433 research outputs found

    Participatory design of a continuous care ontology : towards a user-driven ontology engineering methodology

    Get PDF
    The patient room of the future would be able to sense the needs and preferences of the patients and nurses and adapt itself accordingly by combining all the heterogeneous data offered by the different technologies. This goal can be achieved by developing a context-aware framework, which exploits and integrates the heterogeneous data by utilizing a continuous care ontology. The existing ontology engineering methodologies are rather extreme in their choices to include domain experts. On the one hand, there are methodologies that only discuss the scope, use and requirements of the ontology with the domain experts. On the other hand, there are approaches in which the ontology is completely constructed by the domain experts by providing them with user-friendly and collaborative tools. In this paper, a participatory ontology engineering methodology is presented that finds a middle ground between these two extremes. The methodology actively involves social scientists, ontology engineers and stakeholders. The stakeholders participate in each step of the ontology life cycle without having to construct the ontology themselves or attribute a large amount of their time. The applicability of the methodology is illustrated by presenting the co-created continuous care ontology

    An ontology co-design method for the co-creation of a continuous care ontology

    Get PDF
    Ontology engineering methodologies tend to emphasize the role of the knowledge engineer or require a very active role of domain experts. In this paper, a participatory ontology engineering method is described that holds the middle ground between these two 'extremes'. After thorough ethnographic research, an interdisciplinary group of domain experts closely interacted with ontology engineers and social scientists in a series of workshops. Once a preliminary ontology was developed, a dynamic care request system was built using the ontology. Additional workshops were organized involving a broader group of domain experts to ensure the applicability of the ontology across continuous care settings. The proposed method successfully actively engaged domain experts in constructing the ontology, without overburdening them. Its applicability is illustrated by presenting the co-created continuous care ontology. The lessons learned during the design and execution of the approach are also presented

    A Framework for Exploiting Internet of Things for Context-Aware Trust-based Personalized Services

    Get PDF
    In the last years, we have witnessed the introduction of Internet of Things as an integral part of the Internet with billions of interconnected and addressable everyday objects. On the one hand, these objects generate massive volume of data that can be exploited to gain useful insights into our day-to-day needs. On the other hand, context-aware recommender systems (CARSs) are intelligent systems that assist users to make service consumption choices that satisfy their preferences based on their contextual situations. However, one of the major challenges in developing CARSs is the lack of functionality providing dynamic and reliable context information required by the recommendation decision process based on the objects that users interact with in their environments. Thus, contextual information obtained from IoT objects and other sources can be exploited to build CARSs that satisfy users’ preferences, improve quality of experience and recommendation accuracy. This article describes various components of a conceptual IoT based framework for context-aware personalized recommendations. The framework addresses the weakness whereby CARSs rely on static and limited contextual information from user’s mobile phone, by providing additional components for reliable and dynamic contextual information, using IoT context sources. The core of the framework consists of context recognition and reasoning management, dynamic user profile model incorporating trust to improve accuracy of context-aware personalized recommendations. Experimental evaluations show that incorporating context and trust in personalized recommendations can improve its accuracy

    Authorization schema for electronic health-care records: for Uganda

    Get PDF
    This thesis discusses how to design an authorization schema focused on ensuring each patient's data privacy within a hospital information system

    Modern software cybernetics: new trends

    Get PDF
    Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Modern software cybernetics: New trends

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Ontology based contextualization and context constraints management in web service processes

    Get PDF
    The flexibility and dynamism of service-based applications impose shifting the validation process to runtime; therefore, runtime monitoring of dynamic features attached to service-based systems is becoming an important direction of research that motivated the definition of our work. We propose an ontology based contextualization and a framework and techniques for managing context constraints in a Web service process for dynamic requirements validation monitoring at process runtime. Firstly, we propose an approach to define and model dynamic service context attached to composition and execution of services in a service process at run-time. Secondly, managing context constraints are defined in a framework, which has three main processes for context manipulation and reasoning, context constraints generation, and dynamic instrumentation and validation monitoring of context constraints. The dynamic requirements attached to service composition and execution are generated as context constraints. The dynamic service context modeling is investigated based on empirical analysis of application scenarios in the classical business domain and analysing previous models in the literature. The orientation of context aspects in a general context taxonomy is considered important. The Ontology Web Language (OWL) has many merits on formalising dynamic service context such as shared conceptualization, logical language support for composition and reasoning, XML based interoperability, etc. XML-based constraint representation is compatible with Web service technologies. The analysis of complementary case study scenarios and expert opinions through a survey illustrate the validity and completeness of our context model. The proposed techniques for context manipulation, context constraints generation, instrumentation and validation monitoring are investigated through a set of experiments from an empirical evaluation. The analytical evaluation is also used to evaluate algorithms. Our contributions and evaluation results provide a further step towards developing a highly automated dynamic requirements management system for service processes at process run-time

    A novel and validated agile Ontology Engineering methodology for the development of ontology-based applications

    Get PDF
    The goal of this Thesis is to investigate the status of Ontology Engineering, underlining the main key issues still characterizing this discipline. Among these issues, the problem of reconciling macro-level methodologies with authoring techniques is pivotal in supporting novel ontology engineers. The latest approach characterizing ontology engineering methodologies leverages the agile paradigm to support collaborative ontology development and deliver efficient ontologies. However, so far, the investigations in the current support provided by these methodologies and the delivery of efficient ontologies have not been investigated. Thus, this work proposes a novel framework for the investigation of agile methodologies, with the objective of identifying the strong point of each agile methodology and their limitations. Leveraging on the findings of this analysis, the Thesis introduces a novel agile methodology – AgiSCOnt – aimed at tackling some of the key issues characterizing Ontology Engineering and weaknesses identified in existing agile approaches. The novel methodology is then put to the test as it is adopted for the development of two new domain ontologies in the field of health: the first is dedicated to patients struggling with dysphagia, while the second addresses patients affected by Chronic obstructive pulmonary disease.The goal of this Thesis is to investigate the status of Ontology Engineering, underlining the main key issues still characterizing this discipline. Among these issues, the problem of reconciling macro-level methodologies with authoring techniques is pivotal in supporting novel ontology engineers. The latest approach characterizing ontology engineering methodologies leverages the agile paradigm to support collaborative ontology development and deliver efficient ontologies. However, so far, the investigations in the current support provided by these methodologies and the delivery of efficient ontologies have not been investigated. Thus, this work proposes a novel framework for the investigation of agile methodologies, with the objective of identifying the strong point of each agile methodology and their limitations. Leveraging on the findings of this analysis, the Thesis introduces a novel agile methodology – AgiSCOnt – aimed at tackling some of the key issues characterizing Ontology Engineering and weaknesses identified in existing agile approaches. The novel methodology is then put to the test as it is adopted for the development of two new domain ontologies in the field of health: the first is dedicated to patients struggling with dysphagia, while the second addresses patients affected by Chronic obstructive pulmonary disease
    corecore