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Abstract: Among carbon-based nanomaterials, carbon dots (CDs) have received a surge of interest in
recent years due to their attractive features such as tunable photoluminescence, cost effectiveness,
nontoxic renewable resources, quick and direct reactions, chemical and superior water solubility, good
cell-membrane permeability, and simple operation. CDs and their composites have a large potential
for sensing contaminants present in physical systems such as water resources as well as biological
systems. Tuning the properties of CDs is a very important subject. This review discusses in detail
heteroatom doping (N-doped CDs, N-CDs) and the formation of metal-based CD nanocomposites
using a combination of matrices, such as metals and metal oxides. The properties of N-CDs and
metal-based CDs nanocomposites, their syntheses, and applications in both chemical sensing and
biosensing are reviewed.

Keywords: N-CDs; metal-based CDs composites; properties; chemical sensing and biosensing; properties

1. Introduction

The rapid increase in the world population has caused a sharp rise in environmental
pollution. The most alarming example is water pollution involving the scarcity of potable
water due to the discharge of various types of pollutants such as phenolic compounds, inor-
ganic materials, heavy metals, pesticides, and pathogenic microorganisms [1–3], that come
from industries such as paper, printing, food processing, pharmaceutical, and cosmetic.
This is an increasingly serious problem causing fatal diseases in the world [4–6]. The identi-
fication of inorganic and organic contaminants in various sectors, such as environmental
monitoring, chemical and biological analysis, healthcare, and food safety, is crucial [7–9].

Several techniques for monitoring of water quality and detection of contaminants
are popular, including conventional instrumental laboratory-based analysis, such as mass
spectrometry, electrochemical methods, and gas chromatography. The prospective advan-
tages of the laboratory-based analytical methods have been recognised for a long time, but
studies show that they are not very efficient for on-site monitoring applications. With the
technical improvements in analytical chemistry, new techniques are available for real-time
detection such as, advanced spectroscopy, model-based event detection and water quality
sensors [10,11].

In this regard, the introduction of sensor technology is attracting considerable atten-
tion. Sensors are classified into chemical, and biosensors based on their nature of sensing
including the qualitative and quantitative analysis of a specific type of sample with the help
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of spectroscopic, electrochemical, and photoluminescence properties of the systems [12].
The chemical sensor involves the detection of metal ions and other molecules in the physical
systems such as water resources, while biosensors sense molecules of biological impor-
tance [13,14].

In the last decade, a significant amount of attention has been given to “nanotech-
nology”, particularly in the field of sensors. It is one of the most essential technologies
encompassing discoveries and inventions in numerous fields, such as chemistry, biology,
medicine, physics, chemistry, and engineering. Richard P. Feynman (1959) first coined the
word “nanotechnology” [15]. It is made of two words “nano” and “technology”. The word
“nano” originated from the ancient Greek word νãνoς (nános) meaning dwarf [16]. Thus,
nanotechnology is the branch of technology where the manipulation of matter takes place
on an atomic and molecular scale within at least 1 to 100 nm. Nanoparticles are the basic
tools of nanotechnology. Particles with the size within the nano dimensions are known as
nanoparticles (NPs) and the materials consisting of these particles are called nanomateri-
als [17]. The NPs can be 0D, 1D, 2D, and 3D depending on their shapes. A nanocomposite
is a combination of the best properties of two or more different materials, in which one
of the components has at least one dimension that is around 10−9 m (1 nm) [18,19]. In
this regard, carbon materials, including fullerenes, nanofibers, graphene oxide (GO), and
other carbonaceous nanomaterials have drawn significant attention due to a number of no-
table characteristics, such as electrical conductivity, chemical reactivity, and photocatalytic
properties [20].

In recent years, carbon-based sensors have been reported to play a crucial role in
chemical sensing and biological sensing. Carbon “quantum dots” (CQDs) or carbon dots
(CDs) represent the carbonaceous family with incredible properties and advantageous
features to overcome the shortcomings of common traditional metal-based quantum dots
(QDs) such as metal oxides (TiO2, ZnO), and inorganic QDs (ZnO-PbS). Their shortcomings
include high-carcinogenic toxicity, reactivity, cost, and low biocompatibility, hindering
their extensive use and making them responsible for serious health and environmental
problems [21,22]. Generally, CDs are spherical carbon NPs in which carbon atoms are sp2

hybridised with diameters of less than 10 nm [23,24]. CDs have a large number of -OH
and -COOH and -NH2 and other groups on their surfaces, which give them outstanding
photophysical and chemical properties, together with excellent biocompatibility, negligible
toxicity, short response times, considerable aqueous solubility, cell-membrane permeability,
and cost effectiveness with good quantum yield (Φ) [25–27]. Hence CDs show great impor-
tance in different fields, including bioimaging [28], energy harvesting [29], biosensing [30],
drug delivery [31], and photocatalysis [32]. The efficiency of CDs significantly improves
with the introduction of a heteroatom (N, S, B, P, F, Br, etc.) or transition metal (Zn, Cu, Mg,
Ag, Au, etc.) [33,34] through the process of doping and formation of composites of CDs
with difference matrices such as metal, metal oxide, polymer, and carbon-based materials
(graphene, GO) compared to individual CDs and without CDs [35–38].

In this review, we describe the sensing abilities of N-doped and metal-based CDs
composites in the identification of undesirable components present in physical systems,
such as water resources, as well as biological systems (living organisms), which cause
pollution and diseases. The interactions of CDs synthesised from different precursors with
doped nitrogen and metal or metal oxide to form composites are discussed and the role
of the composites for biological and chemical sensing is highlighted. Figure 1 illustrates a
general overview of the review.
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relatively lower Φ when prepared from chemical sources [39], compared to organic carbon 
sources, such as organic compounds, organic natural products, and biomass waste. 
Natural sources are more popular for the synthesis of CDs because they are 
heterogeneous, biodegradable, and bio-organic substances mainly composed of 
biopolymers such as cellulose (30–60%), hemicelluloses (20–40%), lignin (15–25%), ash, 
and proteins [40,41]. Renewable, ecofriendly, abundant, and innocuous carbon sources 
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resources in the form of biomass waste are currently discarded, landfilled, or openly 
burned, which not only leads to a waste of resources but also causes some environmental 
problems threatening human life [42–44]. 

Figure 1. General overview of this work. The potential of CDs as a component of N doping and
metal or metal oxide composite materials for chemical and biological sensing is highlighted.

2. Carbon Sources for the Preparation of Carbon Dots

CDs can be synthesised from a good number of precursor materials coming from both
natural (organic) and chemical (inorganic) sources (Figure 2). The properties of CDs rely
on the source materials used for synthesis. For instance, fluorescent CDs exhibit relatively
lower Φ when prepared from chemical sources [39], compared to organic carbon sources,
such as organic compounds, organic natural products, and biomass waste. Natural sources
are more popular for the synthesis of CDs because they are heterogeneous, biodegradable,
and bio-organic substances mainly composed of biopolymers such as cellulose (30–60%),
hemicelluloses (20–40%), lignin (15–25%), ash, and proteins [40,41]. Renewable, ecofriendly,
abundant, and innocuous carbon sources show excellent optical properties and low cyto-
toxicity. However, most of the natural resources in the form of biomass waste are currently
discarded, landfilled, or openly burned, which not only leads to a waste of resources but
also causes some environmental problems threatening human life [42–44].
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Figure 2. Natural and chemical sources of precursors used in the synthesis of CDs.

3. Methods of Preparation of CDs

CDs can be prepared by both top-down and bottom-up approaches (Figure 3). The
former involves the rupture or cleaving of bulk carbonaceous materials into small materials
by physical, chemical, or electrochemical means, including electrochemical synthesis [45],
laser ablation [46], arc discharge [47], or chemical oxidation [48]. The top-down method is
associated with the advantages of an abundance of raw materials, a large-scale production,
and a simple mode of operation. This method, however, also suffers from the drawbacks of
low yield, the requirement of special equipment, and use of nonselective chemical cutting
method. Thus, the bottom-up method is preferred. It is an easy method and involves
carbonization, that is, small molecules are chemically fused in a stepwise way, using
microwave [49], ultrasonication [50] and hydrothermal methods [51]. The hydrothermal
method has been the most popular method, due to its associated advantages, such as ease
and convenience of the procedure, simple operation, cost effectiveness and ecofriendliness,
which have rendered it to be considered as a green method [44]. Conventionally, CDs
are synthesised by surface functionalization of carbon nanoparticles with organic and
polymeric molecules. CDs synthesised using this method often require high-operational
temperatures, the use of volatile organic solvents or alkaline and acidic conditions. Sun and
coworkers reported the synthesis of CDs by laser ablation of a carbon target, prepared by
hot-pressing a mixture of graphite powder and cement, followed by stepwise baking, curing,
and annealing, in the presence of water vapor with argon as a carrier gas at 900 ◦C and
75 k [46]. The treated sample was not photoluminescent, but upon the surface passivation,
by attaching simple organic species to the acid-treated carbon particles, typically at 120 ◦C,
for 72 h, bright luminescence emissions could be observed. A similar method was used,
and photoluminescent CDs were produced by surface passivation, by Cao et al. [52] and
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in these cases, the optical properties were widely varying but were less controllable. The
experimental conditions also made them environmentally unfriendly [46,52]. Given the
natural concerns about environmental sustainability, greener approaches to CD synthesis
are urgently needed [53,54].
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Both chemical and natural sources are based either on top-down or bottom-up strate-
gies. As noted earlier, the top-down method involves harsh experimental conditions (e.g.,
strong acid and arc discharge), tedious operation steps, with expensive equipment usually
employed, yielding CDs with low Φ, which greatly limits their practical application [55–57].
The bottom-up approach is based on the polymerisation reaction of small molecules aim-
ing at the formation of nanoscale CDs. The green synthesis of CDs using the bottom-up
approach involves hydrothermal and solvothermal combustion, and template-assisted,
microwave, and ultrasonic methods, etc. Among them, hydrothermal methods are the
most frequently used due to their advantages, such as low cost, high yields, ease of opera-
tion, simple equipment requirements, and their ecofriendly nature [58,59]. The bottom-up
synthetic route thus appears promising and is more appealing as it uses “green precursors”
(that is, renewable natural resources or their derivatives or precursors made from waste
materials of biomass). In contrast, chemical precursors refer to chemical species, such as
citric acid, ethylene, etc. [54,60].

CDs can be used as fluorescent chemical sensors for measuring several analytes
found in water bodies, such as different types of chemical species such as pesticides
and heavy metal ions such as As, Hg, and Cd. CDs find important applications in the
quantification of biological molecules and intracellular metal ions (such as Fe3+, Hg2+,
Na+, and K+), vitamins, enzymes, nucleic acids, proteins, H2O2, glucose, L-cysteine, and
galactose, among others [61–63]. The exceptional sensing ability of CDs toward a range
of substrates has been exploited and a significant role of CDs was noted in a number
of biological processes, such as regulation of metalloenzymes, gene expression, energy
generation, and neurotransmission in biological systems [53,54,60].



Nanomaterials 2022, 12, 3434 6 of 27

CDs are excellent sensors due to their novel characteristics, such as high sensitivity,
intrinsic fluorescent properties, low cost, ecofriendliness, quick response, negligible cyto-
toxicity, and easy preparation method. Thus, they serve as appropriate energy materials
or electron acceptors and donors and are a hot topic in modern research. The sensing
of CDs generally occurs as a result of a change in their fluorescence behaviour through
various means, such as the inner-filter effect, photoinduced electron and charge transfer,
and resonance energy transfer [64,65]. Figure 4 displays the progress data for CDs from
2004 to 2020 [66,67]. A nearly exponential rise is observed within the reported time frame.
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Figure 4. The number of publications related to CDs. A surge of interest in recent years is observed.

4. Properties of Carbon Dots
4.1. Structural Properties

CDs are commonly sphere-like three-dimensional (3D) clusters of 2–10 nm, composed
of C, N, O, and H atoms [68]. The proportions of these elements vary, depending on the car-
bon source used to produce them through different approaches (generally carbohydrates,
proteins, and other biomolecules are employed). The inside parts of these clusters are
surrounded by mostly sp3 hybridised and a small portion of sp2 hybridised carbon atoms,
along with disordered carbons, which result in an amorphous nature [69,70]. Codoping,
surface passivation, and some other treatments improve the water solubility of CDs, allow-
ing more applications [71,72]. Due to low toxicity and biocompatibility, CDs can enter cells
without any difficulty via endocytosis, and have extensive relevance in deep-tissue and cell
imaging. Raman spectroscopy is widely used for the identification of functional groups
and spectral characteristics of the molecular structures of samples [73,74].

4.2. Optical Properties
4.2.1. Absorbance

CDs show broad and strong absorption bands in the ultraviolet-visible (UV-vis) re-
gion. The absorption spectra vary for CDs synthesised from different sources with var-
ious approaches. Water-soluble CDs show a light yellow colour in aqueous solution.
Many functional groups present on the surface of CDs cause different types of transi-
tions, such as π-π* transition of C=C and C=N bonds observed at 220~270 nm, while a
shoulder peak is observed due to the n-π* transition of C−O and C=O bonds at around
280~350 nm [75,76]. Upon increasing the synthesis temperature, the latter band becomes
broader and weaker [77].
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4.2.2. Fluorescence Properties

One of the most exceptional features of CDs is their fluorescence properties, which in-
clude fluorescence emission, narrow emission, wide excitation, size- or excitation wavelength-
dependent fluorescence emission, strong resistance to photobleaching, and upconversion
luminescence [78,79]. Zhang et al. [78] reported the influence of organic solvents on the
fluorescence emission peak position of CDs. Different organic solvents create different
types of defects on the surface of CDs, which initiate different emission sites responsible for
intensifying the fluorescence emission spectrum of the materials.

4.2.3. Upconversion Photoluminescence

Upconversion photoluminescence (PL) is one of the most appealing optical features
of CDs, affected by surface defects, quantum size, or confinement effects. It is a kind of
tunable PL [80]. In tunable PL phenomenon, CDs show excitation-dependent PL along
with strong emission, which rapidly decline from blue-wavelength to red-wavelength
region. The upconversion phenomenon, on the other hand, involves emission of photon at
shorter wavelengths than the excitation wavelength, which is attained by absorbing two or
more photons [79–82]. CDs prepared from the natural sources show special upconversion
fluorescence, with an emission wavelength shorter than the excitation wavelength, instead
of traditional down-conversion fluorescence [83]. Two types of accepted mechanisms of
antistokes photoluminescence and multiphoton active processes are usually used to explain
upconversion fluorescence [84]. Sun et al. [85] reported that S and N codoped CDs prepared
from hair fibres exhibit upconversion fluorescence behaviour. Wu et al. [86] demonstrated
the upconversion phenomenon of CDs prepared from walnut shells by introducing an
electronic transition process model. According to this model, the phenomenon occurs due
to the gap between the highest occupied molecular orbital (HOMO) and lowest occupied
molecular orbital (LUMO). The HOMO–LUMO gap decreases as the particle size of CDs
increases. The electrons at the π orbitals (HOMO) of carbine are excited after the absorption
of low-energy radiation with wavelengths >600 nm and jump into the excited state with
higher energy (LUMO). The electrons in this state return back to the ground σ state and
release a huge amount of energy in the form of radiation and, consequently, upconversion
luminescence takes place.

4.2.4. Electrochemiluminescence

The electrochemiluminescence (ECL) of CDs plays an excellent role in the clinical diag-
nosis of intracellular toxic elements, even in ultratrace amounts, due to the high sensitivity
and simple mode-of-action of this technique. Some of the numerous novel luminescent
materials used so far include iridium complexes [87], fluorescent dyes, and noble-metal
nanoclusters [88–90]. The conventional techniques for detection, on the other hand, include
atomic absorption spectrometry (AAS) [91], electrochemistry [92], fluorescence [93], and
inductively coupled plasma mass spectrometry (ICP-MS) [94], which are time consuming.
Electrochemical or chemical approaches applied for the synthesis of CDs for ECL appli-
cations yield CDs with oxygen-rich functional groups, such as carbonyl (C=O), carboxyl
(-COOH), hydroxyl (-OH) and epoxy or ether (R−O−R) [95,96]. These lead to formation of
defects and serve as chemically reactive sites, responsible for the degradation of large car-
bonaceous substances into smaller fragments [97]. While both oxidized and reduced CDs,
having different ECL behaviours, are produced using the bottom-up method, negligible or
weak ECL behaviour is exhibited by reduced CDs. Strong ECL emission is obtained from
oxidized CDs. The oxygen-containing functional groups present on the surface of the CDs
produce electrogenerated CDs•− radicals with the help of K2S2O8, where S2O82− produces
the strongly oxidizing SO4

•− radicals by electrochemical reduction. After CDs•− react with
SO4

•− radicals through electron-transfer annihilation, an excited state for ECL emission is
generated [98,99].
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4.3. Cytotoxicity and Biocompatibility

CDs synthesised from green routes, using cost-effective and renewable sources, such
as fruits, vegetables, and different types of waste are excellent alternatives. The unique
properties of those CDs, such as good biocompatibility, low toxicity, high-water solubil-
ity, catalytic behaviour, and electrical conductivity make them useful as biosensors in
biomedical applications, especially in biolabelling, DNA-sensing microbial control, and
drug-delivery studies, metal sensing, drug delivery, and energy storage [100,101]. Jhansi
et al. [102] studied the biocompatible properties of CDs through an in vitro cytotoxicity test
on L6 normal rat myoblast cells by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay. Arul et al. [103] reported that fluorescent nitrogen-doped
CDs (N-CDs) could be prepared from kiwi fruit (Actinidia deliciosa) extract by a one-step
hydrothermal method using aqueous ammonia. Due to low cytotoxicity, N-CDs were tested
against L-929 (Lympho blastoid-929) and MCF-7 (Michigan Cancer Foundation-7) cells
and interestingly, they exhibited anticancer activity. N-CDs also catalysed the degradation
of carcinogenic agents such as rhodamine-B (RhB), a xanthene-based dye released from
paper, textiles, paint, and leather industries, being applied as an illegal food additive,
staining fluorescent dye and as a tracer dye using NaBH4. Park et al. [104] proposed simple
adjustable experimental conditions such as ultrasonic power and the optimal proportion
of solvents and reaction time for a large-scale preparation of water-soluble CDs from
food-waste-derived carbon sources. The ultrasound-assisted route led to the production of
120 g CDs produced from 100 kg of food waste mixture, which were highly water soluble,
photostable, photoluminescent, and with low cytotoxicity, and which could be used for
in vitro bioimaging and promotion of seed germination and plant growth (Figure 5).
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Figure 5. Synthesis of carbon dots from the waste food. The CDs were successfully used for in vivo
tumour imaging, as described in [104].

Zhou et al. [105] achieved large-scale production of CDs by pyrolysis of watermelon-
peel waste under a low temperature and followed by filtration. The obtained CDs showed
strong-blue luminescence, excellent water solubility, good stability in solutions with a wide
range of pH and high salinity. The as-prepared carbon dots were successfully used in
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HeLa cell imaging (Figure 6). Similarly, CDs with low inherent cytotoxicity could also be
produced from lychee seeds by pyrolysis, and CDs with a Φ of 10.6% could be used in
fluorescence imaging of living HepG2 cells (Figure 7) [106].
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Ding et al. [107] reported the preparation of red-emitting C-dots (R-CDs) from lemon
juice using a hydrothermal method, followed by purification using silica column chro-
matography. The CDs exhibited Φ of 28% and an excitation-independent red emission
maximum at 631 nm could be observed. The reduced R-CDs showed very negligible
cytotoxicity. The surface states of R-CDs were crucial. The reduced R-CDs showed orange
emission maxima at 589 nm and could be used in deep-tissue imaging as represented in
Figure 8. Oh et al. [108] and Bilal et al. [109] reported the metacellular analysis of QDs.
Table 1 lists cytotoxicity and the detection-limit range of a number of QDs and CDs to
depict an overall scenario. Although due to the variation in the preparative method and
precursors, it is difficult to have a realistic comparison, this would serve as a screenshot of
the development in this arena.
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Table 1. Cytotoxicity and detection-limit range of QDs and CDs.

Quantum Dots vs.
Carbon Dots Source Method Cytotoxicity and Detection-Limit

Range Reference

CdTe QDs
CdCl2, NaBH4, tellurium

powder, phosphate
buffered saline tablets

Electrochemical method

118 ± 49 µg/mL with the help of
electrochemical assay

157 ± 31 µg/mL by MTT
cytotoxicity assay

[110]

InPZnS QDs InPZnS alloy core and a
thin ZnS shell Heating Up Method

70 nM of QDs responsible for
cytotoxic effect on environmental

health on 72 h exposure
[111]

Indium-based QDs
In and Zn content and
implementing a more

robust outer shell
Heating Up Method

12.5 mg/kg and 50 mg/kg QDs
generally collected in the liver as

well as the spleen
[112]

InZnP and InZnPS QD Indium myristate, ZnSt2 Precipitation Method 6.25–200 nM upon 24 h exposure [113]

CDs Onion waste Hydrothermal method 0.31 µM [114]

CDs

ZrCl2, trinitrophenol
(TNP), 2,4-dinitrophenol,

4-nitrophenol, phenol,
Polyvinylpyrrolidone,
acetic acid, citric acid

Hydrothermal
Method

0.01–20.0 µM at a low-detection
limit of 3.5 nM [115]

CDs Gelatin Hydrothermal
Method 1−75 µmol/L [116]

CDs Carbohydrate Hydrothermal
Method 0 to 1 × 103 [117]

CDs DEA Microwave
Method 5.0 × 10−2 to 8.0 [118]

CDs Catechol Hydrothermal
Method 1 × 10−2 to 25 [119]

CDs Citric acid Hydrothermal
Method 8.0 × 10−2 to 50 [120]
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5. Surface Functionalization

Multiple functional groups residing on the surface of CDs are accountable for their
inherent properties. There are several ways to enhance the sensing ability and characteristic
properties of CDs by functionalization: elemental doping (introduction of impurities, or
heteroatoms) into CDs, forming a composite with appropriate matrix and surface passiva-
tion [121]. The enhancement of sensing through doping and the formation of composites
(combination of more than one type of materials) are discussed here.

5.1. Doping of “N” Atom into CDs

Doping of heteroatoms (especially N, but also S, among others) in CDs is a frequently
used route to enhance their physiochemical properties. Without N-doping, CDs have a
large HOMO–LUMO gap. With N-doping, the same size of carbon and nitrogen ensures
good interaction. The few valence electrons of N promote chelation with -NH2 and -COOH
groups, present on the surface of CDs, which readily bind to the functional ligands (DNA,
proteins, polymers, and organic molecules) via electrostatic, amidation and coordination
interactions, inducing an upward shift in the Fermi level and electrons in the conduction
band, and reduce the HOMO–LUMO gap to enhance the sensing properties of CDs. There-
fore, N-doping in CDs lowers the gap between HOMO and LUMO and less energy is
required for excitation and the sensing ability is increased [122,123] (Figure 9). The doping
with nitrogen (aqueous ammonia) was confirmed by energy dispersive spectroscopy (EDS),
as well as FT-IR spectroscopy, and the size was confirmed by HR-TEM [82].
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5.1.1. N-Doped CDs in “Chemical Sensing”

The development of selective, ideal, new, portable, cost-effective, highly sensitive chem-
ical sensor and monitoring devices has directed attention to N-doped CDs. Liu et al. [124]
introduced the chemical sensing ability of N-CDs towards nitrite (NO2

−) under acidic condi-
tions (pH 2.5) in a food sample. N-CDs were prepared by a facile hydrothermal carbonization
method using p-phenylenediamine and citric acid as the nitrogen precursors. The surface
of the resultant N-CDs consisted of multiple functional groups such as porphyrin CeNeC,
amino N in N-(C) or HeN-(C) or sp2-hybridised C. Doped N was responsible for demon-
strating the green photoluminescence (PL) emission maximum. Similarly, Liu et al. [125]
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prepared N-CDs using a green hydrothermal approach, followed by carbonization of alginic
acid and ethylenediamine to measure Fe3+ in urban river water, within acidic mimicking
conditions (pH 4). Chen et al. [126] introduced double atom doping, such as S, N-CDs, and
successfully prepared doped CDs from a garlic green source, using the one-top hydrother-
mal method. The resultant S, N-CDs demonstrated excellent sensing ability towards Fe3+

present in lake and tap water, within the tough interferential environmental circumstances.
Yuan et al. [127] reported the superior PL properties of N-CDs obtained from maleic acid
and ethylenediamine through a hydrothermal method. They exploited their excellent sensor
tendency to recognize the p-nitrophenol (4-NP) environmental water samples (4-NP is used
as raw material in chemical industries, such as pesticides, pharmaceuticals, dyes, explosives,
and leather). Shamsipur et al. [128] studied the ultrasensitive colorimetric sensing properties
of N,P-CDs prepared by a green hydrothermal route and reported excitation-dependent PL
emission behaviour. N,P-CDs were applied for the sensing of uranyl ions (UO2

2+) in wastew-
ater and hair samples. Lu et al. [129] showed that N-CDs synthesised using ultrasound
techniques could detect Fe2+ ions in aqueous samples and inside a malignant tumour cell.
N-CDs showed excellent PL quenching and temperature-dependent photoluminescence
at 283–358 K for Fe2+ ions. Xie et al. [130] reported the synthesis of N-CDs following a
green route from barley and ethanediamine using a hydrothermal method. Numerous
hydrophilic groups were identified on the surface of N-CDs, which were responsible for the
strong fluorescence properties at 480 nm. The N-CDs showed highly sensitive and selective
sensing behaviour towards the most noxious and threatening heavy metal ion, Hg2+, at an
ultratrace level of 10–160 µM. Latha et al. [131] proposed on–off fluorescent nanoprobes in
the form of nitrogen-doped oxidized carbon dots (NOCDs), hydrothermally synthesised
for the selective analysis of methanol (MeOH) adulteration in alcoholic beverages. NOCDs
have good sensitivity toward MeOH and ethanol (EtOH). More than 90% of the fluorescent
emission intensity of NOCDs decreased when 1% MeOH was present in distilled water,
while intensity lowered by only 20% in the case of EtOH. Zhai et al. [132] reported the
hydrothermal preparation of N-CDs, using garlic skins as a natural source, with 9% Φ.
The resultant N-CDs showed huge potential as small fluorescent inks and films, and also
for Fe(III) detection. Gu et al. [133] described the hydrothermal preparation of N-CDs
using wolfberry with 22% Φ. Obtained N-CDs were successfully applied for the detection
of Fe(III) and L-ascorbic acid (AA) with a limit of detection (LOD) of 3 µmolL·L−1 and
1.8 µmolL·L−1, respectively. John et al. [134] reported hydrothermal fabrication of N-CDs
from Ruta graveolens with 18% Φ. The resultant N-CDs served as an effective fluorescent
sensor for tetracycline (TC) with a LOD of 0.28 nM. Rong et al. [135] reported the preparation
of N-CDs using the solid-phase pyrolysis method using guanidium chloride and citric acid
as the catalyst. The N-CDs were used for the determination of Fe+3 with a LOD of 100 nM.
Chai et al. [136] proposed the fabrication of N-CDs from the traditional Chinese medicine
“Gastrodia elata”, with chrysanthemum as a catalyst, using a hydrothermal method, which
was applied for the detection of phydroxybenzaldehyde (PHBA) with a LOD of 63 nM. Jia
et al. [137] described the preparation of fluorescent N-CDs, following a one-step pyrolysis
method, from black soya beans with 38.7% Φ. The obtained N-CDs showed dual responsive
behaviour towards free radical scavenging and Fe+3. Li et al. [138] proposed the synthesis
method of yellow–green emitting N-CDs using 1,2 diaminobenzene as a carbon and di-
aminobenzene as an N doping source, with a hydrothermal method. The N-CDs were used
as fluorescent probes for the sensitive determination of Ag+ with LOD of 5 × 10−8 mol/L.
Dang et al. [139] reported the preparation of fluorescence turn off on nanosensors in the
form of N-CDs using a hydrothermal method, using citric acid and ethylenediamine as
a carbon and nitrogen source, respectively. The N-CDs were used as a label-free sensing
probe for the ultrasensitive detection of Cu+2 and ciprofloxacin (CIP), with LOD of 0.076 nM
and 0.4 nM, respectively. Rao et al. [140] developed N-CDs via a microreactor using porous
copper fibres with 73% Φ. The resultant N-CDs showed great potential for the detection
of environmental hazard material, Hg+2 with LOD of 2.54 nM. Fu et al. [141] reported the
preparation of N-CDs via the low-temperature approach using glassy carbon electrode
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(GCE) via dipping. The N-CDs were used for the detection of hydrogen peroxide (H2O2)
and paracetamol with LOD of 157 nM and 41 nM, respectively.

5.1.2. N-Doped Carbon Dots in “Biosensing”

Xu et al. [142] proposed a new carbon precursor of chrysanthemum for the synthesis
of N-CDs, using hydrothermal pyrolysis. The surface of the resulting N-CDs showed
distinct -COOH groups and pyridyl nitrogen atoms responsible for acidophilic fluorescent
sensor properties. These novel fluorescent probes were applied for the label-free sensitive
and selective measurement of H+, Fe3+ in a strong acidic medium and also for hydrazine
detection. Sun et al. [143] introduced the yellow-emitting CDs (Y-CDs) with excellent
fluorescent stability at different temperatures and pH conditions. These Y-CDs with good Φ
of 16.7% were fabricated by a solvothermal approach and used for the successful detection
of adequate cyanocobalamin, also known as vitamin B12, and folate protection, as well as
cell imaging (MDA-MB-231 cells). Yu and coworkers [144] reported Saccharomyces fabri-
cated N-CDs with Φ of 16%, obtained using a simple reliable one-pot microwave-assisted
hydrothermal method. Those CDs served as excellent PL multifunctional nanobiosen-
sors for pH detection and vitamin B12 probing, and their efficiency increased with a pH
reduction from fourteen to two. Simoes et al. [145] studied the vital role of S/N-doped
CDs as sensor and sensing probes, with negligible toxicity, for the detection and monitor-
ing of different types of pesticides (insecticides, herbicides, fungicides, etc.) used in the
protection of crops from harmful organisms, such as insects, rodents, fungi, weeds, and
other pests. Tammina et al. [146] proposed an efficient means to analyse dopamine (DA)
and temperature in an aqueous environment, employing N, P doped CQDs as sensitive
and reversible sensors, prepared from citric acid, ethylenediamine and urea phosphate as
carbon, and nitrogen precursors, respectively, by using a microwave digestion method. DA
is the most important neurotransmitter in the human nervous system. Before the circulation
in the body, DA is first collected in the brain to maintain learning, awareness, and blood
pressure. Hence, DA detection plays a crucial role in the diagnosis of Parkinson’s disease.
N,P doped CDs showed excellent sensing behaviour towards DA in the temperature range
of 10–70 ◦C. Yola et al. [147] presented graphitic carbon nitride (g-C3N4) N-doped CDs
composite (g-C3N4/CDS) with low toxicity and good sensitivity. The g-C3N4/CDS were
used for the recognition of neurotransmitter mediators in the central nervous system, such
as epinephrine and drugs in pharmaceutical and clinical fields, at low concentration lev-
els in urine samples. They could successfully overcome the shortcomings of traditional
sensors (such as high cost, complicated pretreatment of sample, and time-consuming anal-
ysis) of capillary electrophoresis, chemiluminescence, fluorimetry, and high-performance
liquid chromatography.

5.2. Carbon Dot Composites

There are many examples of sensors using nanostructures. Many functional nanoma-
terials or matrices have been successfully integrated with CDs to develop composite probes.
These matrices are metal NPs, metal oxides, bismuth-based metal compounds, polymers,
and carbon materials, resulting in the formation of metal CDs, metal-oxide CDs, polymer
CDs, and carbon-based CDs composites, as summarised in Figure 10.

5.2.1. Synthesis of CD Composites

CD composites can be prepared by different methods such as hydrothermal, physical
mixing, in situ growth, and chemical bonding, as shown in Figure 11.
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5.2.2. Metal-Based CD Composites

Metal-based CD composites involve both metal and metal-oxide CDs and can be
applied for chemical sensing as well as biological sensing of analytes. Fluorescent CDs hy-
bridised with metal NPs were achieved mainly through nucleation and (in situ) growth of
metal NPs. Because of oxygen-related functional groups, such as -OH, reducing agents are
stabilised with the reductive group present on the surface of the CDs, and the reduction of
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noble metal ions assists the formation of CDs and metal NPs composites. Composites of this
kind show incredible technological importance in sensing, fuel cells, optoelectronics, light-
emitting diodes, fluorescent inks, photocatalysts, and heterogeneous catalysis [148,149].
The CDs formed composites with Au NPs and Ag NPs, which showed excellent photo-
catalytic abilities due to their surface plasmon resonance (SPR) absorption [150]. In recent
years, metal oxide composites have attracted considerable attention in various fields, such
as photonics, agriculture, electronics, medicine, and cosmetics [151,152]. They have also
been successfully used in selective oxidation, acid-base catalysis, polymerisation, redox
processes, hydrogenation and in many environmental applications for the elimination of
contaminated elements.

As discussed earlier, CDs also have excellent biocompatibility, low cytotoxicity, strong
chemical inertness, easy functionalization, and high resistance to photobleaching. However,
after the formation of the composites with metal oxides, the photocatalytic behaviour was
significantly enhanced [153–156]. Prasannan et al. [157] synthesised CDs from orange
peel waste by a one-pot hydrothermal carbonization under mild conditions, and prepared
composites with ZnO to enhance the efficiency of photocatalytic degradation of naphthol
blue-black azo dye, under UV irradiation, where 84.3% degradation occured within 45 min
(Figure 12, top). Tyagi et al. [158] synthesised CDs from lemon peel waste by a facile
hydrothermal process. The resulting material showed spherical morphology and oxygen-
rich surface functionalities, being used for the detection of Cr6+ with a LOD of 73 nM. CDs
formed composites with TiO2 for the photocatalytic degradation of methylene blue under
UV light irradiation (Figure 12, bottom).
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CD metal-oxide composites show characteristics of a tremendous electron transfer
and reservoir due to their conjugated π structure. Some of the remarkable metal oxide NPs
used are: TiO2, CuO, ZnO, PdO, and Fe3O4. Syntheses involve chemical, physical, and
biological methods and recently chemical pathways including mechanochemical processes,
surfactant precipitation, sol-gel, solvothermal, hydrothermal, and emulsion methods have
been popular [159–161].
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5.2.3. Metal-Based CD Composites Used in “Chemical Sensing”

Sohal et al. [162] designed and prepared CD-MnO2 nanosphere composites by mixing
CDs with MnO2 nanospheres of different sizes. The CDs were synthesised by a microwave
method using ascorbic acid as a precursor, while MnO2 nanospheres of different sizes
were prepared by adjusting the concentration ratio of methionine and KMnO4 at room
temperature. CD-MnO2 composites served as sensors and displayed excellent fluores-
cence intensity, high Φ, economic viability, and ecofriendliness and could successfully
overcome the limitations of conventional methods for the detection of glutathione (GHS).
The composites were found to be efficient for the rapid detection of GSH even at very small
concentrations and were applied in various areas, such as the food, health, pharmaceu-
tical, and cosmetics industries. CD decorated MgO nanocomposites were prepared by a
hydrothermal method and used as high sensitivity new Schottky sensor devices for the
detection of various reducing gases, such as H2S, even at low concentrations [163]. H2S
is widely used in chemical laboratories and industrial sectors; however, it is very difficult
to detect H2S, due to its colourless, tasteless, and odourless nature. This may cause the
uncontrolled release of H2S, which results in an immediate collapse of the nervous system,
with difficulties in breathing, and often a high death rate.

Transition metal oxides, in general, show good photocatalytic behaviour and have
several photocatalytic applications. However, recent research has shifted the focus to
binary metal oxides, such as ZnFe2O4, CuBi2O4, and CuMn2O4, due to their low cost,
magnetic separability, superior electrical (narrow bandgap) and optical (photocatalytic
activity) properties. Interestingly, the properties of the binary metal oxides were remarkably
enhanced once they were combined with CDs.

Woo et al. [164] used an ionic liquid (IL) to synthesise CD-embedded cellulose trans-
parent films, using a one-step solution synthesis process. The material prepared showed
excellent transparency, great photostability, and good reusability properties. It could be
used for the detection of Fe3+. The synthesis of multifunctional magnetic ferrite (MFe2O4,
where M = Mn, Co)-molybdenum disulfide (MoS2) CDs nanohybrid composites was re-
ported by Wang et al. [165] using a one-step solvothermal method, in which fluorescent
CDs were embedded in MoS2. The abundant hydroxyl groups on the surface of MoS2
nanosheets with large surface areas and superior mechanical flexibility were retained in
MoS2 nanosheets and CD nanocomposites, where metal ions (Fe2+, Mn2+, Co2+) were used
as precursors. The introduction of magnetic ferrite MFe2O4 not only gave good recycling
potential but also further enhanced the removal efficiency of metal pollutants, such as Pb(II).
These composites could be successfully used in gas sensing, especially in the estimation
of environmental pollutants. Yu et al. [166] used CDs-hexadecyltrimethyl ammonium
bromide (CTAB)-chitosan (CS) composites as modified electrochemical sensors for the
determination of 2,4-dichlorophenol (2,4-DCP), which is a potentially carcinogenic and
toxic chlorinated phenol employed in pharmaceuticals, pesticides, and fungicides, causing
serious water pollution. These simple and ecofriendly composites formed by combining
CDs with CTAB and an adsorbent, as electrode modifiers, increased the phenol contents on
the electrode surface and CS through electrostatic self-assembly. A cost-effective sensor
with fast response and ease of operation was obtained.

The preparation of QDs/CDs@ zeolitic imidazolate framework-8 (ZIF-8) composites
was reported by Ma et al. [167]. They used the composites such as ratiometric fluorescent
(RF) sensors for measuring the concentration of Cu2+ ions in tap water. Several industries
release unusually high amounts of Cu2+ ions, enough to be able to cause severe diseases,
such as Wilson’s disease, neutropenia, Alzheimer’s disease, etc. QDs/CDs@ZIF-8 com-
posites with excellent sensing properties can potentially overcome the shortcomings of
spectrometric and surface characterisation techniques.

Cheng et al. [168] investigated the gas sensing behaviour of hierarchical litchi-like
In2O3/CDs composites and reported them as excellent sensors toward harmful, toxic ni-
trogen dioxide gas (NO2) released from liquid laundry detergents, vestige fuels, vehicle
exhaust, etc. The composites were hydrothermally prepared, and their gas sensing perfor-
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mance was evaluated by analysing the heterojunction interaction between CDs and metal
oxide of In2O3/CDs and pristine In2O3.

Metal-organic framework (MOF)-based fluorescence chemical sensing devices were
used by Yang et al. [115] for the detection of 4-NP produced from dyes, leather products, and
pharmaceuticals industries. The MOF-based composites were formed by the integration
of amine-passivated CDs into zirconium-based MOF-66, by a postsynthetic modification
approach. Similarly, CDs@Eu-MOF was used as dual-emission ratiometric fluorescent
probes, with a detection range of up to 300 µM [169]. The composites were prepared by a
green hydrothermal method and could be used for the estimation of Hg2+ as well as Eu3+

in water samples. Lin et al. [170] studied branched poly-(ethylenimine)-capped CDs-ZIF-8
composite as a fluorescent MOF sensor for the analysis of Cu2+ ions in water samples, by
exploiting their high-adsorption capacity. Liu et al. [171] prepared dual-emissive sheet-
like CDs-embedded Ag@EuWO4(OH) luminescent nanocomposites fabricated from the
Eu(NO3)3.6H2O-(NH4)10H2(W2O7)6•xH2OCS(NH2)2 where thiourea was used as a carbon
source. The hydrothermal method, in association with photochemical deposition, yielded
the composites. Upon irradiation with UV light, Ag+ was reduced to Ag NPs, which were
deposited on the surface of EuWO4(OH), by an in situ photochemical deposition method
to form CDs embedded Ag@EuWO4(OH) composites. These could be used for effective
ratiometric determination of hydrogen peroxide (H2O2), based on the opposite response
of emission intensities of Eu3+ (with emission lines at 614 nm) to ensure the safe use of
H2O2. The concept of “kill waste by waste” was applied by Mehta et al. [172] through
the synthesis and design of CQDs/TiO2 nanocomposites. The composites could be used
for the assessment of toxic heavy metal ions and photodetoxification of industrial dyes in
wastewater, under visible light. CDs@SiO2@ CdTe QD hybrid spheres were reported by
Rao et al. [173] to be used as ratiometric sensors for the analysis of Cu2+ in vegetable and
fruit samples.

5.2.4. Metal-Based CD Composites in “Biosensing”

There are a number of success cases using metal-based CD composites in biosensing
and a large portion of these cases are promising. For example, Qin et al. [174] reported that
Eu3+/CDs@MIL-53 have a highly selective detection ability towards toluene diisocyanate
(TDI), an aliphatic strong irritant that leads to asthma, as well as diaminotoluene (TDA), the
measurable metabolite of TDI in urine. The biomarker was obtained by mixing CDs and
lanthanide ion Eu3+ in a MOF, to generate a newly ratiometric fluorescence hybrid probe.
The preparation of a photoelectrochemical (PEC) biosensor was reported by He et al. [175].
Authors used in situ integration of CDs into secondary anodized TiO2 nanotube arrays
(TiO2 NTAs), with the help of a hydrothermal approach, followed by the immobilisation of
glucose oxidase on the surface of the composite. The PEC biosensor exhibited conductivity,
good biocompatibility, strong light absorption, and reflection ability in visible light for
sensitive and selective detection of glucose.

A DNA detection sensor in the form of a Pd-Au@CDs nanocomposite modified glassy
carbon electrode (Pd-Au@CDs/GCE) was developed by Huang et al. [176]. The CDs
prepared from green banana peels sourced using microwave treatment were mixed with
Pd-Au NPs through a sequential-reduction method. The resultant composite was highly
sensitive, compared to other reported electrochemical biosensors for measuring colitoxin
DNA in human serum, after treatment with a carboxyl ammonia condensation reaction
to immobilize a single-stranded probe DNA. Yang et al. [177] reported the synthesis of a
thiol functional group containing ferrocene derivative (Fc-SH) mixed with Au NPs/CDs
(Au/CNC) nanocomposites. The material was stabilised after coupling with graphene-
modified GCE to obtain Fc-S-Au/CNC/graphene/GCE by an electrochemical method. The
composites were used in the ultrasensitive and direct detection of dopamine, ascorbic acid,
acetaminophen, and uric acid. They were useful for the prevention and treatment of many
diseases, such as colds, mental illnesses, infertility, cancers, acquired immunodeficiency
syndrome (AIDS), etc.
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The design and preparation of CDs-MnO2 nanosphere composites were reported by
Sohal et al. [162], by combining CDs with MnO2 nanospheres of different sizes. The com-
posites were used as sensors with excellent fluorescence intensity and high Φ. Perelshtein
et al. [178] reported, for the first time, the synthesis of iron-carbon dot nanohybrid-Fe@CDs
composites, using an ultrasound-assisted approach, in which air-stable, highly magnetic
(metallic) iron nanoparticles were used as precursors, and significantly fluorescent CDs
synthesised from polyethylene glycol (PEG-400) were used as the carbon source. The
composite had excellent fluorescent and magnetic properties and could be used as a sensor,
probe, and detection tool in bioimaging applications based on magnets, such as specific
antibodies, cholesterol, uric acid detection in human blood serum and also in the detection
of diseases, such as cancer and tuberculosis, among others.

A ZnO@N-C hybrid was also decorated by mixing N-CDs prepared using a direct
facile hydrothermal method with ZnO nanoparticles [179]. The composite exhibited ex-
cellent biocompatibility, low cytotoxicity, and good PL and photocatalytic activity and,
hence, could be used as a photocatalyst for the degradation of cytotoxic pollutants, such as
methylene blue. The N-doping on the CDs also allowed their application as multicolour flu-
orescence probes in biomedical applications. Huang et al. [180] reported the use of cuprous
oxide-carbon dots/Nafion (Cu2O-CDs/NF) composite as a biosensor for the selective and
consistent determination of DNA content in human serum. Zhai et al. [181] introduced a
latent fingerprint and fluorescence labelling marker in the form of CDs@montmorillonite
(g-CDs@MMT) composites under 405 nm radiation. The composites were fabricated by
intergrading green emissive CDs into a MMT clay matrix and could be applied for the
recognition of the surfaces of various types of objects.

Silver-CD (Ag-CD) nanocomposites were also prepared by mixing fluorescent CDs
with a reduced silver ion (Ag) leading to a unique peroxidase-like composite. The material
induced the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB),
in the presence of H2O2, since CDs transfer their electrons to H2O2 and generate hydroxy
radicals. The oxTMB was detected by the blue colour, with an absorption maximum of
652 nm. Hence, Ag-CDs nanocomposites were used to accurately detect uric acid (UA) by
applying a reducing agent to reduce the blue oxTMB into colourless TMB [182].

Wang et al. [183] designed a unique fluorescence resonance energy transfer (FRET)-
based biosensor by using fluorescent CDs with MnO2 nanosheets, in the form of a su-
perior energy donor–acceptor pair, which showed high selectivity and sensitivity for
the recognition of glutathione in whole human blood samples. A MOF-based biosensor
was fabricated by Xu et al. [184] for the selective detection of plant pigment quercetin
(QCT) in the form of CD-embedded MOF@molecularly imprinted polymer nanoparticles
(CDs@MOF@MIP), where CDs served as signal transducers. The CD-doped Fe3O4 em-
bedded g-C3N4 nanosheets (CDs/Fe3O4@g-C3N4) composite serves as a rapid, easy, and
accurate electrochemical sensing platform to detect thiocyanate (SCN−) even at a trace
level [185]. Prior to the synthesis of the composite for the detection of SCN−, suitable
approaches are needed since even a very small amount of SCN− causes severe adverse
effects on the human body, such as cardiovascular threats, disturbance on protein dialysis,
increasing the possibility of cancer, and also leading to hypo- or hypersecretion of iodine
via the thyroid glands. The obtained composite performed well as a sensing device in
medical diagnosis and ecological monitoring.

A gold nanoparticle-CD core-shell (Au@CDs) nanocomposite also served as both a
colorimetric and fluorometric selective and sensitive sensor for consistent diagnosis of
biomolecules, containing thiols, such as proteins, enzymes, amino acids, and peptides [186].
CDs/Zn(OH)2 composites prepared using a template-free microwave-assisted approach
were successfully used as ultrasensitive sensors for the detection and removal of the
heavy metal ions Cu2+ or Hg2+ in water samples, either in online or offline modes [187].
Wang et al. [188] reported the synthesis of NiAl layered double hydroxide (NiAl-LDHs)
composites by mixing CDs into flower-like NiAl-LDHs. The resultant material was highly
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selective and thus could be used as a nonenzymatic electrochemical biosensor for the
detection of neurotransmitters, such as acetylcholine.

A responsive electrochemiluminescence (ECL) immunosensor was also developed in
the form of nanoporous silver (NPS), that is, NPS@CDs composite [189]. It was prepared
by loading CDs (obtained from electrooxidation of graphite and used as ECL reagent) into
NPS with a controllable 3D structure. This immunosensor could be used as a cancer marker
and prostate protein antigen in clinical diagnosis.

The differences of the cytotoxicity and detection limit in CDs, N-CDs as well as CDs
composite are summarised in Table 2.

Table 2. Synthesis routes, source, and cytotoxicity of CDs, N-CDs, and CDs composites.

CDs Source Preparation Method
Cytotoxicity/

Detection Limit/
Sensor Response

Quantum Yield Detection Element Reference

CDs Citric acid and urea Hydrothermal
method 23 mM 44.7% Toxic Be2+ ions [190]

CDs
Free Gum

Tragacanth
and Chitosan

Hydrothermal
method 50 µg/mL - Cellular Biosensing [191]

CDs Carica papaya
waste pulp

Hydrothermal
Method 0.708–2.4 ppb 23.7% Cr ions detection [192]

N-CDs Citric acid and
ethylenediamine

Microwave-assisted
solvothermal method 0.089 µmol/L 79.6% Hg2+ [193]

N-CDs Citric acid and
ethanediamine

Hydrothermal
method 0.076 nM 84% Cu2+ ions [194]

N-CDs Citric acid and
ethanediamine

Hydrothermal
method 84 nM - Fe3+ in aqueous

solution
[139]

CDs@MgO
nanocomposite

Magnesium nitrate
dehydrate, KOH,

HF, ethanol
and D-glucose

Hydrothermal
method 120 ppm ~74 ± 3% H2S [163]

Carbon dots
loadedTiO2

nanocomposite

Diplocyclos
palmatus

leaf extract

Hydrothermal
method 12.5 mM 54%

Fe 3+ and acute-
hepatopancreatic
necrosis disease

(AHPND)

[195]

6. Conclusions

Here the rapid advancement of CDs in the field of sensing has been critically reviewed.
The need for the development of CDs, in substitution of QDs, was identified and efficient
means to tune the properties of CDs, including heteroatom doping and the formation of
CD composites, were highlighted. The CDs appeared to be promising carbon materials,
compared to traditional QD materials, due to their inherent properties, such as low toxicity,
biocompatibility, water solubility, cell-membrane permeability, good fluorescence emission,
and excellent photocatalytic efficiency.

However, there were shortcomings which restricted their direct use as sensors. The
need for improving the properties of CDs for sensing applications pointed to the function-
alization with heteroatoms, as well as the preparation of nanocomposites in combination
with matrices, such as metals, metal oxides, polymers, or carbon-based materials, or surface
passivation and doping of heteroatoms.

The CDs were fabricated using both top-down and bottom-up approaches. Among
them, the bottom-up approach gained more attention because of its simplicity, low or no
cost, high yield, and ecofriendliness. Due to their negligible toxicity and good biocompati-
bility originating from multiple functional groups, CDs demonstrated amazing impacts
on the optical properties and fluorescence phenomenon leading to familiar applications in
the biomedical fields, such as bioimaging, biosensor, nanomedicine, and drug delivery (as
a biosensor) as well as detecting a variety of chemical species with applicability in practi-
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cal sample analysis found in environmental sources such as water bodies (as a chemical
sensor).

We first described N-doped CDs and explored their use in both chemical sensing and
biosensing. Furthermore, the potential of metal-based CDs composites in chemical sensing
as well as biosensing of environmental resources and in the human body was discussed.
N-CD and metal-based CD composites served as biosensors and chemical sensors for the
detection and monitoring of certain type of diseases, such as infections, cardiovascular
diseases, neurodegenerative disorders, etc.

For successful recognition and quantitative estimation even at trace levels, selectivity
and sensitivity still remain an issue and concerted efforts still need to be made to develop
chemical and biosensors based on N-CDs and metal-based CD composites, aiming towards
the enhancement of affinity and quenching frequency, while retaining the inherent prop-
erties of CDs. This review may serve as an informative platform to draw the attention of
chemists, biologists, physicist, industrialists, medical professionals, and material scientists
to work together for the development of efficient CD-based chemical and biosensors for
real life applications.
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