's group proposed that the quenching prop-
erties of the starting materials could be altered to gain AIE properties 
with extremely near-infrared (nIR) turn-on emission after simple 
methylation of the 2-(2,6-bis(4-(diphenylamino)stryryl-4H-pyr-
anylidene)malononitrile (TPA-DCM) [111,112]. 

There is another method to analyze the AAs called the “on-off-on” 
model. The quenching groups are initially proposed into the high- 
emission fluorescent probes to turn off the emission [113]. For this 
purpose, the analytes are introduced, demolishing the collaboration 
between the quenching groups and probes. At this stage, the high fluo-
rescence emission of the starting probes is recovered (off-to-on). For 
example, carboxyl-functionalized polymer dots were reported by 
Shamsipur et al. The Cu2+-histidine (His) “off-on” fluorescent bio-
sensors can use Cu2+ to cause the quenching of its fluorescence. This 
can be selectively improved by adding the His amino acid. Despite 
having a lot of advantages and wide current use, there are some disad-
vantages. For example, they contain heavy metal ions, which are 
harmful to human bodies and many steps (needed for functional groups 
incorporation while synthesis) are related to these two methods hin-
dering their practical applications [114]. 

Recently, new fluorescent sensors, known as heteroatom-doped 
carbon dots, have been designed to use as striking nanosensors with 
wide applications [115]. Similarly, gold nanoparticles (AuNPs) can also 
be used as fluorescence quenchers. FRET or IFE related to AuNPs/CDs 
pair has been extensively used in many bioanalytical fields, nucleic acid 
detection, and immunoassay due to the broad absorption spectrum and 
high extinction coefficient of AuNPs. Exploiting the pyrolysis method, a 
study reported using N-acetyl-L-cysteine and citric acid as starting ma-
terials to manufacture high quantum yield N, S co-doped carbon dots (N, 
S-CDs). NS-CDs were used as fluorophores, and AuNPs were taken as 
fluorescence absorbers to construct a robust nanosensor for the sensitive 
sensing of trypsin and protamine. The fluorescence of N, S-CDs could be 
effectively quenched by IFE (inner filter effect) that would take place 
between N, S-CDs, and AuNPs. The adsorbed N, S-CDs are detached from 
AuNPs' surface and reinstate the fluorescence of N, S-CDs. Trypsin acts 
explicitly on peptide bonds having arginine and lysine carboxyl groups 
and can hydrolyze protamine. Consequently, the AuNPs were dis-
aggregated, and the fluorescence of N, S-CDs was further quenched. The 
fluorescence intensity of N, S-CDs depended on the concentration of 
trypsin and protamine. The applicability and validity of the proposed 
sensor were established after a chain of experiments. Hence, an 
extremely sensitive and rapid “off-on-off” fluorescent nanosensor was 
established to sense protamine and trypsin in biological samples [116]. 

Juan Hu et al. fabricated a Cy5/biotin-modified peptide containing 
one serine hydroxyl group to sense O-linked N-acetylglucosamine 
transferase (OGT) and an exclusive protease location neighboring the 
glycosylation site for proteinase breakdown. There was also a general 

non-radioactive UDP-GlcNAc acting as a peptide (substrate) and a sugar 
donor. The glycosylation reaction is catalyzed in the presence of OGT, 
and a glycosylated peptide acting like a protease-protective peptide is 
formed. A QD-peptide-Cy5 nanostructure was formulated when the 
glycosylated Cy5/biotin modified peptides accumulated on the surface 
of streptavidin-coated QDs. Then, it causes an efficient FRET from QD to 
Cy5 and results in the emission of Cy5 that is enumerated by total in-
ternal reflection fluorescence (TIRF)-linked single-molecule sensing. 
There are many other applications of this single-QD-based nanosensor, 
such as investigating OGT inhibitors and enzyme kinetic analysis as well 
as quantitative assessment of OGT activity [117]. In the past, trypsin 
detection was not easy because of conventional sensing techniques such 
as colorimetry, electrochemistry, quartz microbalance sensor, surface- 
enhanced Raman spectroscopy (SERS). For example, AgNPs were 
fabricated by a reduction process and intended as SERS substrates for the 
recognition of methimazole. The shape and structure of the NMs were 
characterized by using UV–Vis spectroscopy, Raman spectroscopy, 
transmission electron microscope (TEM), and Fourier transformed 
infrared spectroscopy. Methimazole was adsorbed on the surface of 
AgNPs substrates, detected by density functional theory (DFT) and SERS 
measurements. SERS calculations indicated that a chemical association 
is developed between methimazole and NPs. An increase in the bands 
was used to create a linear correlation between SERS signal intensity and 
the amount of methimazole [118]. An efficacious procedure was 
designed to clarify and quantitative measurement of 2-Thiouracil by 
using SERS with AgNP's substrates planted on graphene nanosheets (Ag/ 
G). TEM images indicated that graphene was used to endorse the equal 
distribution of silver nanoparticles. Nevertheless, Ag/G is a highly 
robust SERS substrate for the identification of 2-Thiouracil at ultra-low 
concentration. This process can be modified in future to use to sense 
different drugs [119]. Procaine was detected in aqueous media by 
surface-enhanced Raman scattering spectroscopic process by using gold 
nanoparticles substrates. Gold nanoparticles were manufactured by a 
reduction procedure and were characterized by Raman and infrared 
systems. Procaine showed SERS spectra which were considered at 
different concentration ranges, and the spectroscopic shifts along with 
Raman peaks have been detected and allocated. The potential associa-
tion modes between procaine molecules and gold atoms were deter-
mined by Density Function Theory (DFT). The increase in the intensity 
of Raman peaks was used to design a consistent quantitative measure-
ment technique for procaine detection in aqueous media [120]. Gra-
phene treated with Polyamidoamine dendrimer and functionalized with 
silver nanoparticles (G-D-Ag) was manufactured and calibrated as a 
substrate to detect methimazole (MTZ) by using surface-enhanced 
Raman scattering (SERS). AgNPs were developed on the dendrimer by 
using a reducing agent known as sodium borohydride. The achieved G- 
D-Ag was characterized by the use of scanning electron microscope 
(SEM), Fourier-transformed infrared (FT-IR), Raman spectroscopy, 
UV–Vis spectroscopy, and high-resolution transmission electron micro-
scopy (TEM). G-D-Ag formation was confirmed by the SEM images. SERS 
detected the steadfast and robust performance of MTZ on the G-D-Ag as 
a substrate that showed a chemical association between MTZ and G-D- 
Ag. The MTZ normal spectra bands such as 1538, 1463, 1342, 1278, 
1156, 1092, 1016, 600, 525, and 410 cm− 1 were increased because of 
the SERS effect. The associations between the SERS signal intensities and 
logarithmical scale of MTZ were developed successfully and the lowest 
recognition limit noted was 1.43 × 10− 12 M. The primary Raman bands 
were assigned by density functional theory (DFT) [121] and 
fluorescence-based techniques [122,123]. 

Fluorescent-based techniques are most widely used because of their 
simple instrumentation, real-time detection, high sensitivity, and easy 
operation. The fluorescence turn-on techniques are of specific impor-
tance, thanks to their enhanced sensitivity, less false fluorescence, and 
high specificity. Nowadays, many different turn-on strategy-linked as-
says have been testified to sense trypsin. For example, Chen et al. [124] 
stated a trypsin-specific turn-on fluorescence-based method. There are a 
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series of steps involved, such as Cu2+ driven fluorescence quenching of 
gold nanoclusters (AuNCs) occurring in the first step. Secondly, to 
release the amino acid fragments after the breakdown of bovine serum 
albumin by trypsin. In the third step, the amino acids show more affinity 
towards Cu2+ than to the AuNCs, and it converts the fluorescence from 
off to on-state. Wang et al. described a unique technique of immobilizing 
fluorophore-categorized peptides with arginine and a terminal cysteine 
onto the AuNPs' surface to sense the trypsin. Fluorophores from AuNPs 
are released after the addition of trypsin which causes the C-terminus of 
arginine to be hydrolyzed. This results in a strong fluorescence signal 
recovery. Wu and the group used cytochrome C (Cyt C) while working 
on direct manufacturing of Mn-doped ZnS QDs, got some QDs that had 
the property of protease sensing. These methods have several disad-
vantages, such as using traditional fluorescent dyes, fluorescent label-
ing, the relatively high toxicity of QDs, high material cost, etc. 

CDs have gained much attention compared to organic dyes because 
they are relatively simple to fabricate, have lower toxicity, high pho-
tostability, reasonable water solubility, and are low-cost in terms of raw 
materials. CDs are considered perfect fluorescent probes in FRET-related 
biosensors. Similarly, the quenching efficiency of AuNPs usually over-
laps with the emission of CDs; and that is why the AuNPs are considered 
fluorescence quenchers. When the emission spectra of a donor overlap 
with the absorption spectra of the acceptor, then the phenomenon of 
FRET occurs. AuNPs/C-dots based FRET has been broadly used to 
accurately sense various small molecules, nucleic acids, and ions 
[125,126]. 

Aptamer-linked sensors have shown an outstanding detection capa-
bility towards proteins, metal ions, and other biomolecules. In a study, 
Shreya Ghosh et al. designed an optical turn-off nanosensor containing 
AuNPs on a 3′ terminus and a deoxyribonucleic acid aptamer linked to a 
QD on the 5′ terminus. The C-reactive protein (CRP) was detected by this 
sensor following the principle of fluorescence resonance energy. The 
photoluminescence intensity decreases when the concentration of the 
target in the sensor increases; therefore, improving quenching effi-
ciency. This sensor is extremely sensitive to C-reactive proteins and has a 
detection limit of 1.77 picomoles. This sensor effectively detects the 
clinical samples showing almost 10% quenching (at a concentration of 
10 picomolar). Future studies on this sensor will include an in-vivo ex-
amination of the sensor to be used for inflammatory disease control 
[127]. 

Another technique for detecting proteins is to utilize a natural 
binding partner of a specific protein as a detection site on the single- 
walled carbon nanotubes (SWCNTs). For example, in this process, an 
aptamer or a DNA detection order, or an antibody can be used to achieve 
the novel protein-protein or protein-DNA interactions for sensing ap-
plications. Nanotubes treated with chitosan polymer adapted with 
nitrilotriacetic acid (NTA) were described by Ahn et al. for label-free 
detection. For further modification, chitosan was used because of the 
availability of functional groups. The NTA chelated Ni2+ and aided as a 
vicinity quencher moderating the SWCNT fluorescence intensity as a 
purpose of distance. The NTA-Ni2+ group bind to hexahistidine treated 
capture protein, serving as a natural linkage location for the target 
protein. For instance, human immunoglobulin G (IgG) was detected by a 
His-tagged protein A linked to the NTA-Ni2+. After linkage of target 
protein, there is a variation in fluorescence intensity allowing the 
reviewing of protein glycoprofiles, protein quantification, and protein- 
protein interactions [128]. 

Satishkumar et al. used fluorescent SWCNT sensors to detect avidin 
by conjugation redox-active dyes linked to a detection unit called biotin 
to the SWCNT surface. After adsorption onto the SWCNTs, the bio-
tinylated dyes were quenched so that linkage of avidin resulted in their 
adsorption from the nanotubes, and the fluorescence was recovered. In 
this connection, the fluorescence quenching mechanism is governed by 
the oxidative charge-transfer reactions having small redox-active 
organic dye molecules. After attaching precise receptor groups, the 
dye-ligand complex linked to SWCNT can show very high versatility for 

various bioanalytes. Additional experiments indicated that by using 
DNA-SWCNTs linked to an anti-uPA antibody, sensing of prostate cancer 
biomarker urokinase plasminogen activator (uPA) was easily possible 
[129], and the detection of single repressor-activator protein 1 (RAP1) 
proteins released from specific Escherichia coli cells by SWCNT treated 
with RAP1 aptamer [130]. Lee et al. described platelet-derived growth 
factor and optical detection of insulin by using two specific aptamers by 
two unique mechanisms known as separation of the aptamer from 
SWCNTs' surface, resulting in protein binding and direct protein linkage 
to the aptamer-SWCNT complex. Both of these processes cause a 
decrease in fluorescence intensity [131]. 

Live cell imaging with the effective spatiotemporal resolution has 
become increasingly simple after discovering exceptionally equipped 
sensitive automated software and fluorescence microscopy [132]. Peri-
plasmic binding protein (PBP) aids as a ligand detecting domain in 
developing FRET-sensor. Wang and Zhang designed a signal-on single 
nanosensor based on QD-linked FRET for cyclic-AMP-dependent protein 
kinase (PKA) assay. In the presence of PKA, the serine hydroxyl group 
can link a biotinylated γ-phosphate when PKA is catalyzed, resulting in 
the formation of biotinylated Cy5-labeled peptide substrate. The 
streptavidin-coated 605 nm emission QD (605QD) can bring together a 
lot of biotinylated Cy5-labeled peptides by unique streptavidin-biotin 
linkage to get the 605QD-substrate-y5 nanostructure, this resulted in 
the manifestation of FRET from the QD to Cy5 and finally, the emission 
of Cy5. This assay results in a signal-on recognition of PKA with a LOD of 
9.3 × 10− 6 U/μL, which is 10 folds more robust than the TiO2-coated 
magnetic microsphere-linked fluorescent method. This nanosensor was 
also used to detect PKA activators and inhibitors; on the other hand, this 
nanosensor was overextended to recognize some other protein kinases 
after embracing particular substrate peptides. 

Fluorescence is a spectroscopic procedure with modest equipment 
such as ultra-violet (UV) and high sensitivity, such as HPLC [133]. A 
fluorescence technique was introduced for detecting forkhead box P3 
(FOXP3) via quantifying messenger ribonucleic acid (mRNA) quantity. 
The immune system has dynamic parts called regulatory T cells or 
suppressor T cells that usually function to dank down the overexcited 
immune response. Nowadays, the identification of Tregs is related to 
surface markers such as forkhead P3 (FOXP3) transcription factor and 
CD25, CD4, CD127 markers. DNA-templated AgNPs hybridized with 
mRNA of FOXP3 is comprised of a minimum of one G-rich order to form 
a ternary system. Tregs were isolated by this intracellular detection 
sensor [134]. 

Members of the periplasmic-binding protein superfamily (PBPs) are 
more likely to develop FRET sensors because many metabolites can bind 
to them. FRET-based nanosensors are fabricated by inserting the ligand- 
binding domain between donor and acceptor fluorophores. Large 
conformational changes occur to PBPs when the substrate is linked to its 
active site between their N and C lobes. FRET efficiency is the change in 
distance between the FRET pair when the conformational changes cause 
the ligand-binding domain to be changed. The genetically encoded 
FRET-based nanobiosensors were fabricated, filtered, and successfully 
characterized in this study. These nanosensors were used to non- 
invasively detect thiamine levels in human cells, yeast, and bacteria 
[135]. 

Choi et al. [136] reported a fluorescence quenching-related tech-
nique to detect the β-site amyloid precursor protein cleaving enzyme 1 
(BACE1) in live HEK 293 cells. β-Secretase (BACE1) is used in the for-
mation of amyloid-β (Aβ) peptides. Aβ peptides are used to detect, 
control, and therapy AD. CdSe/ZnS QDs and AuNPs form a binary 
complex together that was utilized for the particular identification of 
BACE1. The QDs were linked to the BACE1 substrate to produce a co-
valent bond with the Ni-nitrilotriacetate (Ni-NTA) treated AuNPs. The 
selective breakdown of bonds between QDs and His in the presence of 
BACE1 helped the recovery of quenched fluorescence relative to the 
BACE1 concentration. The sensor showed a LOD of 0.15 μM. This sensor 
can be used for the clinical recognition of BACE1 because of its high 
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stability, sensitivity, and efficiency. 
In opposition to the probe described by Choi and group, Thirumalraj 

et al. [137] described a turn-on fluorescence process to identify L- 
cysteine molecules released from MKN-45 gastric cancer cells and Colo- 
205 colorectal cells. The rGO's surface was treated with AuNPs stabilized 
with gelatin to form a quenched fluorescent rGO/Au nanocomplex. In 
the presence of L-cysteine molecules, the probe's fluorescence was 
recovered. This probe has the benefits of high sensitivity, versatility, 
specificity, and ease of use, which shows that the rGO/Au nanoprobes 
can detect many diseases related to L-cysteine, such as PD, AD, and ac-
quired immune deficiency syndrome (AIDS) [138]. Finally, Chen and 
coworkers have demonstrated near-infra-red fluorescent sensors to 
detect kidney-specific peptides to assess kidney function. The sensor was 
used for long-term monitoring of kidney function as well as urine 
analysis [139]. 

SWCNTs fluoresce in the nIR part of the spectrum, where proteins 
and some other biological macromolecules are somewhat transparent, 
without blinking or photobleaching [140]. In this connection, Hendler- 
Neumark et al. prepared a label-free protein sensor array with florescent 
SWCNTs utilizing SWCNTs functionalized with synthetic hetero-
polymers or natural recognition moieties. For this purpose, the SWCNT 
suspension was placed on a glass functionalized with nitrilotriacetic acid 
(NTA)-Ni2+ to attach the tagged capture proteins and determine 
possible interactions between the target and capture proteins. After 
adding the target protein, the distance between the SWNT surface and 
the Ni2+ quencher is altered. [141]. 

In 2020, Wang and coworkers developed a red emissive fluorescent 
nanoprobe YZ-A4, based on xanthene dyes, for rapidly detecting L- 
selenocysteine (Sec), the 21th amino acid naturally existing in all 
kingdoms of life. The florescence of YZ-A4 is quenched because of the 
presence of 2,4-dinitrobenzene sulfonate ester group that truncates the 
intramolecular charge transfer (ICT). As shown in Fig. 1, When the 
sensor reacts with Sec, the ICT effect of the produced YZ-A3 is restored. 
The designed nanobiosensor demonstrated fast reaction time, excellent 
selectivity and ultrasensitivity, and desirable optical properties. The 
quantitative detection range for sensing Sec was from 0 to 32 μM, with a 
LOD of 11.2 nM, which is very low [142]. 

2.2. Neurotransmitters 

As a neurotransmitter of the catecholamine family, dopamine (DA) 
has essential roles in the brain. Alterations in DA levels can cause dis-
orders such as movement disorders. Therefore, accurate and rapid 
determination of this neurotransmitter is crucial for diagnosing various 
diseases [143,144]. 

Mass spectrometry imaging (MSI) indicates unique advantages in 
detecting molecular information and imaging the dispersal of neuro-
transmitters in in-situ vesicles [145]. Electrochemistry has exceptionally 

high resolution and quantifiable ability, making it an essential tool for 
studying neurotransmitter storage and release. Yun et al. indicated the 
effect of cationic G3, G4, and G5 PAMAM Poly (amidoamine) den-
drimers on the fibrillation of α-synuclein. G5 PAMAM was the most 
beneficial one with an 8-fold decrease in the TFT fluorescence process 
and comparable effect on α-synuclein fibrillation. The PAMAM G4 
dendrimer showed an enhanced fluorescence in tyrosine residue and 
suppressed the fibrillation of Ambient Sensing Node (ASN). On the other 
hand, no inhibition or decrease was observed with PAMAM G3.5 den-
drimers. During incubation, the absence of a positive signal in the range 
of 195–206 nm with G4 PAMAM dendrimers shows inhibition of protein 
aggregation [146]. Nowadays, many different classes of neurochemical 
sensors have been merged in the field of fluorescence detection. Optical 
electronics is a new field inspired by carbon NMs, and they have fabu-
lous profiles and physiochemical properties. SWCNTs enclosed in syn-
thetic biomimetic polymers have been exploited to detect DA within the 
nIR spectrum are using corona phase molecular detection, a facilitated 
linkage connecting SWCNT corona and DA using a pinned polymer 
[147]. 

Chen et al. described a GO-based photoinduced charge transmission 
and label-free nIR fluorescent biosensor for DA. The recognition phe-
nomenon of dopamine depends on the substantial quenching of nIR GO 
with a left move to bound DA. QDs are fluorescent nanocrystals fabri-
cated from semiconductor ingredients that show novel luminescent 
properties. QDs show 20-fold higher brightness than the conventional 
fluorescent reporters and organic dyes and demonstrated size-based 
emission features. Recently, a nanobiosensor for in-vivo examination 
linked to nitrogen-doped grapheme QDs (NGQDs) and CoCOOH nano-
sheets was described [148]. 

To overcome the toxicity challenges of QDs, neurochemical methods 
are introduced, which are simple, nontoxic, and highly desired. Conju-
gated polymer nanoparticles (CPNPs) have enhanced photo-stability, 
and they are more biocompatible than QDs. A CPNP was fabricated 
for fluorescence detection of DA in the ventricles of zebrafish larvae 
brains. After the linkage of (phenylboronic acid) PBA on the surface of 
DA, a photoinduced charge transfer takes place between the CPNP 
emission core and the DA. Fluorescence quenching of the CPNPs occurs 
after charge transfer. As a result, the fluorescence intensity diminishes as 
the DA concentration increases (i.e., turn-off response). Optical re-
porters such as fluorescent false neurotransmitters (FFNs) are bundled 
together with mark analytes into the vesicles. Upon their co-release into 
the synaptic cleft following an action potential, FFNs make the imaging 
of neurotransmitters. FFNs are robust enough for single vesicle recog-
nition, but FFNs cannot directly sense neurotransmitters and give less 
information related to extracellular dynamics [149–151]. 

Morell and coworkers fabricated L-cysteine capped Mn-doped ZnS 
QDs related sensing technique to identify DA in the nanomolar range 
[152]. The sensor showed an orange emission band at approximately 

Fig. 1. The detection process of selenocysteine using a red emissive fluorescent turn-on nanobiosensor. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
Reprinted from ref. [142]. 
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598 nm. It was quenched when DA was added in an alkaline medium; in 
the case of urine samples, the lowest concentration of the target mole-
cule was approximately 7.80 nM. A QDs based sensor known as CdTe QD 
linked FRET-based fluorescent tool was designed to identify 8 nM con-
centration of DA in a linear range of 1–300 nM [153]. In the same way, 
Chen and coworkers have described an anodic ruthenium (II) tris(2,2′- 
bipyridyl-4,4′-dicarboxylato), and cathodic graphene-CdTe QDs with 
tris(2-aminoethyl)amine (TAEA-Ru) linked detection platform for DA 
detection at the minimum concentration of 2.9 fM in a diluted serum 
sample [154]. 

Shalini et al. have designed a honey-based PEG6000 treated carbon 
NPs-linked fluorescent detection tool for EP in urine samples with a LOD 
of 7.59 × 10–10 M in the linear range of 9.9 nM–0.107 μM. In extension 
to this technique, Hu et al. have designed MIP sensors related to CdTe/ 
CdS/ZnS/SiO2 and QDs CdTe@SiO2 to identify EP and NE. This novel 
QDs related detection system excites at the wavelength of 365 nm. It 
radiated green and scarlet fluorescent signals simultaneously, and there 
is no intersection with a LOD of 9 nM and 12 nM for norepinephrine 
(NE), epinephrine (EP), correspondingly. In the same way, a free fluo-
rescent sensor based on GQDs was fabricated to recognize EP in human 
serum samples [155]. 

To simultaneously detect NE, EP, and DA, Hettie et al. have fabri-
cated a turn-on fluorescence-based molecular sensor named Neuro-
Sensor 521. For this matter, they utilized p-methoxyphenyl elements 
linked to fluorescent stuff attached to NE and not to EP because there 
were secondary amines present on EP, which hindered the binding af-
finity of EP [156]. After that, Dunn et al. described a fluorescent tracer of 
NE known as fluorescent false neurotransmitter 270 (FFN270) to detect 
synaptic neurotransmission in live cells. The FFN270 imaging linked 
optogenetic motivation to study heterogenous NE release in the norad-
renergic synapse in an in-vivo process that was studied additionally by 
amphetamine management [157,158]. Lin and coworkers have manu-
factured a series of genetically encoded single-wavelength fluorescent G 
protein-coupled receptors (GPCRs) Activation-Based NE/EPi (GRABNE) 
instruments for sensing NE and studying it's dynamic [158]. This was the 
first report on utilizing all mathematical models to fabricate a highly 
sensitive sensor for NE detection [159]. 

Gupta et al. identified DA in neuronal cells (PC12) using high 
quantum yield CDs. The formulated sulfur doped-CDs indicated bright 
fluorescence that was used to recognize DA at the amounts up to 2 × 104 

nM with LOD of about 50 nM [138]. A most advanced procedure of 
artificial engineered clonal HEK293 cells, Cell-based Neurotransmitter 
Fluorescent Engineered Reporters (CNiFERs), was described to detect 
acetylcholine (Ach), DA, and NE in genetically altered FRET exploiting 
GPCR-linked reaction. Brown et al. have fabricated a fluorescent sensor 
known as cyclotriveratrylene probe used in an aqueous medium to sense 
Ach because of precise electrostatic interaction that increases fluores-
cence by wrapping alongside water and devastating the II system. This 
process continued, and an SPR-related fiber optic sensor based on Ta2O5: 
PPy: rGO conjugated ACh was fabricated to detect the ACh with a 
sensitivity of 4.382 nM/μM and a LOD of 76 nM. After that, the re-
searchers manufactured chitosan and rGO matrix condensed AChE 
trapped Ta2O5 nanoflowers sensing tool for ACh recognition having LOD 
of 73 nM in the linear range of 0–8 μM. Additionally, Soleymani et al. 
developed a fluorescent biosensor based on AuNPs with a linear detec-
tion range of 1 × 10− 6 to 1 × 10− 5 M [134]. 

Shi et al. developed a new fluorescent detection system based on 
ficin-H2O2-tyramine to detect dopamine in cerebrospinal fluid (CSF). 
Ficin oxidizes non-fluorescent tyramine to fluorescent dithyramine. The 
fluorescent signal of dithyramine, due to the oxidation of non- 
fluorescent tyramine catalyzed by ficin in the presence of H2O2, is 
significantly reduced by the addition of DA due to DA competing with 
OH radicals with tyramine and is a new method for measuring DA. With 
a LOD of 46 nM. This test was performed in CSF to diagnose DA with 
acceptable results [160]. 

Govindaraju et al. used red-fluorescent emission of bovine serum 

albumin (BSA) and protein conjugated fluorescent AuNCs (BSA-Au NCs) 
to sense DA in CSF selectively. The particle size of BSA-Au NCs ranged 
from 4 to 6 nm, with ~8% of QY and strong fluorescence, and desirable 
stability. These NPs were analyzed by lighting spectroscopy (PL), X-ray 
photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high- 
resolution transmission microscopy (HRTEM), UV–vis spectroscopy. 
The findings demonstrated that BSA-Au NCs bind strongly to DA. This 
provides a diagnostic limit of 0.622 nm and, therefore, can sense DA in 
biological samples, for example, CSF, selectively in an ultra-sensitive 
manner [161]. 

In another study, Chen and associates have explored infrared-based 
graphene oxide nanosensor to detect DA through fluorescence quench-
ing [162](Fig. 2). 

Gasotransmitter hydrogen sulfide (H2S) was fabricated by enzymatic 
reaction in the body, and it has a lot of metabolic and biological 
signaling and applications. The atypical concentration of H2S is linked 
with many diseases; hence, the designing of unique bioanalytical pro-
cedures for fast and proficient recognition of H2S in biological systems is 
of great significance. The (Ru@FITC-MSN) is a nanosensor manufac-
tured by halting luminescent ruthenium (II) (Ru (II)) composite into a 
fluorescein isothiocyanate (FITC) conjugated aqueous-dispersible MSNs. 
It indicates double emission bands at 600 nm (Ru-composite) and 520 
nm (FITC). In the presence of Cu+, the red luminescence of the devel-
oped Ru@FITC-MSN was quenched. The Ru@FITC-MSN indicated rapid 
response to H2S along with high selectivity. It showed a linear ratio-
metric luminescence shift in FITC and Ru (II) passages with the H2S level 
of 0.5–4 μM [164]. 

2.3. Enzymes 

Nanomaterial scaffolds have been used as reactors for enzyme-based 
catalysis. These constituents help the management and increase the rate 
of catalyzed reactions governed by the NPs. Compared to the traditional 
homogenous analyses in solution, the enzyme-linked nanoreactors can 
limit the catalysis of enzymes. A nanoscale ‘enzymogel’ reactor for 
cellulase-catalyzed hydrolysis that is made up of a polymer shell and an 
inorganic core has been described. In cells, detecting enzyme-linked self- 
assembly from the fabricated chemical originators helped detect in-
hibitors for those enzymes. Larger biomolecules such as microRNA can 
be identified in live cells with the help of self-assembled NPs. The in-vivo 
examples are peptide-treated AuNPs and self-assembled magnetic 
nanogrenades that were used to recognize intratumoral pH and trypsin 
activity, respectively [165]. 

Wang and associates used a QD-based nanosensor to precisely sense 
the human 8-oxoguanine-DNA glycosylase 1 (Hogg1). This nanosensor 
can recognize Hogg1 up to the concentration range of 1.8 × 10− 6 U/μL, 
which is equivalent to that of Exo III-assisted isothermal magnification- 
based fluorescent assay. It can be used for accurate measurement of 
parameters related to enzyme kinetics, as well as detecting the hOGG1 
action in crude cell extracts and transmission of hOGG1 inhibitors as 
well [166]. It can be used for precise measurement of enzyme kinetic 
parameters, for the detection of hOGG1 action in crude A549 cell ex-
tracts with an accuracy of 5 cells, and transmission of hOGG1 inhibitors 
as well [166]. Zhang and colleagues, in another study, have investigated 

Fig. 2. Schematic presentation for detection of DA using graphene oxide (GO) 
NPs through fluorescent quenching [163]. 
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glutamic acid conjugated fluorescent sensors to detect γ glutamyl 
transpeptidase to predict drug-induced liver injury [167]. 

Chen and coworkers have explored the use of fluorescent sensors to 
accurately detect enzymes and biomarkers for drug-induced liver injury 
[168]. Similarly, Ma and associates have investigated fluorescent-based 
polymer dots to recognize alkaline phosphatase with high selectivity and 
sensitivity [169]. Wang and Zhang designed a signal-on single nano-
sensor based on QD-linked FRET for cyclic-AMP-dependent protein ki-
nase (PKA) assay. When PKA is present, the serine hydroxyl group can 
link a biotinylated γ-phosphate when PKA is catalyzed, resulting in the 
formation of biotinylated Cy5-labeled peptide substrate. The 
streptavidin-coated 605 nm emission QD (605QD) can bring together a 
lot of biotinylated Cy5-labeled peptides by unique streptavidin-biotin 
linkage to get the 605QD-substrate-y5 nanostructure, this resulted in 
the manifestation of FRET from the QD to Cy5 and finally, the emission 
of Cy5. This experiment results in a signal-on detection of PKA with a 
LOD of 9.3 × 10− 6 U/μL, which is 10 folds greater than the TiO2-coated 
magnetic microsphere-linked fluorescent technique. This nanosensor 
was also used to detect PKA activators and inhibitors; on the other hand, 
this nanosensor was overextended to sense some other protein kinases 
after embracing particular substrate peptides. Nowadays, many 
outstanding review articles have been published to design the fluores-
cence probes to identify biothiols such as glutathione (GSH), homocys-
teine (Hcy), cysteine (Cys), etc. [72,170]. Many fluorescence probes for 
the identification of biothiols have been marketed by Invitrogen and 
Thermo Fisher Scientific [171]. Liu et al. designed a chlorinated 
coumarin-hemicyanine molecular probe 10, having three possible re-
action spots for Cys detection [172]. When Cys is present in the sample, 
Cl-exchange first took place at spot 1, then the intra-molecular read-
justment and cyclization flow reactions happened at site 2. This method 
is considerably different from the Hcy-activated substitution-relocation 
reactions (at spot 1) and GSH-activated substitution (at site 1)-cycliza-
tion (at location 3) reactions. in In PBS, a specific coumarin emission 
at 420 nm was attained (Kex = 360 nm) after reacting 10 with Cys, (1 
mM CTAB, pH 7.4, 10 mM) and the emission intensity was increased 
steadily by enhancing the amounts of Cys. Li et al. deliberated probe 11 
as well for particular recognition of Cys grounded on Cl-exchange and 
aldehyde-cyclization of the coumarin fluorophore [173]. In a study, 
Wang et al. fabricated a fluorescein-linked probe 39 by pairing the hy-
droxyl group of fluorescein to the 2,4-dinitrobenzenesulfonyl agent to 
detect Cys at pH 11 in 10 mM in milk [174]. The probe indicated zero 
fluorescence, but an “off-on” phenomenon was attained when the Cys- 
activated cessation reaction took place. Hao et al. established a colori-
metric and NIR fluorescence probe 43 established on the Cu2+-dislo-
cation technique to detect Cys accurately [180]. Yue et al. designed a 
ratiometric fluorescence reaction probe 81 for specific recognition of 
Cys with the help of adapted coumarin as fluorophore [75,175]. 

2.4. Monosaccharides 

Chemiluminescence [176,177], Rayleigh scattering spectroscopy 
[178], electrochemical methods [179–181], fluorescence [182], elec-
trochemiluminescence (ECL) and spectrophotometry [183,184] etc., are 
the analytical tools that are primarily used to detect biological analytes 
including carbohydrates. Most of these methods are related to single 
signal capturing. For example, Chang and coworkers developed a fluo-
rometric analysis technique for sensing glucose and H2O2 based on TRE- 
M-L [185]. Wang et al. applied MoS2 for fluorescent quantification of 
H2O2 and glucose [186]. A team of researchers manufactured the 
ratiometric and colorimetric fluorescence double signal detection array 
to quantify H2O2 and glucose. The detection technique projected an 
efficient, suitable and label-free ratiometric fluorescent and colorimetric 
detection system for glucose and H2O2. At the first step, the glucose 
oxidase enzyme catalyzes the glucose to form H2O2. Secondly, the hy-
droxyl radical (–OH) is formed by a Fenton reaction between H2O2 and 
Fe2+ in an acidic medium. At last, the OH quenches the red fluorescence 

of C-dots, which are promising fluorescent probes with stable chemical 
properties, desirable safety profile, and high fluorescence intensity. At 
the same time, the OH will oxidize non-fluorescent VB1 to form blue- 
emitting oxVB1. On the other hand, a smartphone-related platform 
was described for on-site detection of glucose. The colorimetric and 
fluorescent images were taken by a smartphone when a considerable 
amount of glucose was added. The images were subjected to detection 
and computation with R, G, and B values by an APP to analyze glucose 
amounts [187]. 

Shinki t al. [188] developed the anthracene monoboronic acid sensor 
7 specifically detecting D-fructose while D-glucose was detected by 
anthracene diboronic acid sensor 8. Sensor 7 was linked with carbohy-
drates to make 7a (Fig. 3). The photoinduced electron transfer (PET) 
technique from the tertiary amino group to anthracene fluorophore was 
delayed when the N–B bond of 7a was enhanced. 

Recently, Sun et al. [188] described an internal translation process 
endorsed by three features. Firstly, the receptors and their complexes 
with fructose are solvent-linked without B–N association. Secondly, the 
nanosensors were tested not to be aggregated. Thirdly, they found no 
fluorescence reaction in pure methanol when fructose was bounded, and 
–B(OH)2 was transformed to the –B(OMe)2 groups. 

In the same way, anthracene was implied as a fluorescent moiety of 
the sensor, but it showed a reversed selectivity because of many boronic 
acid groups. Eggert et al. [188] designed a sensor related to the above 
research that demonstrated greater selectivity for D-glucose than either 
fructose or mannose. Nevertheless, the diboronic acid sensors study was 
extended by other groups. Diboronic acid has a better selectivity than 
carbohydrates structured by the molecular design of its development, i. 
e., having two boronic acids. After that, Mulla and the group manufac-
tured a sensor 10 having a redox-active tetrathiafulvalene (TTF) unit 
and two boronic acid groups for selective detection of carbohydrates. 
Recently, Wang and coworkers described a sandwich boronate affinity 
sorbent assay (SBASA) to sense glucose. Anthracene group was incor-
porated into sensor 11, which is a fluorescent monomer. This sensor was 
effectively utilized for glucose detection in human serum samples [188]. 

Takeuchi et al. used anthracene boronic acid sensor 12 described by 
Shinkai et al. to formulate injectable-sized fluorescent beads by poly-
merization. The fluorescent beads were implanted into mice's skin for 
nonstop glucose monitoring. They noticed that the fluorescent intensity 
efficaciously traced the fluctuation in blood glucose amounts from 0 mg/ 
dL to 1000 mg/dL. Afterward, Takeuchi et al. have done some more 
research by refining the polymerization process. Hydrogel fibers were 
designed, which could remain inside of the mice for up to 140 days. 
After implantation, the amount of fluorescence was controlled and 
quantified. Moreover, they have better applicability and are easy to 
remove from the body [188]. Glucowatch is the non-invasive biosensor 
related to electric current to draw glucose in a transdermal pad to 
quantify glucose. The basic drawback of Glucowatch is the need for 
nonstop calibration tests by finger pricking [189]. 

CD-related chemiluminescence (CL) has been reported in different 
chemical reactions. For example, Lin [190] and the group developed the 
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Fig. 3. Sensor 7 was linked with carbohydrates to make 7a [188].  
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CL of CDs in NaNO2-H2O2 solution, while Dong et al. [190] reported the 
CL of CDs in alkali solution. In recent years, the CL emitted by CL 
emitter, H2O2, and peroxalate fuel has been utilized to detect glucose 
and H2O2 in-vitro and in-vivo [191–196]. 

In the study, Billingsley [197] and colleagues based on ion-selective 
optodes designed fluorescent nanosensors capable of detecting small 
molecules. By placing the sensor components in a hydrophobic core, 
these nanosensors could monitor dynamic changes in the model analyte 
concentration of glucose. The results showed that changes in blood 
glucose levels measured by nanosensors in-vivo were similar to mea-
surements made using a glucometer. In addition to showing a reversible 
response to dynamic changes in glucose concentration, these nano-
sensors have a dynamic range that includes physiological glucose levels 
[197]. The ability of the nanosensor system to monitor glucose dynamics 
in-vivo can be used in the treatment of diabetes as well as in research 
such as monitoring the effects of cell function or new therapies for the 
disease. 

A glucose nanosensor was developed with a glucose/galactose- 
binding protein into Escherichia coli with two different types of green 
fluorescent proteins to carefully monitor glucose and its dynamics in 
individual cells. After substrate binding, the FLIPglu-170n sensor 
showed a decrease in the fluorescence resonance energy transfer be-
tween the connected chromophores with the 170 nm glucose binding 
affinity, following a concentration-dependent manner. Measurement of 
fluorescence resonance energy transfer with other carbohydrates 
showed a wide selectivity, specifically for monosaccharides. Therefore, 
nanosensors were used to determine the level of cytosolic glucose in 
living cells. The data showed that the cytosolic concentration could be 
several times larger depending on the external source. Due to the high 
affinity of hexokinase and the maximum transfer to the maximum ratio 
of 10 phosphorylation, the amount of external glucose in physiological 
blood sugar levels was not limited. Interestingly, cytosolic levels 
respond rapidly to external source modulation. Thus, FLIPglu-600 may 
serve as a beneficial tool that helps to understand better the mechanisms 
of glucose sensation and metabolic conditions related to glucose ho-
meostasis in other living organisms [198]. 

Semiconductor nanocrystals covered with sugars (glycol-QDs) have 
been used as probes for in-vivo imaging and labeling. Glyco-QDs were 
firstly used in-vitro as bio-labels and were described by Fang and co-
workers [199]. Man-encapsulated CdSe/ZnS core and shell QDs or N- 
acetylglucosamine (GlcNAc)- showed optical properties used in confocal 
microscope imaging to dye live sperms of pigs, mice, and sea-urchin. 
Due to the difference in the dispersal of the Man receptors and GlcNAc 
on the surface of sperm, the mannose-QDs spread over the entire body of 
sperm while the GlcNAc-QDs showed more concentration at the sperm 
heads. Recently, Seeberger tested PEGylated-QDs coated with galactose, 
mannose, and galactose products to get robust nanotools for in-vivo 
targeting of the liver. PEG has a hydrophilic nature in linkage with 
sugars, enhances the water solubility of QDs, and decreases the inherent 
cytotoxicity of the colloidal core of QDs. QD covered with D-mannose 
and D-galactosamine were isolated precisely in the liver after IV injec-
tion. Galactosamine-QDs highly increased the concentration of trans-
aminases in serum, indicating a particular biological function in the 
liver. 

With progression of cancer, the transition from oxidative phos-
phorylation to glycolytic anaerobic metabolism markedly increases 
[200]. In a study by Nascimento et al., nanopipettes were designed to 
assess glucose levels in individual cells to confirm that cancer cells could 
show higher intracellular glucose levels. The nanopipettes were cova-
lently activated as glucose nanosensors by immobilizing glucose oxidase 
(GOx). The interaction of glucose with GOx leads to the catalytic 
oxidation of β-D-glucose to D-gluconic acid, which measured the change. 
The nanopipettes were covalently activated as glucose nanosensors by 
immobilizing GOx. The interaction of glucose with GOx leads to the 
catalytic oxidation of β-D-glucose to D-gluconic acid, which measured the 
change. Unicellular glucose levels were assessed in human breast cancer 

cells (MDA-MB-231 and MCF7) and in fibroblasts using the developed 
nanosensors. They showed that cancer cells showed a reproducible and 
reliable increase in glucose levels in comparison with non-cancerous 
cells. As a result, nanotube-based glucose sensors provided a way to 
correlate changes in glucose levels with changes in proliferation or 
progression of the malignant cells. The platform could be used in the 
future as a diagnostic tool to differentiate malignant cells from normal 
human cells in heterogeneous tissue biopsies and to monitor the pro-
gression of cancer in situ [200]. 

AuNPs that have reasonable dyes or semiconductor nanocrystals are 
used in optical imaging. Park [201] and group injected AuNPs capped 
with hyaluronic acid and labeled with nIR fluorescence dye (Hylite 647) 
for in-vivo imaging of human ovarian carcinoma (OVCAR-3) and 
arthritic inflammation in mice. When AuNPs reach the target areas, the 
fluorescence quenching by energy transmission between the gold sur-
face and the dye is deactivated (Fig. 4) In this case, the interaction be-
tween reactive oxygen species (ROS) and increased hyaluronidase 
destroys the hyaluronic acid units. In-vivo fluorescence imaging of dis-
ease states was recognized selectively after the dye release. 

Recently, fluorescent organic silicon nanodots (OSiBNs) have 
inherent properties such as strong stability, low toxicity, strong fluo-
rescence, and advanced photostability. It has good biodegradability and 
promising biocompatibility [203,204]. They have got much consider-
ation from analytical scientists, especially in biomedical areas, because 
they substitute general fluorophores, e.g., metal NPs and organic fluo-
rescent dyes [205]. Extensive fluorescence released by sub-5 nm OSiNDs 
basically resulted from the direct-to-direct band hole changeovers 
related to quantum-size detection and surface properties, which impart 
OSiNDs a vast outlook for the formation of photovoltaic cells and bio- 
imaging properties [206]. Here, a robust fluorescent and colorimetric 
double-mode technique related to fluorescent OSiNDs that were applied 
for the ultrasensitive detection of glucose and H2O2 with approximately 
100% quantum yield. The water-dispersible OSiNDs were fabricated by 
a simple one-pot hydrothermal path using PPD as a chromogenic sub-
strate. The inner filter effect (IFE) procedure of the projected technique 
resulted in the unique spectral overlap between absorption of PPDox 
fluorescence emission of OSiNDs. It was examined and confirmed by 2,5- 
diamino-NN′-bis-(p-aminophenyl)-1,4-benzoquinone di-imine (PPDox) 
PPDox calculating the difference of fluorescence lifetimes of OSiNDs 
before and after relating to 2,5-diamino-NN′-bis-(p-aminophenyl)-1,4- 
benzoquinone di-imine (PPDox) PPDox. The described technique was 
additionally used to detect serum glucose [207]. 

2.5. Nucleic acids 

FRET-based nanosensors can be used to detect heat change, ionic 
content, and changes in pH. Nanosensors can be broadly used for natural 
applications such as nucleic acid (DNA and RNA) examination, cancer 
therapy, etc. Nucleic acid detection is used in clinical and forensic 
studies such as DNA and protein linkages to examine the alterations and 
conformational changes in the configuration and tissue engineering as 
well [208,209]. 

In a study, the researcher presented a new carrier, i.e., peptide 
nucleic acid (PNA) treated core-shell Fe3O4-AuNPs linked to a nanopore 
detection tool to isolate and link to miRNA goal in complex samples 
specifically. Core-shell Fe3O4-AuNPs were fabricated because of their 
novel magnetism segregation and biochemical characteristics. PNA 
modified core-shell Fe3O4-Au NPs can be parted and recognized from 
complex samples using a magnet without centrifugation. Before and 
after binding with miRNA, the PNA treated Fe3O4-Au NPs indicate a 
difference in the zeta potential can circumvent the boundless PNA 
modified Fe3O4-Au NPs from entering nanopore that decreases the 
interfering from coexisting carriers. Besides, the new tools having large 
sizes can enhance signal-to-noise because a high amount of current 
obstruction resulted from their large excluded volume. Precise quanti-
tative analysis can be achieved by modifying the concentration ratio 
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between Fe3O4 and PNA as one AuNP binds with only one PNA. This 
technique can detect nucleic acids and other small molecules with 
excellent specificity [210]. 

Generally, fluorescent-based nucleic acid detection was accom-
plished using signal-on (signal generation) and signal-off (signal 
quenching) after hybridizing complementary nucleic acid with its target 
miRNA. Fluorescent proteins, organic dyes, and inorganic nano-
structures such as QDs or AuNPs have been applied as fluorescent re-
porters. GO-linked quenchers were highly specific for mir-16, mir-21, 
and mir-26a [211]. 

Cui et al. also used GO to identify miRNAs in the compound bio-
logical specimens by cyclic enzymatic magnification technique by which 
GO secured DNA-probes labeled with a dye were implied to get the 
target miRNA that will be liberated after hybridization by DNA probes 
on GO surface. After desorption, the probes are converted into fluores-
cent probes, and the DNAase I enzyme catalyzes the DNA leaving the 
miRNA integral. These miRNAs are used for many other probes on GO to 
start the next cleavage cycle. The whole process continues until all the 
DNA probes labeled with dye are used completely. Scientists got to 
measure the expression points of miRNA quantitatively inside living 
cells with the help of peptide nucleic acid-treated GO (PNAGO) by using 
a similar principle. In this work, dye-labeled PNA probes were used to 
detect relapsed quenching after hybridization of target miRNA [211]. 

Another technique to enhance sensitivity is to use QDs because of 
their good compatibility and stability with nucleic acids and a satisfying 
association between the emission wavelength and the size of QDs [212]. 
Zhang et al. developed a two-phase exponential amplification reaction 
(EXPAR) and single quantum-dot based nanosensor to recognize miRNA 
in aM sensitivity. In the first step, the target miRNA is amplified, while in 
the second step, miRNAs are transformed to the reporter oligonucleo-
tides. Doyle et al. fabricated a unique and robust fluorescent-linked tool 
commercialized by FireFly Bioworkers an Abcam company. The equip-
ment depends on optical liquid stamping (OLS), which indicates 
stamping microparticle tools onto photosensitive liquids. Three- 
dimensional hydrogel particles were developed and encoded with 
novel ‘barcodes’, which can be used to sense target miRNAs with an 

attomole sensitivity in a multiplexed manner [212]. 
Zhang et al., in recent research, fabricated a fiber displacement 

amplification and rolling circle amplification (RCA)-related fluorescent 
technique to detect let-7d having LOD of 1.5 × 10− 13 M [211]. Usually, 
nanomaterial related to miRNA recognition depends on their excellent 
electrochemical and optical measures such as highly-efficient delivery 
capability and fluorescence quenching ability. QDs and AgNPs were 
applied to detect miRNA with their projecting fluorescence emission 
properties. They designed the QDs linked miRNA detection methods 
using exponential amplification reaction (EXPAR) and primer 
formation-treated RCA [213]. 

Liu et al. used DSN-assisted (duplex specific nuclease) recycle 
magnification to attain silver nanocluster (AgNC)-related fluorescence 
detection of miRNA [214]. Zhang et al. fabricated a strand-displacement 
amplification (SDA) as a unique beacon and hairpin DNA-templated 
AgNCs probes for miRNA detection. Many 2-D nanostructures like 
AuNPs, WS2, GO and MoS2 have an outstanding fluorescence quenching 
capability and high-efficacy-targeted delivery. Many fluorescent probes 
were linked to the NP's surface and got quenched. Nevertheless, the 
fluorescence emission was reestablished through cooperation with 
target miRNA to detect it sensitively. Nucleic acid amplification pro-
cedures are combined with NMs to enhance miRNA identification 
sensitivity [214]. 

Ju et al. first fabricated polyethylenimine-grafted graphene nano-
ribbon (PEI-GNR) as a nanostructure for imaging miRNA in a single cell. 
GNR has a large surface area, whereas the PEI has a high charge density 
that certified the cargo of locked nucleic acid-modified molecular bea-
con (LNA-m-MB) probes on PEI-g-GNR with efficiently transporting 
LNA-m-mb into the cells. In-situ sensing of miRNA in the single-cell was 
obtained due to the extraordinary specificity and affinity of LNA for 
target miRNAs. The team also described a unique multifunctional SnO2 
(mf-SnO2) for miRNA detection, cell imaging, and effective delivery. The 
SnO2 NPs were treated with folic acid to gain cell-specific delivery and 
target the tumor cells. Fluorescence SnO2NPs permitted the imaging of 
the distribution and intracellular response of the mf-SnO2 nanoprobe. A 
molecular beacon gene probe was linked by a pH-specific disulfide bond 
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to detect the target miRNA. The mf-SnO2 NPs were subjected to guard 
the conjugated oligonucleotides against nuclease digestion and SSB 
linkage while delivering its cargo to the cell. The miRNA-21 expressing 
Hela cells were used as ideal models for successfully in-situ sensing of 
the intracellular miRNA via mf-SnO2 nanostructures [215,216]. 

Lately, miRNA detection by new straight procedures has been pre-
sented, like NPs arrays that have appeared as precious molecular 
detection methods using fluorescence quenching nanostructures in a 
classy way. Currently, in addition to the routine fluorescence-related 
equipment, a lot of evolving fluorometric detection tools have been 
presented which can recognize miRNAs with high specificity and effi-
ciency, for instance, single-molecule level detection by total internal 
reflection (TIRFM), fluorescence energy transfer or FRET, time-resolved 
fluorescence (TRF), chemiluminescence resonance energy transfer 
(CRET) and bioluminescence resonance energy transfer (BRET). For 
miRNA recognition, the fluorescent constituents are coated with (i) 
organic dyes (Texas Red) fluorophore 6-carboxyfluorescein (6-FAM), 
Cyanine 3 (Cy3) and Cyanine 5 (Cy5), (ii) proteins with fluorescent 
characteristics (Renilla luciferase), (iii) inorganic NMs such as quantum- 
dots QDs and (iv) non-fluorescent NPs linked with the fluorescent dyes 
[217,218]. 

2.6. Vitamins 

Folic acid (FA), also known as Vitamin B9, is a hydrophilic vitamin, 
B-complex group. FA plays an essential part in carbon metabolism as a 
cofactor. The insufficiency of FA results in malformation, exacerbation, 
and neural tube weaknesses during pregnancy. The overdosing of FA can 
hinder the absorption of zinc and vitamin B12 and cause serious health 
issues [219]. 

In a study, the researcher developed a molecular marking ratiometric 
fluorescence sensor using a simplistic sol-gel technique for fast, specific, 
and optical recognition of FA. The fabricated FA-treated shell was fixed 
on the silica NPs core. In this case, FA, 3-aminopropyltriethoxysilane 
(APTES), cadmium telluride (CdTe) QDs, and tetreaethyloxysilane 
(TEOS) worked as a model template, functional monomer, analyte- 
linked fluorescence signal provider, and a cross-linker, respectively. 
The complex fabrication phase was perceptively omitted, and the 
imprinting positions endorsed on the surface of the silica matrix 
increased the sensitivity. The sensor showed two divided emission peaks 
at 619 nm and 449 nm by a single excitation wavelength (365 nm) 
fitting to FA-activated red fluorescence and blue fluorescence of CdTe 
QDs, respectively. When FA was added, the MIPs sensor could rebound 
FA, and consequently, increased in the blue fluorescence and decreased 
the red fluorescence followed by diverse colors such as red, pink, purple, 
and blue. The sensitivity and specificity related to quenching amounts 
were used to detect FA. At last, the practical use of the designed sensor in 
six dissimilar real specimens was examined, indicating good practical 
feasibility, rapidity, simplicity, accuracy, and high selectivity [220]. 

Vitamin B12 (VB12) plays a very significant part in human health. 
Deficiency of VB12 can cause anemia, metabolic abnormalities, neuro-
logic- and psychiatric-illnesses [221]. Excessive amounts of VB12 can 
increase the threat of bone marrow hyperplasia, liver damage, and 
kidney damage, etc. Currently, a lot of VB12 sensors related to CDs have 
been fabricated. Qiu et al. first designed a unique blue emission and 
thermally-reduced carbon dots linked to FRET sensor to detect VB12in 
water-based solutions, which gives a unique idea for fluorescence 
detecting uses of CDs. Later, numerous techniques were designed to 
detect VB12 related CDs in real models [222,223]. The determination of 
VB12 in biological structures is still a complex process. Wang et al. [224] 
fabricated extremely fluorescent biomimetic QDs having blue emission 
for label-free selective, specific, and sensitive recognition of VB12 in Hela 
cells that proved the hidden application of CDs exploited in living cells 
[225]. 

In another study, a novel genetically encoded nanosensor was 
designed for real-time detection of VB12 in living cells. VB12 and its 

constituents act as cofactors because it is one of the very rare naturally 
present organometallic composites used as a coenzyme. It appears to be 
urgent to detect the fluctuations in the amount of this metabolite in real- 
time biological cells. A FRET-linked nanosensor has been fabricated for 
the real-time sensing of vitamin B12 at the cellular level [226]. 

Liu et al. fabricated a fluorescent sensor to quantify VB12 levels using 
glutenin-templated AuNCs [227]. The required vitamin was adsorbed at 
the surface of glutenin-AuNCs, having a lot of carboxyl and hydroxyl 
groups, and fluorescence quenching signals were considered for 
detecting objects with a LOD of 115 nM [228]. Xie et al. fabricated on- 
off-on fluorescent CDs as a detection tool to sense chromium (VI) and 
ascorbic acid related to IFE. Chen and coworkers formed an efficient 
fluorescence detection system to detect 2,4,6-trinitrophenol (TNP) 
linked to IFE between TNP and graphite carbon nitride (g-C3N4) nano-
sheets. Nevertheless, CDs-based fluorescent inner filter suitable for VB12 
has never been described until now. Fascinated by these realities, some 
researchers have designed a unique fluorescent sensing based on CDs for 
specific and modest determination of VB12. Vitamin B12 reduced the 
CDs-based fluorescence due to the flawless overlap between the ab-
sorption band of VB12 and the excitation band of CDs. CDs-related 
fluorescence declines slowly by adding VB12. The described technique 
indicates its application in VB12 detection as well [223]. 

A study developed a ratiometric fluorescent nanoprobe for efficient 
detection of VB12. CDs were fabricated using polyethyleneimine (PEI) 
and dry carnation petals through a one-step hydrothermal technique. 
PEI acts as a perfect nitrogen source during the manufacturing proced-
ure as it is a water-soluble macromolecule with many amine groups. It is 
used to enhance optical characteristics by surface functionalization and 
to get a positive charge through the electrostatic effect of detection. 
Thus, fabricated CNDs were a fluorescent detection system to sense 
VB12by the impulsive FRET technique from CNDs to VB2. The nanoprobe 
can react with VB12 by a novel dual-emission technique that is more 
required to be used for real specimen detection. Temporarily, CNDs 
acting as stable and sensitive pH sensors were also recognized by turn- 
off FL mode at 470 nm. Intracellular pH indicates a beneficial way to 
control receptor-linked signal transduction, cell growth, ion transport, 
enzymatic activities, and metabolism apoptosis [229,230]. 

In a fascinating study, B-doped carbon quantum dots (BCQDs) were 
manufactured as effective fluorescence probes to detect VB12 in the cell 
system for the first time. CQDs embedded with zwitterion were effec-
tively induced by simply hydrothermal management using cytidine 
diphosphate choline (CDPC) as an originator that gives outstanding bi-
onic characteristics by affluent –NH2, –PO4, –COOH, and –OH ions 
in its structure. The sensitive fluorescence quenching of BCQDs by metal 
ions was researched without additional chemical treatment. The results 
demonstrated that the fluorescence of BCQDs is quenched by VB12 only, 
even at extremely low concentrations. BCQDs, on the other hand, indi-
cated outstanding cell imaging and biocompatibility. Trace amounts of 
VB12 have been detected by using this novel selective and ultrasensitive 
fluorescence probe [230]. 

A study was conducted to develop a system for real-time detection of 
the fluidity of α-tocopherol by a FRET-based genetically encoded 
nanosensor known as FLIP-α, which acts selectively for sensing 
α-tocopherol in prokaryotic and eukaryotic cells. The human α-tocoph-
erol transmission protein utilized as the linking protein for α-tocopherol 
was very effective in causing conformational alterations in the presence 
of α-tocopherol, which brought the fluorophores nearer to each other, 
and FRET was produced in the result. FLIP-α nanosensor has the speci-
ficity for α-tocopherol, which indicates that it can be used for real-time 
sensing of α-tocopherol in a complicated pool of mega homologous an-
tioxidants [231]. 

nIR fluorescent sensors were designed in a study to detect riboflavin 
(vitamin B2) and vitamin C (Ascorbic acid). Main DNA-coated fluores-
cent SWCNTs were characterized to recognize ascorbic acid and ribo-
flavin specifically. A hydrogel encapsulation tool was designed using 
transporting modeling to bound colloidal sensor diffusion. In biological 
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surroundings, the sensor can be inquired reproducibly and stably. In-vivo 
injections were used to check the overall system. The results indicated 
the successful intra-peritoneal in-vivo statistics and effective removal of 
experimental noise [232]. 

2.7. Ions, electrolytes, and complexes 

Fluorescent nanosensors can analyze a range of intracellular analytes 
with molecular markers that were not previously possible. Based on ion 
selection optode technology, PEBBLE was developed at the nanoscale to 
measure a set of physiological parameters, including sodium, potassium, 
and chloride [197]. Fluorescence linked detection commonly uses flu-
orophore molecule, which is replaced by reaction with an analyte. The 
fluorescence intensity period and anisotropy are changed depending on 
the charge and energy transfer technique [233]. Surface-treated NMs 
like QDs and CDs are mainly used for the detection process. However, 
some nanoparticle-free techniques, including simplistic benchtop glyc-
eraldehyde 3-phosphate dehydrogenase (GADPH) enzyme-catalyzed 
fluorescence assay [234] and appealing genetically enhanced green 
fluorescent proteins (EGFP) [235], could certainly sense As (III) ions in 
the range of 0–200 and 5–100 ppb, correspondingly. FRET-linked 
ratiometric sensor between Acriflavine and Rhodamine B could detect 
As (V) with a LOD of 10 ppb [233]. 

In 2018, Lu and colleagues developed a fluorescence “on-off–on” 
nanoprobe to sense Fe(III). They used the hydrothermal process to 
decompose the silkworm excrement and carbonized it to form CNPs via 
self-passivation. Under UV light, the synthesized CNPs had excellent 
stability and showed acceptable blue photoluminescence that could be 
quenched in the presence of Fe(III) in a sample to produce the N-CNPs/ 
Fe(III) complex. The LOD was found to be 0.20 μM in a linear range (1 to 
500 μM) [236] (Fig. 5). 

In another study, unique nIR Ru-LPMSN amalgam materials were 
designed by a self-assembly process. First of all, a coordinating process 
fabricated an array of Ru1-Ru4 mixtures with 2,2′-dimethypyridine 
ethylenediamine (DPA) ligand. The compound mixtures indicated red to 
nIR fluorescence emission characteristics and presented exceptional 
selectivity for Cu2+ identification as DPA links well with Cu2+ ion. 
Secondly, Ru4, the most reliable ruthenium composite, considering nIR 
fluorescence extensively organized piercing, was enchanted into the big 
mesoporous silica channels (LPMSN) through electrostatic adsorption 
and hydrogen bonding. The LPMSN absorption ruthenium complex 
benefits in keeping the surrounding stability and repelling the outer 
invasion, fluorescence intensity of Ru-LPMSN was highly increased. In 
the meantime, Cu2+ sensitivity can be enhanced efficiently with the 
greater surface and extensive tunnel construction of LPMSN for ab-
sorption and growth of Cu2+ ions. The designed Ru-LPMSN hybrid 
compounds indicated sensitive, fast and selective recognition of Cu2+
ion. The in-vitro identification limit was 10 nM. Ru-LPMSN hybrid 
compounds were suitable for application as a nIR Cu2+ recognition 
mediator both in-vitro and in-vivo. Ru-LPMSN was demonstrated to show 
good biocompatibility and reach the cells rapidly to trace intracellular 
Cu2+ levels. Further, Ru-LPMSN was applied to determine the 

dispersion of Cu2+ in zebrafish [237]. 
In 2019, Wei Huang et al. fabricated fluorescent CDs as selective and 

sensitive nanoprobes based on the quenched fluorescence signal of CDs 
to selectively Cu2+ ions. The prepared CDs were carbonized from L- 
cysteine and poly(vinylpyrrolidone)(PVP). The Cu2+ ions in the sample 
were attached to the sulfur and nitrogen atoms on the CD's surface. The 
formation of the absorbed complex resulted in strong quenching of the 
CD's fluorescence signaling by a prompt metal-to-ligand binding affinity. 
The fabricated CDs showed a quantum yield of 7.6%, a great photo-
stability, stable fluorescence intensity (in different pH levels from 2 to 
12), and a LOD of 0.15 μM in a linear range (0.5 to 7.0 μM) [238](Fig. 6). 

Likewise, Zhu and coworkers designated AE-TPEA ([N-(2-amino-
ethyl)-N, N, N-tris(pyridine-2-ylmethyl) ethane-1,2-diamine]) as a se-
lective Cu2+ receptor and conjugated it with a CdSe@CDs nanohybrid 
to detect the Cu2+ ions in living cells having a LOD of 1 μM [239]. 

In another experiment, Ti3C2 nanosheets (NSs) were manufactured, 
and their detection capability for the trace level recognition of Ag+ and 
Mn2+ by fluorescence quenching procedure. The prepared ultra-small 
Ti3C2 NSs showed excellent optical applications, e.g., excitation- 
dependent emission spectra, emission peak with high intensity, and 
quantum yield equivalent to the CDs. The fluorescence of Ti3C2 NSs was 
theatrically quenched by adding Mn2+ and Ag+ ions independently. 
The fluorine and hydroxyl-ended Ti3C2 NSs indicate a novel binding spot 
to Ag+ and Mn2+ ions. The suggested nanosensor showed unlimited 
potentiality for the pacific fluorescence detection of Ag+ and Mn2+ ions 
in the presence of viable metal ions such as As5+, Cd2+, Al3+, Pb2+, 
Zn2+, As3+, Hg2+, Cu2+, Co2+, Cr3+, and Ni2+ [240]. 

Semiconductor QDs have been extensively fabricated due to their 
sensitivity, high fluorescence efficiency, and simple instrumentation. 
Metal-ion probes have appeared now; however, the fluorescence probes 
related to pristine CDs undergo low fluorescence output, low sensitivity, 
and poor specificity [241]. Zhang et al. treated CDs with poly-
ethyleneimine to get extremely bright CDs having a quantum yield of 
42.5%. The relative standard deviation (RSD) was less than 3.0% when 
Fe3+ ions were detected in river water and tap. Qu et al. linked the 
TPEA (Tris (pyridine-2-ylmethyl) ethane-1,2-diamine) on the surface of 
CDs to create a CD-related fluorescence probe for accurate sensing of 
Cu2+ ions in living cells [239]. 

In a study, the researchers designed a simplistic single-step process to 
fabricate the polymer dots (PDs) having incredibly green fluorescence 
through auto-polymerization and self-oxidation by ethylenediamine and 
hydroquinone as reactors. Thus, manufactured PDs were applied as 
fluorescent indicators, and MnO2 nanosheets were useful as GSH 
detection moieties and fluorescence quenchers to design a PD-MnO2 
nanosensor for turn-on examination of GSH. This PDs-MnO2 nanosensor 
has also sensitively detected GSH in human serum samples with 
acceptable results [242]. 

A biological nanosensor has been developed to detect K+ that can 
also be used for PA imaging modalities and fluorescence, i.e., as ISO or 
ion-selective photo-acoustic optodes (ISPAOs). The potassium ion is the 
fundamental biological cation that is elaborated to control several 
physiological processes like pH maintenance, nerve and muscle signal 

Fig. 5. The preparation of nitrogen-doped CNPs (N-CNPs) from silkworm excrement and the fluorescence sensing of Fe(III) in a sample. 
Reproduced from ref. [236]. 
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transmission, enzyme activation, and blood pressure regulation [243]. 
The biological ligands are applied to develop the fluorescent Hg2+

sensors, including DNA, proteins, and antibodies. As the magnitude of 
Hg2+ is way too small compared to protein and antibody, that is why 
Hg2+ must get attached to the ligands challenging the other metal ions. 
DNA has a lot of supreme characteristics to detect Hg2+ ions, for 
example, easy modification, docile to the combinatorial selection, good 
stability, cost-effective, and plentiful binding sites [244]. After chelation 
of Hg2+ ions by impairing thymine nucleotide to develop T-Hg2+-T 
assembly and T-rich DNA aptamer can be transformed into hairpin 
conformation organized by Hg2+ [244]. Many Hg2+ sensors were 
created to sense target ions in biological (i.e., urine, serum) and water 
samples [245]. 

In a study, Rox treated T-rich-modified silicon nano-dendrites 
(SiNDs) for the specific detection of Hg2+ ions. SiNDs were treated 
with the Rox-labeled (6-carboxy-X-rhodamine) T-rich oligonucleotide 
using Sulfo-SMCC as a bifunctional linking mediator. Further, this 
freshly designed sensor has been used to sense Hg2+ in serum or urine 
samples and for optical detection of Hg2+ in Hela cervical cancer cells 
[246]. 

In the study by Han et al. A simple method for fabricating single- 
scattered carbon dots of N-CDs with fluorescence light with a very 
bright quantum fluorescence performance of 42.3% by the efficient 
method of a sterolytic step. Ethylenediamine tetraacetic acid (EDTA) 
carbonation of ethylene diamine tetraacetic acid and urea was prepared. 
The obtained N-CDs were evaluated as a label-free fluorescent nano-
particle to detect Fe3þ and apoferritin in an aqueous medium using the 
on and off fluorescent method with remarkable specificity and sensi-
tivity. The use of this N-CDs-based probe for imaging Fe3þ and apo-
ferritin ions in living cells showed that the system could be measured in 
biosensing and bioimaging areas. Due to its simple synthesis, excellent 
biocompatibility, and superior optical properties, a CD-based sensing 
strategy can promote a potentially suitable method for disease-related 
molecular purposes [247]. 

Transcriptional arsenic receptors of the ars operon have a solid af-
finity for As3+. Its ability to attach to arsenic ions renders it an 
important candidate to fabricate FRET-based nanosensors. In this pro-
cess, a genetically encoded fluorescent nanosensor was created for the 
real-time sensing of arsenic in a non-invasive manner. The fluorescent 
alternatives ECFP (donor) and Venus (acceptor) were attached with the 
arsenic responsive receptor ArsR at N- and C-terminus to design a re-
combinant protein. ArsR of E. coli is a metalloregulatory protein that 
detects arsenical forms present in the surroundings. Cloning techniques 
were used to fabricate the nanosensor inside a bacterial vector plasmid 

pRSET, developing an ECFP-ArsR-Venus detector built-in pRSET-B. 
[248]. 

Komatsu and coworkers designed a single fluorescent probe related 
to coumarone to determine multi analytes, i.e., Ca2+ and Mg2+, and for 
optical imaging. Maria J. Ruedas-Rama et al. described the alteration in 
fluorescence characteristics of an enzyme-based nanosphere sensor to 
detect creatinine and urea. Similarly, Sugunan et al. studied chitosan- 
coated AuNPs to detect copper and zinc ions by using chelating qual-
ity of chitosan and optical properties of AuNPs. QDs have revolutionized 
the world of fluorescent nanosensors, and they are used to sense 
numerous biological and non-biological samples [218,249–255]. 

Enhanced compartmentalization of compound subcellular and 
cellular composition of the living things creates a problem in detecting 
the metabolic pathway of nickel. Therefore, specific monitoring of the 
vibrant distribution of nickel ions inside a cell is needed to understand 
the physiology of nickel ions efficiently [215]. Spectroscopic methods 
like UV–Visible, circular dichrome, infrared, HPLC, liquid 
chromatography-mass spectroscopy (LC-MS), and traditional dyes- 
related fluorescence techniques are some diagnostic methodologies 
used to trace localization and circulation of metabolites and for in-vivo 
imaging [256]. In bulk trials, the identification and quantification of 
nickel ions were carried out by nuclear magnetic resonance (NMR), 
inductively coupled plasma mass spectrometry (ICP-MS), atomic ab-
sorption spectroscopy (AAS) [257]. 

Nonetheless, these techniques have a lot of operational and technical 
complications, such as the requirement of higher amounts for detection 
and there is no single-cell examination. CL- and bioluminescent-based 
sensors use organic dyes, but they have a toxic nature, so they are not 
a good option for nickel ions detection in living cells [258]. Metal sen-
sors are better for determining metal ion balance inside the plants and 
prokaryotic and eukaryotic systems [259]. In a study, a FRET-based 
device has been used to identify and quantify nickel ions in the organ-
isms. This nanosensor uses a mutated yellow fluorescence protein 
(Venus) as an acceptor, and enhanced cyan fluorescent protein (ECFP) 
acts as a donor. These two work collectively as a FRET pair [260] linked 
at C- and N-terminus of the ligand sensing domain (NikA). The sensor 
indicated the ionic flux of nickel inside the living systems following a 
concentration-dependent fashion, giving us a detailed vision of the 
nickel ions distribution at sub-cellular and cellular stages inside a living 
organism at an enhanced spatial and progressive resolution [261]. 

For the reason of the extensive lead contamination and its toxic na-
ture even at extremely low concentration, the requirement for the 
fabrication of extremely sensitive methods for its recognition and to 
avert its toxic effects. Traditionally, the examination of lead was 

Fig. 6. Illustration of the fabrication process of fluorescent CDs for sensing Cu2+ ions. 
Reprinted from ref. [238]. 
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dependent on laboratory-related refined analytical procedures like 
atomic emission spectroscopy (AES), atomic absorption spectroscopy 
(AAS), capillary electrophoresis (CE), inductively coupled plasma 
atomic emission spectroscopy (ICPAES), inductively coupled plasma- 
mass spectroscopy (ICP-MS) and X-ray fluorescence spectroscopy 
(XFS). These methods are mostly confined to the laboratory level despite 
their accurate lead determination. Nowadays, nanosensors are getting 
noteworthy consideration in the research area thanks to their small size, 
surface functionalization and compactness, the desired surface-to- 
volume ratio, quantum detention effects, improved surface reactivity, 
great sensitivity, and increased adsorption capacity [262]. Many ele-
ments such as QDs, metallic organic frameworks, NPs, nanoclusters, and 
carbon NMs, e.g., graphene and carbon QDs, have been utilized to 
fabricate innovative fluorescent sensors. After their fabrication, the NMs 
can be efficaciously reformed by suitable ligands or biomolecules to 
detect numerous metal ions simultaneously in a particular approach 
[67]. The simple technique of fluorescence-linked based sensors has 
been developed on the actuality that the particular association between 
detection component (i.e., NMs) and the target sample (lead) cause al-
terations in the fluorescence characteristics of NM that can be examined 
in numerous arrangements such as fluorescent enhancement, fluores-
cent recovery, fluorescence quenching, anisotropy, wavelength shifts, 
and ratio-metric fluorescence output. Lately, several nanostructures 
have been utilized in the manufacturing of fluorescent sensors with 
enhanced selectivity and sensitivity along with the development of NPs 
and modification with organic linkers [263]. The biomolecules such as 
DNAzyme, antibody, and aptamer and some ligands and functional 
groups existing on the surface of NPs help in their particular linkage to 
the lead ion (Pb+). The NM-Pb+ associations are linked to direct fluo-
rescence quenching or transfer techniques, including PET, nanomaterial 
surface energy transfer (NSET), and FRET, aiding in analyte detection 
[264]. Numerous fluorescent NMs such as up-conversion NPs (UCNPs), 
metallic NPs, gold nanoclusters (AuNCs), semiconductor quantum dots 
(QDS), silver nanoclusters (AgNCs) and carbon quantum dots (CQDs), 
polymer dots (PDs), and metal-organic frameworks (MOFs) have been 
examined for the fabrication of lead ion (Pb+) sensors associated with 
the sensing methods [67]. An economical, single-phase, green and 
energy-efficacious method is developed for the solar-running complex of 
(BiOBr0.75 I0.25 SS) bismuth oxybromideiodied solid solution on rGO 
sheets by sunlight radioactivity of BiOBr0.75I0.25-graphene oxide (GO) 
dispersion in ethanol solution. GO was reduced and photocatalized by 
BiOBr0.75I0.25 and resulted in unbroken fixation of BiOBr0.75I0.25 SS 
on r GO to get highly pure BiOBr0.75I0.25-rGO heterojunction, i.e., 
BiOBr0.75I0.25-rGO HJ, in a dispersed colloidal medium. Large-scale 
formation of rGO related bismuth oxyhalides HJ was performed by 
this green strategy [265,266]. The Br:I ratio in the manufactured BiO-
Br0.75I0.25 SS was approximately 0.75:0.25 [267]. The solar-energy 
caused holes that were used in a redox reaction with ethanol mole-
cules functionalized on the surface of BiOBr0.75I0.25 SS from ethanol 
medium to obtain ethoxy-(–C2H4OH) radicals that could be resulted in 
further redox reactions finishing at the formation of H2O and CO2. The 
ethanol molecules adsorbed by this method act as hole scavengers (such 
as electron donors) and increase the life-span of the photo-fabricated 
electron permitting their growth on the CB of BiOBr0.75I0.25 [268]. 
In a redox reaction, the electrons react with the oxygen comprising 
functional groups of GO to develop rGO sheets resulting in synchronic 
longitudinal fixation of BiOBr0.75I0.25 SS on rGO sheets to obtain 
BiOBr0.75I0.25-rGO HJ [268–270]. Super-capacitors and catalyst sup-
port are three-dimensional (3-D) configurations of graphene that have 
revolutionized its practical applications. Macroscopic graphene sub-
stances are manufactured by self-assembly to impart them numerous 
valuable properties. In a study, researchers developed a trivial and green 
system for manufacturing 3D structures of graphene. This procedure 
relies on the chemical reduction of graphene oxide by using various 
natural phenolic acids, and the graphene sheets were self-assembled by 
p-p associations, in-situ. The attained monolithic graphene shows less 

density, high porosity, outstanding mechanical strength, super-
hydrophobicity, and electrical conductivity. These multifunctional 
yields can act as super-capacitors and as adsorbents to eliminate dyes, 
oils, and organic solvents from polluted water [271]. Graphene oxide 
can be highly-distributed in water due to its numerous hydrophilic 
groups. The GO dispersion continued to be homogenous after the 
addition of various types of phenolic acid groups. When the dispersion 
was heated at 95 ◦C for 0.5 h, it turned black as GO was moderately 
reduced in the existence of phenolic acids. The phenols were described 
as efficient, reducing agents for GO [272,273]. A black column was 
formed after 3 h of heating and moderately hovered to the uppermost 
part of the vial. After 8 h, the column became more contracted and 
completely parted, leaving a clear solution at the bottom. This proved 
that the water-insoluble rGO sheets were assembled into macroscopic 3- 
D arrangements by p-p associations and lastly, developed the graphene 
hydrogel [271]. In crude oil, the most plentiful materials are sulfur- 
containing compounds. The emission of sulfur oxides and sulfate par-
ticulate materials is caused by the presence of sulfur in liquid fuel and it 
is a threat to community property and health. It also has the potential to 
decrease the life-span of engines and catalysts due to corrosion. A lot of 
systems having extreme level of accuracy and sensitivity have been 
fabricated to analyze sulfur in various samples. In a study, the most 
important and capable techniques and analytical strategies were dis-
cussed to remove sulfur from oil [274]. In the refinery, hydro- 
desulfurization is a dominant sulfur removal technology, but most of 
the desulfurization techniques such as bio-desulfurization, oxidation, 
and absorption are evolving. The existing exercise of hydro- 
desulfurization is a mix of these systems. The study of thiophene 
hydro-desulfurization is a field of attention for many scientists to obtain 
the best kinetic design and appropriate catalyst. Another inspiring 
research areas for the hydro-desulfurization technique is its function in a 
prime reactor under mild circumstances. The molecular characterization 
procedures, the upgrading of equipment, the development of technology 
and the innovation of detection methods have revolutionized our idea 
about the presence of sulfur compounds in oils, which can screen effi-
cacious fabrication and investigation in upstream and handling out in 
downstream along with decreasing the environmental threat. Accord-
ingly, these techniques require more research, particularly in the field of 
designing suitable selective systems [274]. A lot of research is being 
done on the application of NMs in different fields such as oil processing, 
construction, food, medicine, water treatment, sensors, building mate-
rials and energy storage, etc. Paints, pigments, coatings, cosmetics and 
catalytic additives are the examples of the yields comprising NMs. 
Nanotitania is an example of nanomaterial (NM) that is extensively 
applied in viable industries in two varieties i.e. in photocatalytic pro-
cedures such as formation of self-sterilizing surfaces (anatase) and in 
sunscreen and other stuffs to block ultraviolet (UV) light (rutile). NMs 
are applied to enhance food properties, safety, and preservation. NMs 
are used as (i) food extracts such as TiO2 (E171), Nisin (E234), SiO2 
(E551), and Fe2O3 (E172), (ii) as food constituents, for example, gold, 
AgO, gelatin-related ingredients, nanosilicon, and nano-encapsulation, 
(iii) as food supplements such as silica-mineral hydride complex and 
nano-encapsulates and (iv) as pesticides and biocides, for example, 
nano-formulations and nano-encapsulates with pesticides on a nano- 
range (carbofuran) [275]. It is needed to calculate the amount of NMs 
in real and environmental samples. Therefore, consistent quantitative 
analysis procedures are essential to detect amounts of NMs in numerous 
matrices [276,277]. 

As a result of various pollutants, water pollution has become the 
most serious problem worldwide. There is a requirement for methods 
and practices to act as strategies for researchers to form and investigate 
novel adsorbent tools for wastewater management [278]. Numerous 
water techniques are used to detect pollutants in biological, chemical, 
and physical processes in treatment procedures. Adsorption is an 
economical and effective method applied for wastewater refinement by 
using inexpensive adsorbents. NMs and waste-derived substances are 
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favorable adsorbents because of their free availability and high sorption 
capabilities [278]. Sulfite (SO3

2− ) and bisulfite (HSO3
− ) are hydrated 

sulfur oxide (SO2) have been extensively used in food items, beverages, 
and pharmaceutical products conservation [279–281] to prevent 
oxidation and germs growth and to impede the enzymatic reactions. 
High consumption of SO3 2/HSO3 will result in allergic reactions and 
tissue injuries in some folks. Hence, the fabrication of small-molecule 
reactive probes for efficacious, quantitative, and quick identification 
of SO3 2/HSO3 in many food items have gained collective consider-
ations in recent times. Many response procedures such as keton or 
aldehyde groups, nucleophilic addition with electron deficit C–C bonds 
and inhibition of C–N isomerization are applied to design various small- 
molecule probes for food analysis [282]. Additionally, SO3 2/HSO3 are 
highly adaptable to the preservative ability [283]. N-terminus of ho-
mocysteine (Hcy) and cysteine (Cys) reacts with aldehydes through 
cyclization reaction to get thiazinane and thiazolidine products have 
been widely used to generate fluorescent probes for careful Hcy/Cys 
recognition over GSH [72,75,284]. Guo and group designed an “OFF- 
ON”fluorescence probe, in 2010, for HSO3 recognition based on 
coumarin byproducts with associated aldehyde groups [285]. This probe 
was used to detect HSO3 in two granulated sugar trials. 

In 2012, Yu et al. designed fluorescent probe for sesning SO3 2, in 
which anthacene fluorophore was linked with aldehyde group by sec-
ondary amine and hydrophilic amide linker [286]. Du et al. planned and 
fabricated an OFF-ON fluorescent probe (52) for SO3 2 monitoring 
[287]. This probe has a spirolactone and is colorless, it remains non- 
fluorescent during the ring-opening of spirolactone which results in a 

robust emission and green color. Ring-opening of probe 52 can be 
attained by the SO3 2-activated breakdown of levulinyl that is a 
nucleophilic buildup at the 4-position of levulinate tracked by the cut of 
ester bond in-situ. This particular cleavage reaction permitted the probe 
to detect SO3 2 particularly in water medium. The results of this test 
showed the levels of SO3 2 in white wine and it was established by 
standard iodometry method. The double bond between two carbon 
atoms is a part of various chemical substances, particularly for the 
luminophores having great p-conjugation method. For most of the C–C 
bonds with even dispersal of electrons the group becomes more stable in 
organic and aqueous solutions. Complexation of C–C bond with elec-
tron extracting groups, for example, nitro group (–NO2), cyano group 
(–CN), and positively charged quinolinium or indolium modifies the 
electron density of C–C bond [288,289] that gives a particular site for 
the introduction of nucleophiles such as SO3 2/HSO3 [282,290–292]. 
Fig. 7 illustrates the biosensing process through fluorescent NPs. 

2.8. Blood gases 

Photodynamic therapy (PDT) has gained much attention for treating 
a wide range of solid tumors due to non-piercing quality, outstanding 
selectivity, and high efficiency. In PDT, photon energy transferred by 
photosensitizers, got by oxygen molecule, results in ROS production that 
causes apoptosis, necrosis, and autophagy of cancer cells [294–297]. 
Oxygen level highly affects the treatment efficiency of PDT. Hence, it is 
critical to fabricate a non-piercing tool to sense oxygen changes that is 
crucial for foreseeing PDT treatment reaction and regulating the cure 
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Fig. 7. A schematic representation of the process of sensing different molecules using fluorescent NPs [293].  

S. Sargazi et al.                                                                                                                                                                                                                                 



International Journal of Biological Macromolecules 206 (2022) 115–147

130

plan. Fluorescence probes have encouraged remarkable advantages for 
sensing oxygen because they have high safety and sensitivity [298]. 
Nanostructures-related oxygen detecting probes for PDT were discov-
ered for ex-vivo recognition of oxygen. These probes have not been used 
in-vivo for oxygen detection that is crucial for profound examination and 
translation. Hollow mesoporous organosilica NPs (HMONs) have 
extensively been investigated in the biomedical field because of their 
high surface areas, uniform mesopores, organic-groups hybrid outlines, 
large hollow cavity, and outstanding biocompatibility [299,300]. In this 
research, the scientists determine that thioether-bridged deformable 
HMONS laden with oxygen-sensitive probe [(Ru(dpp)3]Cl2 indicate 
fabulous oxygen detection efficacy with enhanced cellular uptake and 
negligible toxicity [301]. Enzyme-related recognition tools for H2O2 
have been extensively designed because of their high efficacy and 
selectivity. Nevertheless, enzymes are costly and unstable for long-term 
usage and storage. Recently, cobalt-related NMs were described as an 
outstanding catalyst for oxygen evolution and oxygen reduction 
reactions. 

In an investigation, the researchers found that a categorized cobalt or 
carbon nanotube hybrid nanocomplex (CoCNT) was fabricated using 
MOFs of ZIF-67 as reactors. It indicates fabulous peroxidase-like char-
acteristics and can quench the fluorescence of scopoletin and alter the 
non-fluorescent Amplex Red (AR) into its fluorescent constituent with a 
large fluorescence reaction through oxidation in an H2O2 environment. 
Co-CNT has the inherent catalytic property that permits it to behave as 
an applicable structural moiety for forming ratiometric fluorescent 
nanosensors for H2O2 [302]. ‘Oxygen microscopy’ is a term used 
recently to describe many different hypoxia-related stains, endoge-
nously indicated biosensor structures, phosphorescent oxygen detecting 
probes, and NPs. On the other hand, there are some equivalent optical 
procedures for imaging oxygen circulation in cell and tissue microen-
vironments. They have been extensively used in several experimental 
methods like 2D and 3D cell cultures, fixed tissues, and cutout slices of 
live or immobile tissues [303–305]. 

2.9. Detection of drugs and their toxins 

2.9.1. Detection of anti-inflammatory drugs 
Liu and coworkers have explored graphene QDs coupled with poly-

pyrrole for fluorescent-based detection of acetaminophen. The fluores-
cent intensity was reduced on quenching of the oxidation product of the 
drug by QDs. At the same time, the fluorescence was increased when the 
oxidation product of paracetamol was reduced by ascorbic acid. The 
LOD was found to be 0.002 μg/L and 1.05 μg/L for acetaminophen and 
ascorbic acid, respectively [306]. 

Li and associates have investigated cadmium tellurium-based fluo-
rescent QDs for quantifying aspirin by quenching method. A linear 
relationship was observed between the intensity of fluorescence and 
aspirin concentration [307]. In another study, cadmium tellurium QDs 
were investigated for sensing ibuprofen in human urine and serum 
samples. The method was cost-effective, highly selective, and 
adequately sensitive to detect ibuprofen [308]. Wei and colleagues have 
investigated cadmium tellurium QDs for fluorescent detection of aspirin 
using molecularly imprinted polymer. This fluorescent sensor was found 
to successfully estimate the amount of aspirin in human urine and saliva 
samples [309]. 

2.9.2. Detection of antibiotics 
Benincasa and associates have demonstrated the fluorescent 

quenching mechanism to sense florescent labeled Bac 71–35 and poly-
myxin B penetration into the gram-negative bacteria. The system was 
suitable for intracellular delivery and detection of membrane non- 
penetrating therapeutic agents [310]. Geng and coworkers have inves-
tigated cadmium selenium QDs for fluorescent detection of kanamycin 
using aptamer conjugated molecularly imprinted polymers for high 
sensitivity and selectivity [308]. The fluorescent sensor was rapid, 

selective, and sensitive in determining kanamycin in water, food, and 
biological samples [308]. Sarmadi and associates have proposed L- 
cysteine coated. Anand and associates have developed L-cysteine con-
jugated Cadmium sulfide QDs for selective detection of tetracycline via 
fluorescence [311]. Niu and associates have also investigated N-doped 
CDs to sense antibacterial agents [312]. 

In 2018, Zhou and associates fabricated a MIP-based fluorescent 
nanobiosensors coated on GQDs for selective sensing of tetracycline. 
Carboxyl- or -amino-containing GQDs were developed as fluorescent 
probes using a one-pot green method, while the GQDs-MIPs micro-
spheres were synthesized via applying a sol-gel process. The results 
demonstrated that the carboxyl group plays a pivotal role in the fluo-
rescence quenching in the presence of tetracycline in a linear concen-
tration (1.0 to 104 μg/L). The LOD was determined to be 1 μg/L [313] 
(Fig. 8). 

2.9.3. Detection of anticancer agents 
Jantarat and associates have developed G-quadruplex and thioflavin 

T containing DNA-based fluorescent sensors to detect cisplatin. The 
conjugation of DNA with cisplatin caused a decrease in fluorescence 
intensity. Thus, change in levels of cisplatin can be predicted from 
changes in fluorescent intensity [314]. Zhang and associates have pre-
pared antibody conjugated L-Cysteine capped CdTe-CdS core-shell type 
QDs for fluorescent imaging of HeLa cells [315]. Tang and associates 
have developed fluorescent sensors to detect platinum-based anticancer 
agents, such as platinum, cisplatin, and nidaplatin in human lung cancer 
cells [316]. 

Mitchell and coworkers have investigated a sensing array composed 
of 6 fluorescent sensors for detecting platinum levels in patients 
receiving chemotherapy. This fluorescent-based sensing array detected 
platinum among other related biological components or other heavy 
metal ions with high accuracy. The sensor successfully detected levels of 
cisplatin and oxaliplatin in plasma at various stages of platinum therapy 
[317]. Wang and coworkers have studied fluorescent nanosensors to 
sense lactate dehydrogenase inhibitors as anticancer agents. The effi-
cacy of drugs was monitored as up-conversion of fluorescence in three 
types of cancer cells, including A549, HeLa, and human gastric epithelial 
cell line (Ges-1) [318]. Jiang and coworkers have investigated gold 
nanoclusters as fluorescence-based switch nanosensors to detect meth-
otrexate and circulating tumor DNA (ctDNA) [319]. Bardajee and as-
sociates have also studied CMC-CdTe/zinc sulfide QDs for fluorescence- 
based epirubicin detection [320]. 

2.9.4. Detection of miscellaneous agents 
Li and Hu have developed CDs from black tea to sense pamidronate 

disodium and zoledronic acid based on turning off fluorescent signaling 
[321]. Guan and colleagues have explored cadmium sulfide QDs func-
tionalized by heparin and mercaptopropionic acid for fluorescent-based 
identification of protamine and hemin. Both molecules were quantified 
with high sensitivity and selectivity by assessing the fluorescent in-
tensity of a multi-functionalized QDs system [322]. Saini and associates 
have investigated fluorescent organic nanosensors to sense furosemide 
in aqueous media [323]. Cai and coworkers have demonstrated CD- 
based fluorescent sensors for selective and accurate sensing of mer-
cury and glutathione. Conjugation of mercury with CD turned the 
fluorescence off, while conjugation of mercury with glutathione caused 
the release of carbon dots and subsequent increase in fluorescence 
[324]. Peng and associates have explored pyridine-based fluorescent 
probes for recognizing aluminum ions with a color shift from colorless to 
aquamarine [325]. 

Liu and coworkers have demonstrated the use of triple film fluores-
cent sensors to identify and differentiate commonly abused illicit drugs 
in the vapor phase [326]. Beatty and coworkers have studied dimeric 
sensors for rapidly detecting drugs at a very low (micromolar) concen-
tration in aqueous samples and saliva [327]. Kim and colleagues have 
developed sensors with infra-red dependent fluorescence. The sensor 
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was investigated for recognition of albumin in a human urine specimen 
with desirable selectivity and sensitivity [328]. Liu and coworkers have 
fabricated MOFs as fluorescent sensors for discriminating nine different 
flavonoids. Results indicated successful discrimination of flavonoids 
along with their quantification [329]. In another study, the amino- 
BODIPY fluorescent dye was conjugated with a model drug 2-phenyl- 
3-hydroxy-4(1H)-quinolinone to investigate its release upon cleavage 
of the conjugate by glutathione. The quantification of the drug was 
quantified based on ratiometric fluorescence assay using UV–visible 
spectroscopy [330]. Scarabelli and associates have demonstrated pro-
tein conjugated fluorescent biosensors for the investigation of uptake of 
the drug into cells [331]. Hu and coworkers have explored florescent 
sensors for cell imaging and drug analysis using coumarin and mal-
eimide conjugate. The sensor successfully distinguished between 
cysteine and glutathione with a 320 folds increase in the fluorescence 
emission corresponding to the addition of cysteine [332]. In another 
study, melamine was detected using fluorescent zirconia-labeled cad-
mium sulfide QDs by the quenching method [333]. Kulchat and col-
leagues have developed thioglycolic acid-coated cadmium sulfide QDs 
to detect dopamine. The fluorescent sensor was sensitive and selective 
for recognizing dopamine, with the LOD observed to be 0.68 μM [334]. 

2.9.5. Detection of toxins 
NMs have also been investigated to sense various chemical toxins. 

Ganesan and coworkers have reviewed QDs to detect different types of 
toxins and drug overdose, drug abuse or misuse, and pesticide toxins 
[335]. Boron and nitrogen co-doped QDs have been studied for fluo-
rescent detection of mercury and 2,4,6-trinitrophenol with a low LOD 
[336]. Wang and associates have established a highly sensitive and se-
lective technique for fluorescent-based glyphosate detection utilizing 
CD-coded antibody and antigen-associated magnetic beads [337]. Ni-
trogen phosphorous co-doped carbon QDs have also been explored for 
fluorescent-based carbendazim detection that exhibited strong green 
fluorescence [115]. In another study, cadmium sulfide fluorescent NPs 

were studied. These nanosensors selectively detected dicofol, among 
other pesticides corresponding to a 2.5 times increase in fluorescent 
intensity [338]. L-Tyrosine functionalized carbon dots have been 
investigated for fluorescent detection of methyl parathion with high 
sensitivity and reproducibility [339]. Zhang and associates have devel-
oped a fluorescent-based assay to detect morphine using QD labeled 
anti-morphine antibody [340]. Huang and associates have investigated 
nitrogen-doped CDs for fluorescent detection of Ach esterase activity 
and detecting organophosphorus pesticides in food and water [341]. 

A robust and fast immunological method was designed to detect 
ochratoxin A (OTA), a mycotoxin mainly formed by Aspergillus. 
Antigen-modified magnetic NPs were used as immunosensing probes to 
detect AF B1 and OTA simultaneously in foodstuffs based on the method 
of competitive fluorescence immunoassay. Similarly, antibody-treated 
rare-earth-doped NaYF4 (sodium yttrium fluoride) up-conversion NPs 
acted as multicolor signal probes. The fluorescent intensity was highest 
in the absence of mycotoxins, but when the amounts of AF B1 and OTA 
were increased, the fluorescent signals of the nanocomposites decreased 
slowly [342]. Similarly, organophosphorus pesticides can also be 
detected by liposome-based nanobiosensor [343]. Here, free substrates 
and pesticides move into the liposomes by porins implanted into the 
lipid membrane. This technique is for substrate-linked enzyme activa-
tion and the resulting current reaction at the substrate-linked enzyme 
electrode. 

Melamine was also detected similarly by using AuNPs by fluores-
cence detection method. Li et al. fabricated cadmium telluride (Cd/Te) 
QDs covered with thioglycolic acid (TGA) and examined their reaction 
with melamine. It was proved that the fluorescence quenching intensity 
of TGA-CdTe QDs was directly linked with the concentration of mel-
amine at pH 11.0. This is because the melamine induces quenching of 
fluorescence emission by QDs [344]. It resulted in the modification of 
NP's surface by energy transfer, surface absorption, and charge 
diversion. 

Fig. 8. Schematic illustration of the process of fabricating of GQDs from graphene oxide. 
Reprinted from ref. [313]. 
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2.9.6. Alkaloids 
Colchicine belongs to the family of alkaloids, and the potential ap-

plications of colchicine have expanded significantly in the fields of 
oncology, cardiology, immunology, and dermatology [345]. In the 
study, El-Malla and colleagues designed a fluorescent QD nanosensor to 
sense colchicine. The sensor was fabricated from uric acid as a carbon/ 
nitrogen source by one-step pyrolysis. The sensor worked based on the 
internal filter effect (IFE), in which colchicine served as a strong 
adsorbent and affected the fluorescence excitation of the nanosensor. 
This overlap led to a slight decrease in the fluorescence of the nano-
sensor by increasing the concentration of colchicine in the range of 2 to 
25 μM. The amount of colchicine was in the range of 1.887 μM QL and 
0.623 μM DL [346]. 

In another study, a FRET nanosensor was fabricated to determine the 
real-time fluctuation of ajmalicine. Recently, FRET nanosensors have 
been productively designed to study many analytes in-vivo, such as 
glutamate, ribose, zinc, glycine betaine, lysine, and glucose. A geneti-
cally encoded FRET-based nanosensor that was fabricated to detect 
alkaloid ajmalicine is based on a general framework of sandwiching 
analyte selective ligand-binding protein between the acceptor fluores-
cent proteins and the donor, after binding of the target analyte results in 
the conformational changes that move the non-radiative energy from 
donor fluorescent protein to the acceptor protein showing an altered 
emission intensity of fluorophores. Using genetically encoded FRET- 
related nanosensors, such metabolites can be repeatedly detected in 
various cell types [347]. 

2.9.7. Antioxidant 
To date, some investigative procedures have been applied to recog-

nize and measure particular biothiols [71,348]. For example, mass 
spectrometry (MS), capillary electrophoresis, HPLC, and HPLC-MS/MS. 
Nevertheless, these techniques use expensive equipment and wide- 
ranging samples [349,350]. Compared to the conventional methods, 
fluorogenic techniques have attracted great attention because of some 
particular advantages such as high sensitivity, simple operation, and 
rapid response time. Multiple biothiols have been designed over the last 
few years [351–354] for simultaneous detection of homocysteine (Hcy), 
glutathione (GSH), and/or Cys [355,356]. Nowadays, many nIR or red 
emission GSH, Cys, or Hcy probes have been fabricated that tag the 
specific organelle in living cells [357–359]. Recently, a lot of different 
procedures have been established for GSH recognition, e.g., HPLC and 
electrochemistry [360], surface-enhanced Raman scattering [361,362], 
and fluorescence spectroscopy [363,364]. The fluorescent technique has 
the most benefits, such as high sensitivity, non-destructivity, and 
simplicity. Many fluorescent probes have been developed to detect GSH, 
such as BODIPY-based fluorescent sensor, QDs QDs, up-conversion NPs, 
iridium (III) complex, cyanine-based fluorescent probe, and AuNCs 
[365–370]. 

GO has been used to detect multifunctional biomaterials for the past 
few years due to their outstanding biocompatibility and high cellular 
uptake. MnO2 has a very high oxidation ability to reduce to Mn + by 
GSH, a peptide that modulates redox homeostasis in biological systems 
[371,372]. In this process, the GO-MnO2 nanocomposites were first 
prepared by the reaction between KMnO4 and GO. After that, the fluo-
rescein (FL) was coated on the surface of the nanocomposites by π–π and 
hydrophobic linkages to develop GO-MnO2-FL nanocomposite. GO- 
MnO2–FL nanocomposite can act as a fluorescent probe for in-vitro and 
in-vivo detection of GSH in malignant cells that highly express GSH 
[373]. 

Recently, many scientists have proved the quantitative determina-
tion of non-enzyme antioxidants such as AA and GSH by using GQDs- 
ions systems, e.g., Cr2O7− , Cu2+, Hg2+, and Fe3+ etc., both turn-on 
and turn-off fluorescence. In this connection, the fluorescence of GQDs 
will nearly vanish when there is hypochlorite oxidation, but if the an-
tioxidants are present in the same solution, the quenching will be pre-
vented. Measurements of fluorescence intensity of GQDs-hypochlorite 

setup permits us to measure the antioxidant present in liquids and cell- 
fictionalized medium from normal human dermal fibroblasts (NHDF), 
human keratinocytes (HaCaT), and mesenchymal stem cells (MSCs) 
after activation of glucose or cytokines [374]. Many CD-based fluores-
cent Cys probes have been developed, but the disadvantage of this 
approach is the toxicity caused by the probes when they develop a stable 
metal-Cys complex with ions such as Ag+ and Hg2+ [375]. 

Gold nanocrystals are developing NMs having the majority of ap-
plications in the biomedical area. AuNCs show unique biocompatibility, 
large stokes shift, fluorescence properties, high energy levels, and good 
water solubility [376–378]. These properties make AuNPs a picture- 
perfect tool for theranostics, imaging, and biosensing at molecular and 
cellular levels [379,380]. To diagnose hyperthyroid liver damage, thy-
roid dysfunction is first elucidated, and then the liver function tests are 
performed [381]. Fast and simple processes have been introduced to 
simultaneously measure thyroid function and liver injury. GSH plays a 
significant role in liver damage caused by hyperthyroidism, so the level 
of liver injury can be measured by detecting GSH levels. Phosphorus 
metabolism is also linked to thyroid function. UiO-66(OH)2 acted as the 
core. The shell was fabricated by using Cu-MOFs in the development of 
core-shell composite metal-organic structure material, which de-
termines the GSH and phosphorus at the same time. The fluorescence 
signal of UiO-66(OH)2 nanocomposite sensor after a particular action 
between Zr (IV) and phosphate was used to detect the phosphate. The 
fluorescence detected GSH based on MOFs framework linked with Cu 
(II) [382]. A genetically encoded FRET-related nanosensor using fluo-
rescent indicator protein for sialic acid (FLIP-SA) was fabricated to 
determine NeuAc (N-Acetylneuraminic acid) in living structures non- 
invasively. This nanosensor is very efficient and can be used to recog-
nize the regulatory phase of the NeuAc biosynthesis pathway and for the 
metabolic fluctuation detection of NeuAc in its metabolic network. 
E. coli distorted libraries, for diverse manufacturing phases, also use 
FLIP-SA for high-throughput screening [383]. 

2.10. Tumor markers 

Alpha-fetoprotein (AFP) acts as a highly sensitive prognostic marker 
for HCC [384]. As an oncofetal glycoprotein, AFP is widely used for the 
clinical diagnosis of HCC [385]. For the initial prognosis and diagnosis, 
the increased level of AFP concentration (˃20 ng/mL) in adult serum is 
measured as an early indicator of HCC. ELISA, CLIA [386], surface 
plasmon resonance imaging (SPRi), and tandem mass spectrometry 
(HPLC-MS/MS) are employed for systematic biomarker detection. 
However, there are some limitations, such as severe interferences, slow 
response, limited sensitivity, and expensive instruments [387–389]. 
Therefore, it is of extreme importance to manufacture a sensitive, 
economical and rapid technique to distinguish the trace quantities of 
AFP for timely and precise diagnosis of HCC. 

Chang et al. developed an ultrasensitive fluorescent turn-on 
biosensor linked to boronic acid functional polymers to detect glyco-
protein [390]. There is not very vast research on biomimetic MIPs to 
sense biological molecules; that is why a biomimetic fluorescent nano-
biosensor related to molecularly imprinted polymers was adapted with 
CDs (CD@MIPs). This sensor was highly sensitive, rapid in action, and 
capable of detecting AFP in biological samples. The MIPs were used as 
temperature and pH detection elements in this sensor, and CDs acted as 
transducer elements. The nanosensor was subjected to characterization 
such as its stability, binding ability, and selectivity were carefully tested. 
Furthermore, the CD@MIPs were effectively applied to sense this tumor 
marker in human specimens. The projected technique can offer a fast 
and promising opportunity to detect AFP for cancer diagnosis [391]. 

3. Fluorescent nanosensors to detect urinary metabolites 

Several fluorescent nanosensors have been designed to determine 
urinary metabolites in human serum or urine specimens with promising 
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outcomes [392]. 

3.1. Urea 

Urea, known as carbamide, is an organic multiple with the chemical 
formula of CO (NH2)2. It is mainly synthesized in the liver as a final 
product of proteins degradation [393]. Blood and urine urea levels could 
contribute to various diseases, such as nephrotic syndrome, renal fail-
ure, gastrointestinal bleeding, liver failure [394,395]; thus, rapid and 
precise detection of urea and urease is crucial. In the study by Pang et al., 
pH-sensitive N-CDs, shown in (Fig. 9A), were used as a fluorescent probe 
for laboratory sensing urea and urease. Based on pH-responsive fluo-
rescent CDs and urea hydrolysis by the urease-catalyzed, they designed a 
sensing system to determine urea and urease in the range of 0.05 to 3.0 
mmol/L and 2.5 to 80 mg/L, respectively. The new raw material used in 
this study was m-phenylenediamine, a pH-sensitive fluorescent CD. The 
satisfactory linear response of the fluorescence intensity to the pH (in the 
range of 6.2 to 8.6) and the hydrolysis of urea-catalyzed urease estab-
lished a new system for sensing these metabolites [396]. 

Zhang and colleagues designed a fluorescence system to measure pH 
and detect urea using MoS2 QDs (MQDs) and 2,3-diaminophenazine. 
MQD was used as a fluorescent reference signal that is not pH sensi-
tive, and DAP was used as a pH-sensitive agent. The increase in pH due 
to the enzymatic reaction of urea in the presence of urease was used by 
the above pH assay system to detect urea. The DAP fluorescence in-
tensity increased gradually at 568 nm, but the MQD fluorescence in-
tensity did not change at 420 nm. They observed a linear relationship 
between urea concentration and fluorescence intensity between 5 and 
700 μM and pH reversibility in the range of 3.8–6.0 with a pH interval of 
0.2 [397]. 

In a study by Liu et al., dopamine-functionalized CuInS2 QDs (QDs) 

were designed as fluorescence probes (Fig. 9B). Urease catalyzes the 
hydrolysis of urea and releases OH– and changes the pH value. pH- 
sensitive QDs were used as an effective fluorescence probe to deter-
mine urea. The fluorescence intensity of DA-CuInS2 QDs is also associ-
ated with enzymatic degradation. The new urea biosensor system 
effectively quantified urea in the concentration range of 0.2 to 6 mmol/L 
[398]. 

In the study by Llopis-Lorente et al., The optical probe includes (i) 
the enzyme receptor subunit, (ii) the signaling subunit (comprised of a 
reporter labeled silica), and (iii) the communication mechanism be-
tween the two sites created in message generation. Chemical conductors 
were designed by an enzyme subunit that separates reporter molecules 
from the silica surface. A urea nanosensor based on the release of oli-
gonucleotides labeled Alexa Fluor 647 from Janus Au-MSNPs with 
enzymatic function (inter-gold-silica NPs) has been fabricated. Janus 
Au-MSNP on the silica surface with amino groups attached to oligonu-
cleotides labeled by electrostatic reactions then activated, the gold plate 
was used to bind the urease enzyme (Fig. 10). This NP can release urea's 
fluorescent oligonucleotides by enzyme-mediated hydrolysis to further 
release amino groups on the silica surface. This user-friendly biomedical 
nanodevice was employed for direct fluorometric determination of urea 
in human blood samples [399]. 

3.2. Uric acid 

Uric acid (2,6,8-trihydroxypurine, UA) is found in body fluids (i.e., 
blood serum and urine). Normal UA concentrations vary between 0.12 
and 0.46 mM in blood serum and 1.4 and 4.5 mM in urinary excretions. 
Extremely high levels of UA in the blood (hyperuricemia) can cause 
several metabolic disorders [400,401], and very high levels of UA can 
cause multiple sclerosis or oxidative stress. Liu and colleagues 

Fig. 9. Fabrication of N-CDs and their application to detect urea or urease (A), synthesis of DA-CuInS2 QDs, and urea detection (B).  
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synthesized AuNCs coated with chondroitin sulfate (CS-AuNCs) and 
poly-(vinylpyrrolidone)-protected AuNPs (PVP-AuNPs) off-fluorescent 
probes that were able to quantify UA selectively by an internal filter 
(IFE) (Fig. 11). Uricase-related IFE was used to measure UA at concen-
trations of 5 to 100 μM (R2 = 0.991) and sensitively detected 1.7 μM 
(3σ) UA in blood serum specimens [402]. 

In Hallaj et al.'s study, a two-state colorimetric and fluorometric 
sensor was designed to determine uric acid by Green emissive N,P co- 
doped CDs (N,P-CDs), and AuNPs/Ag+. N, P-CDs were prepared from 
citric acid and urea in a phosphoric acid and formamide mixture to 
achieve green dots indicating optimal spectral overlap with AuNPs. As a 
reducing agent in the level of AuNPs, uric acid reduced Ag + to Ag0, 
resulting in Au @ AgNPs with a more robust surface plasmon resonance 
peak (SPR). Finally, the results were evaluated by TEM and EDS imag-
ing, and the formation of Au@AgNPs was confirmed. Also, increasing 
the peak intensity of SPR AuNPs and decreasing the fluorescence of N, P- 
CD were proportional to the uric acid concentration. Therefore, this 
sensor could accurately sense UA in human urine samples [403]. Zhao 
and colleagues, in another experiment, obtained fluorescent carbon 
spots from pork as a carbon source. These carbon points had strong 
(17.3%) and stable fluorescent quantum properties. The results showed 

that fluorescence nanosensors could detect uric acid in the linear range 
of 0.1–100 μM and 100–500 μM, with a LOD of 0.05 μM (S/N = 3). UA 
was efficiently detected in human serum and urine samples [392]. 

In the study by Wang and associates, nitrogen N, sulfur (S) with CDs, 
Fenton reaction, and UA enzyme reaction were exploited to develop a 
highly selective fluorescent biosensor to detect uric acid (UA). FL is 
quenched by hydroxyl radicals induced by the Fenton reaction between 
H2O2 and Fe2+. Under optimal conditions, two linear correlations were 
observed between the fluorescence attenuation ratio of C points and the 
UA concentration in the range of 0.08–10 μM and 10–50 μM, respec-
tively. The LOD was reduced to 0.07 μM. The new biosensor also showed 
successful results in sensing UA in human serum samples [404]. In a 
study by Wang et al. With two internal filters (IFE) between gold/silver 
bimetallic nanoclusters (Au/AgNCs) and 2,3-diaminophenazine (DAP) 
and H2O2, a fluorescent probe (RF-probe) was designed to detect uric 
acid. In this nano-sensor, uric acid was decomposed into allantoin and 
H2O2. By adding horseradish peroxidase (HRP), o-phenylenediamine 
(OPD) is catalytically oxidized to DAP in the presence of H2O2. Then, the 
DAP fluorescence intensity increased to 580 nm by extinguishing the 
fluorescence of BSA-Au/Ag NCs at 690 nm. This RF probe can detect UA 
sensitively in the range of 5.0 × 10− 6 M to 5.0 × 10− 5 M with a LOD of 

Fig. 10. The sensing performance of the designed nanobiosensor S1 for detection of urea. TEM image of Au-MSNPs. 
(Reprinted with permission from [399]). 

Fig. 11. Detection of H2O2 by IFE-based fluorometric, also UA using the H2O2-directed quenching of CS-AuNCs by PVP-AuNPs. 
(Reprinted with permission from ref. [402]). 
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5.1 × 10− 6 M. The results of the developed probe for determining UA in 
blood samples were consistent with laboratory measurements at the 
clinic [405]. 

In the study by Mathew et al. N–C dot/Cr (VI), nano-exploration was 
synthesized using one-step pyrolysis using ethanolamine and H2O2. Uric 
acid was synthesized for nanomolar detection. Then its structural 
properties were evaluated by UV–VIS, FTIR, and XRD. The presence and 
composition of C, N, O in N-CDs were structurally analyzed and 
confirmed by SEM-EDX. Detection of Cr (VI) nanomolar values by N-CD 
by fabricating N-CD/Cr (VI) nanocomposite and switching off in fluo-
rescence function as off-sensor is the lowest detection limit towards Cr 
(VI) detection of 1.42 nm. The formation of N-CD/Cr (VI) nano-
composites in addition to Cr (VI) in nanocomposites is reduced to non- 
toxic Cr (III)/Cr (0) in the presence of nanomolar uric acid, which acts 
as a reducing agent. Cr (VI) to Cr (III)/Cr (0) is observed with the 
appearance of aqueous fluorescence. Detection of uric acid (UA) is 
essential in body fluid levels; even a small amount of uric acid in humans 
leads to Wilson's disease, cardiovascular disorders, and Fanconi syn-
drome [406]. 

3.3. Creatinine 

Creatinine is produced from the breakdown of creatine by muscles. 
Creatinine is a waste product that is filtered by the kidneys. Under 
normal physiological conditions, the amount of creatine in the serum is 
35 to 40 μM. Creatine levels in body fluids are measured to check for 
muscle damage, muscular dystrophy, and kidney failure. Accurate and 
rapid detection of creatinine can be an important factor in preventing 
disorders such as kidney, muscle, and thyroid damage. There are several 
methods for detecting serum creatinine, including spectrophotometers, 
colorimeters, fluorimetry, etc. [407]. 

In a study using glutathione-coated copper nanoclusters (CuNCs), 
Jalili et al. Designed a fluorescent probe to measure creatinine levels 
accurately. The operation of this fluorescent probe is such that when the 
Al3 + ions and the copper nanoclusters of the probe collide, more fluo-
rescents are emitted. Also, creatinine extinguishes copper nanoclusters, 
and there is a linear relationship between creatinine concentrations 
ranging from 2.5 to 34 μg/L and a LOD of 0.63 μg/L. The selectivity of 
CuNCs was also tested. The results showed that dilution of the samples 
reduced the level of interference, indicating remarkable selectivity of 
CuNCs. The probe showed successful results in human serum, although 
it was not tested in urine [408]. 

In an experiment performed by Dhara and colleagues, a single- 
molecule fluorescence fluorescent probe with a naphthalimide probe 
was designed to quantify creatinine in human serum. Due to the Pd2+

quenching effect, the probe slightly emitted fluorescence after coordi-
nation with the Pd2+ fluorescent ligand. Inhibition of fluorescence 
behavior is due to the combined effect of the PET process, which oper-
ates from fluorophore naphthalimide to Pd2+ ion, and the intra-
molecular charge transfer (ICT) process. The ions Pd2+ fluorescence 
probe reacts with creatinine in the presence of creatinine to produce [Pd 
(Cr)2 Cl2] complex56 (Cr = creatinine), thereby increasing the fluores-
cent intensity releasing the fluorescent ligand. The fluorogenic probe 
measured creatinine as 0.30 μM, being significantly lower than normal 
in human serum samples [409]. 

In another study, Du and colleagues designed a fluorescent probe to 
convert creatinine in an aqueous solution based on the reaction of a 
palladium catalyst. This group made a water-soluble probe by intro-
ducing the hydrophilic ethanol portion of 2-(2-aminoatoxy) with fluo-
rophore naphthalene anhydride. The quenching effect of Pd2+ and the 
effect of photoelectron transfer caused the probe-Pd combination to 
show poor fluorescence. Nevertheless, in the presence of creatinine, the 
Pd-probe complex decomposed and regained fluorescence by removing 
the heavy atom extinguisher and preventing the photoelectron transfer 
effect. The Pd probe showed an extremely high detection ability of 
creatinine with a LOD of 0.16 μM. This sensor had high membrane 

permeability with low cytotoxicity. Therefore, it can potentially be used 
to detect creatinine in biological samples. In the report by Tajarrod et al., 
A “turn-on” fluorescence nanobiosensor was fabricated using thio-
glycolic acid (TGA) ZnS:Mn/ZnS QDs for selective and sensitive deter-
mination of creatinine (Crn) in human serum and urine samples. ZnS: 
Mn/ZnS QDs were fabricated using a simple aqueous sedimentation 
method. Energy-dispersive X-ray spectroscopy (EDS) showed the emis-
sion spectrum of ZGA-functionalized TGA fluorescence: Mn/ZnS QD, 
increasing the emission intensity in the presence of Crn. The increase in 
diffusion is due to the inactivation of the surface traps of QDs through 
the binding of Crn to the QD surface, which results in the formation of 
recombinant electron-hole radiative centers. The interaction between 
Crn and QDs was studied exploiting analytical methods, including 
fluorescence, UV–vis spectroscopy, and DLS assessments. The probe 
demonstrated an excellent linear relationship between 0.07 and 3.4 EM 
for Crn with a correlation coefficient (R2) of 0.9963 and a LOD and LOQ 
of 7.25 nm and 0.0242 EM, respectively. This method was successfully 
employed to sense Crn content in human urine and blood sample as well. 
The proposed method has several advantages: high sensitivity, short 
analysis time, low cost, and ease of operation [410]. 

4. Fluorescent nanosensors for detecting microorganisms 

Various NMs have been studied for fluorescent-based detection of 
microorganisms with high sensitivity and selectivity. A general scheme 
to detect microorganisms has been illustrated in Fig. 12. Sutarlie and 
associates have reviewed various NMs used to detect microbes and their 
related metabolites concerning the LOD, response time, and dynamic 
range [411]. Lebegue and associates have reviewed polydiacetylene 
vesicles for biosensing of various microorganisms and their metabolites 
because of their ability to show blue to redshift in association with a shift 
from non-florescent to fluorescent upon exposure to various stimuli 
[412]. In another study, Alafeef and coworkers have reviewed NPs- 
based nanosensors for in-vitro and in-vivo sensing of pathogenic bacte-
ria [413]. Stanisavljevic and coworkers have reviewed the application of 
QD-nanosensors utilizing the fluorescent resonance energy technique 
[414]. Jeong and associates have explored supramolecular assembly to 
detect microorganisms via fluorescent turn on and off mechanism [415]. 

Jenie and coworkers have demonstrated using rhodamine modified 
silica NPs for detecting Escherichia coli (E. coli). The assay was found to 
be sensitive and selective and exhibited a decreased response time 
compared to conventional bacterial analysis [416]. Landry and associ-
ates have investigated the use of label-free nanosensor array based on 
estimating a broad range of protein efflux from two microbes, including 
E. coli and Pichia pastoris [130]. Li and associates have discussed a 
calorimetric method to detect microorganisms using AuNPs. The naked 
eye observed a color shift upon the interaction of AuNPs with microbes 
[417]. Mehta and associates have investigated fluorescent carbon dots 
as efficient probes for cellular imaging of E. coli and Saccharomyces 
cerevisiae [418]. Kasibabu and coworkers have also demonstrated the 
use of carbon dots for imaging Bacillus subtilis and Aspergillus aculeatus 
cells with green and red emission spectra at different wavelengths [419]. 

Wang and coworkers have developed a sensitive and rapid method to 
detect E. coli, Bacillus subtilis, and Staphylococcus aureus in drinking 
water samples. They have utilized positively charged rhodamine dye to 
detect negatively charged bacteria by emission of a robust fluorescent 
peak at 552 nm [420]. Hu and associates have developed a single-step 
green synthesis of carbon-based QDs for fluorometric detection of 
E. coli in milk [421]. Qiao and associates have investigated gram- 
negative cell wall-specific NPs via polymyxin B conjugation against 
E. coli. Detection of bacteria was carried out by measuring fluorescent 
intensity resulting from upconversion of nanocarrier and E. coli 
complexation [422]. 

Wang and colleagues have developed aptamer-modified nanosensors 
for detecting E. coli using fluorescence resonance transfer. The sensor 
exhibited a LOD of 17 CFU/mL, demonstrating acceptable sensitivity 
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and selectivity for detecting E. coli [423]. Chen and coworkers have 
developed an indirect immunofluorescence method using silica NPs to 
detect E. coli O157:H7. The system exhibited stronger fluorescence and 
improved photostability than the conventional fluorometric dyes [424]. 
Previous investigations have shown the use of fluorescent nanosensors 
to detect microorganisms in food and drinking water and other biolog-
ical samples. These systems appear to be promising to sense a broad 
range of pathogenic microorganisms in human blood, plasma and urine 
samples. 

AgNPs alleviated with glucose and labeled with a pyrimidine fluo-
rescent conjugated to a monoclonal antibody (IgG) of Pseudomonas 
aeruginosa. When the fluorophore was placed near a metal surface, the 
fluorescence output was increased due to the specific features of metallic 
NPs. This nanosystem was used to recognize bacteria in soil, food sam-
ples, and water and agriculture samples as well [425]. 

CdSe/ZnS QDs linked to SiO2 microspheres form a fluorescent- 
tagged system to sense S. typhimurium. Fluorescent microscopy was 
used to analyze the conjugation between bacteria and fluorescent NPs. 
Surface-coatable nIR response fluorescent NPs can be used to detect and 
kill bacteria in solid and liquid phases. Polydopamine (PdA) is a bio-
logical material having binding properties. Carbonized PdA can be 
treated with polyethyleneimine (PEI) to create fluorescent carbon NPs 
(FDA: PEI). The anionic bacterial cell wall of Gram-positive and Gram- 
negative bacteria, e.g., S. aureus or E. coli gets attached to the cationic 
surface of NPs by alterations in the fluorescent signal. nIR radioactivity 
of carbonized NPs generated heat and showed bactericidal effects [426]. 
The molecular linkages inside the living cells can be studied with 
increased sensitivity and resolution with this procedure. 

FRET is currently used to identify and quantify Mycobacterium 
tuberculosis DNA using fluorometric detection and AuNPs [427]. 
Immunoassay-related virus recognition procedures have used fluores-
cent nanostructures as probes [428]. Some researchers have formed a 
fluorescent diagnostic tool well-matched to a digital camera that 
transfers its statistics to a central database arrangement and suggests a 
fascinating POC testing system to detect influenza that could be used as 
an international real-time investigation system. 

Some researchers have improved the process of hepatitis B diagnosis 
by connecting the fluorescence enzyme-linked immunosorbent assay 
(FELISA) with metallic NPs. An increase in the LOD of the HBsAg via a 
traditional assay, i.e., ELISA, has been observed using dually tagged 
AuNPs [429]. QDs and AuNPs have been exploited for virus detection by 
FRET as electron donor and acceptor, respectively, in FRET arrays. The 
fluorophore linked to particular antibodies undergoes a conformational 
change after attachment to the virus that causes a change distance 

between fluorescent molecules and a countable shift in the resonance 
energy transfer. Molecular Beacon hairpin was restrained by using gold 
or silver nanowires as fluorescence quenchers. QDs have been studied as 
a fluorophore. They permit the detection and analysis of viral infection 
by identifying the bioconjugates acquired by antibody affinity and some 
other linkages. The structural changes in the cytoskeleton can be studied 
by using different colored QDs. They have proved their capability for 
influenza virus detection in clinical models and initial stage detection of 
HIV infections [430]. QDs have also been proposed for detecting the 
hepatitis B virus (HBV) virus, but their sensitivity is not superior to the 
already existing methods for this virus detection [431]. 

Human monoclonal antibodies bind to the viral S protein's primary 
antigen to stop the host cell entrance and spot the virus for clearance. 
Each SARS-CoV-2 virion has almost 100 S protein trimers that constitute 
a significant virus detection target. Seo et al. created a FET-based sensor 
by treating graphene sheets with SARS-CoV-2 S protein antibodies to 
accurately sense SARS-CoV-2 with a LOD of 242 copies/mL in naso-
pharyngeal swabs. Many nanobiosensors for SARS-CoV-2 detection have 
been developed for both antigen and nucleic acid-based approaches, 
having sources like QDs and AuNPs. For biological analyte sensing, 
SWCNTs have proven themselves as an ideal choice. SWCNTs are 
naturally based on nIR fluorescence, and they can be treated with many 
other sensing elements to form firm biological sensors having fast 
fluorescence-shift readouts. Compared to traditional fluorophores, the 
SWCNTs can be used for a long time without photo-bleaching. Addi-
tionally, SWCNTs give simplistic incorporation into transportable fac-
tors such as immobilization in hydrogel or paper [432,433] with 
recognition of nIR SWCNT signal by a charge-coupled device (CCD) 
camera system similar to a smartphone and Raspberry Pi [434]. 

5. Challenges in using fluorescent-based nanosensors 

Despite substantial achievement in the area of molecular sensing 
with fluorescent-based nanosensors, there are still technical challenges 
that limit their application. Identifying reactions that combine a faster 
rate with high chemoselectivity is considered the main challenge in 
successfully fabricating a fluorescent probe [435,436]. Overcoming the 
approaches to incorporating NMs into fluorescent-based nanosensors to 
detect some metabolites (i.e., glucose) might be controversial. This is 
because electrochemical sensing of these analytes requires the same 
sampling procedures and thus, yields no improvement in the patients' 
quality of life. Moreover, the sensor's lifetime can be another unresolved 
issue for its application in clinical care [437]. 

Some NMs, such as MOFs, are insoluble or inadequately dispersive. 

Fig. 12. Illustration of fluorescent nanosensors to detect microorganisms.  
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Hence, designing practical sensing nanodevices to monitor metabolites 
in aqueous biological samples is another prominent issue. The lack of 
selectivity of MOFs has been reported as another challenge for their real- 
time application in fabricating nanoprobes to sense antibiotics [64]. 
Because the metal ions often show similar coordination features, fluo-
rescent probes might detect ions interchangeably [436], which is 
considered a technical barrier. 

Some factors, such as essential difficulties in sensor design or inac-
cessibility of in-vivo tissues, have hindered the utilization of fluorescent- 
based sensors [59]. In-vivo sensing and bioimaging demand sensitive 
instruments which are capable of detecting signals in a living system/ 
organism without perturbing the system/organism being tested. Only a 
few fluorescent-based nanoprobes have been designed for in-vivo im-
aging of biological molecules. Two examples include AuNP-based 
nanosensors and QD-based single-molecule fluorescent nanoprobe; 
both of them use toehold-mediated strand displacement cascade [438]. 
Before in-vivo application of such nanosensors, assessment of biocom-
patibility, long-time stability, long-term cytotoxicity, metabolic mech-
anisms, and dynamic behavior of different functional NMs is necessary. 
The in-vivo detection system must also show appropriate spatial and 
temporal resolution for the interrogated living system [59]. More 
recently, innovative methods have been introduced to tackle such lim-
itations, and for the first time, allow monitoring of in-vivo biology. These 
strategies were mainly concentrated on enhancing the biocompatibility 
of the nanosensors of advances in sensing technology. The optimization 
of physical characterization of NPs [439], coating of biocompatible 
materials on NP's surface to avoid fast renal clearance [440], utilization 
of biomimetic hydrogels to reduce foreign body responses [441], mini-
aturization of electrochemical sensing elements [442], developing 
wireless power supplies and signal transducers [442], and developing 
new detection modalities to expand sensing palette [443], are among 
the most important approaches that have been adopted in the field to 
address toxicity, biocompatibility, resolution, and multiplexing chal-
lenges of developing such in-vivo nanobiosensors. 

There are marketing issues that limit the application of fluorescent- 
based biosensors. In this scenario, efforts have been put in making 
QDs suitable for mass production via different synthetic routes and re-
action engineering approaches. Nowadays, home-used glucose nano-
sensors dominate almost 80% of the world's market of biosensors [444]. 
Nevertheless, utilizing these nanobiosensors in commercial space is 
limited because of toxicity, biocompatibility, and stability issues. 
Compared to their bulk counterparts, the prepared particles could react 
very differently in physiological conditions, which might be due to their 
small dimension [445]. The developed sensors must be comparable to 
the commercially available sensors to justify the additional cost and 
effort to overcome their manufacturing challenges. One drawback of 
fluorescent nanoprobes is that they are not widely appropriate for 
commercial uses because their market pricing is comparatively high, 
which is not profitable to be used in clinics. In this regard, there is a 
pressing need to do experiments in order to broaden market prospects 
and fabricate more reliable and cheaper nanobiosensors. On the other 
hand, a few detection kits might need fresh preparation of the assay 
reagents [446], which might limit their commercialization. GO is widely 
used in establishing sensitive fluorescent nanosensors [447]. So far, the 
most suitable method for mass production of GO is chemical reduction, 
forming rGO. However, due to mechanical exfoliation, it is challenging 
for scientists to complete the task of producing graphene sheets of the 
same quality in high amounts [448]. In addition to these challenges, 
fouling, deactivation of the analyte/metabolite, and material degrada-
tion might also limit the practical use of these nanosensors [449]. 

Because of single-molecule fluorescent-based sensors useful appli-
cation for in-vitro or in-vivo diagnostics, overcoming current challenges is 
crucial to facilitate their development for application in biochemistry, 
biology, biophysics, and pharmacology. Further studies should address 
such concerns for patients to benefit from fluorescent nanosensing 
technology. 

6. Conclusion and future perspectives 

Fluorescent nanosensors have brought revolution nanobiosensing 
area. These nanoprobes are grouped according to their sensing pro-
pensity. They are currently studied for their application in sensing 
various organic compounds and pharmaceutical agents, microorgan-
isms, and metals at the trace level. This is mainly due to their desirable 
surface-to-volume ratio, good electronic properties, photostability, tai-
lorability, biocompatibility, high sensitivity, and remarkable selectivity. 

The majority of the previously published reports were concerned 
with applying fluorescent-based nanoprobes in monitoring water pol-
lutants, heavy metals, and ions. In this preliminary review, we 
comprehensively discussed recent trends in applying fluorescent-based 
nanoprobes for the analysis of multiple biological molecules and mi-
croorganisms. We have also elaborated on structural designing and 
mechanistic approaches used to develop such nanobiosensors to sense 
heavy metals, blood gases, amino acids, proteins, enzymes, carbohy-
drates, urinary metabolites, toxins, antioxidants, drugs, cancer bio-
markers, etc. A particular focus is placed on those nanodevices based on 
CNTs, QDs, CDs, metallic NPs, MOFs, SWCNTs, and nanocrystals. 
Furthermore, the photophysical processes responsible for monitoring 
such metabolites, with a low LOD and a wide linear detection range, 
have been discussed. 

As discussed above, fluorescent nanosensors exhibit interesting fea-
tures for rapid, reliable, and sensitive detection of drug-induced organ 
damage by estimating elevated or decreased biomarkers levels. The 
fluorescent bioprode industry will grow rapidly as awareness of early 
detection and rapid screening for diseases increases. Recently, studies 
have mainly focused on sensors devoted to monitoring heavy metals or 
ions or other water pollutants that presented accumulative effects on the 
human body. Thanks to the functionalizing of NMs, i.e., QDs and 
aptamers, it is now possible to design nanosensors to analyze a variety of 
metabolites with remarkable sensitivity, good reversibility, and 
outstanding specificity. 

Various fluorescent-based sensors have been reported so far. Still, 
most discovered methods are based on blind screening, and the hit rate 
is not high enough. Some challenges (i.e., toxicity issues) present in 
utilizing these nanosensors and their commercialization that need to be 
tackled. This necessitates the dedication of many studies assessing the 
efficacy of such nanosensors. One strategy to circumvent the insolubility 
issues of NMs that are used in sensor fabrication is to coat them with 
layers, films, or fine particles with improved processibility. Combining 
the powder NMs with other supporting materials might be an alternative 
strategy to implement such NMs for their practical fluorescent-based 
sensing uses. Creating structurally robust nano-frameworks via the uti-
lization of organic linkers can feasibly address the collapses observed in 
post-sensing manipulation of some NMs, such as MOFs. Despite these 
drawbacks, the small dimension of these nanosensors and their capa-
bility for selective, ultrasensitive, label-free, real-time detection could 
be exploited in array-based screening and in-vitro or in-vivo diagnostics. 

Nanoengineering techniques using fluorescent indicators combined 
with polymers allow precision control over optical and catalytic features 
to obtain an ultrasensitive response. These facts, together with the 
above-mentioned benefits that optic technology provides nowadays, 
make newly-designed fluorescent biosensors promising nanotools for 
the analysis of multiple biomolecules in real applications. There is a 
considerable paucity of knowledge regarding the underlying mecha-
nisms of fluorescence sensing; therefore, more systematic investigations 
are needed to elucidate the interaction of different NMs with target 
molecules. For instance, high-throughput biosensing models using 
fluorescent probes based on computer-aided designs can be developed in 
future studies to target biological macromolecules, such as carbohy-
drates. Advancements in terms of the selectivity and fluorescence 
properties of NMs will pave the way to accurately diagnose and treat 
various diseases, including human malignancies. From a personal 
perspective, the research of fluorescent-based nanobiosensors is as hot 
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not as it has ever been. Altogether, we firmly believe that the current 
review can foster the wider incorporation of nanomedicine and will be 
of particular interest to researchers working on fluorescence technology, 
material chemistry, coordination polymers, and related research areas. 
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