
Ontology Based Contextualization
and Context Constraints

Management in Web Service
Processes

Kosala Gamini Yapa Bandara,

Yapa Mudiyanselage

Master of Science in Information Technology Security

Bachelor of Science in Computer Science (Special)

A Dissertation submitted in the fulfilment

of the requirements for the degree

of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Advisor: Dr. Claus Pahl

January 2012

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my

own work, that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge breach any law of copyright, and has

not been taken from the work of others save and to the extent that such work has

been cited and acknowledged within the text of my work.

Signed : —————————–

Student ID : 57 11 49 35

Date : ——————————-

Examiners:

Dr. Liam Tuohey - School of Computing,

Dublin City University,

Ireland.

Prof. Dr. Wilhelm Hasselbring - Head of Software Engineering Group,

Christian-Albrechts-University of Kiel,

Kiel, Germany.

Acknowledgments
I would like to express my profound gratitude to my supervisor, Dr. Claus

Pahl for his continuous patience, encouragement, guidance and support. Thank

you very much Claus for everything. You have been an exemplary supervisor and

I have truly enjoyed working with you. I learnt a lot from you.

I would like to thank my colleagues in the Software and System Engineering

Group and School of Computing for the given support, knowledge, humour and

a friendly ear throughout my DCU life. Thanks Wang for all constructive discus-

sions throughout this work. They were immensely helped to bring quality into

this work. Pooyan, thank you very much for all the given supports. A special

thank to your friends in the academy and industry, who gave their time and opin-

ions to make this work successful. Aakash, Javed , Yalemisew, Paul and Murat;

thank you very much for the given helps and happy times in DCU and Dublin.

Oisin, thank you very much for all the given supports and sharing brilliant ideas

and opinions about socity, life, politics and research. Dr. Declan McMullen and

Oisin, I do not have enough words to say how much I thankful to you. Dr. Car-

oline Sheedy, thank you very much reading my reports. Dr. Mark Melia and Dr.

Veronica Gacitua, thank you very much for the given support to set my things

settled in Dublin and establish a firm foundation for this research. Your construc-

tive discussions were massively helped me to make this work successful. Mr. and

Mrs. Umagiliyage, thank you very much for the given support to make my living

easy and enjoyable in Dublin.

I am greatly thankful to Science Foundation Ireland and Lero-The Irish Soft-

ware Engineering Research Centre for the given financial support throughout this

work. Last but not least, I would like to thank my parents and family. Words can-

not express my gratitude to my father, mother, brother and two sisters for their

love and encouragement. You have given me everything I need in life to succeed

and I hope to make you proud.

Ontology Based Contextualization and Context Constraints
Management in Web Service Processes

Abstract: The flexibility and dynamism of service-based applications impose
shifting the validation process to runtime; therefore, runtime monitoring of dy-
namic features attached to service-based systems is becoming an important di-
rection of research that motivated the definition of our work. We propose an
ontology based contextualization and a framework and techniques for managing
context constraints in a Web service process for dynamic requirements valida-
tion monitoring at process runtime. Firstly, we propose an approach to define
and model dynamic service context attached to composition and execution of ser-
vices in a service process at run-time. Secondly, managing context constraints are
defined in a framework, which has three main processes for context manipula-
tion and reasoning, context constraints generation, and dynamic instrumentation
and validation monitoring of context constraints. The dynamic requirements at-
tached to service composition and execution are generated as context constraints.
The dynamic service context modeling is investigated based on empirical analysis
of application scenarios in the classical business domain and analysing previous
models in the literature. The orientation of context aspects in a general context tax-
onomy is considered important. The Ontology Web Language (OWL) has many
merits on formalising dynamic service context such as shared conceptualization,
logical language support for composition and reasoning, XML based interoper-
ability, etc. XML-based constraint representation is compatible with Web service
technologies. The analysis of complementary case study scenarios and expert
opinions through a survey illustrate the validity and completeness of our context
model. The proposed techniques for context manipulation, context constraints
generation, instrumentation and validation monitoring are investigated through
a set of experiments from an empirical evaluation. The analytical evaluation is
also used to evaluate algorithms. Our contributions and evaluation results pro-
vide a further step towards developing a highly automated dynamic requirements
management system for service processes at process run-time.
Keywords: dynamic service context, service-based applications, Web service pro-
cess, service process run-time, ontology Web language, context manipulation, dy-
namic requirements, context constraints.

Contents

Abstract 5

List of Figures 9

List of Tables 11

1 Introduction 18
1.1 Motivation . 18
1.2 Problem definition . 22

1.2.1 Central hypothesis . 22
1.2.2 Detailed research problems . 23

1.3 Contributions . 24
1.4 Organization of the thesis . 26

2 Literature review 28
2.1 Introduction . 28
2.2 Notion of context for Web services . 30

2.2.1 Context definition . 30
2.2.2 Context categorization . 32

2.3 Context modeling and manipulation 37
2.3.1 Context modeling . 37
2.3.2 Context manipulation and reasoning 41

2.4 Constraints generation and validation monitoring 44
2.4.1 Constraints generation . 44
2.4.2 Constraints instrumentation and validation monitoring . . . 48

2.5 Discussion . 52

3 Contextualization and context constraints management framework 59
3.1 Motivation . 59
3.2 Contextualization and context constraints management framework . 61

3.2.1 Dynamic service context modeling 63
3.2.2 Manipulation and reasoning context specifications 64
3.2.3 Context constraints generation 65
3.2.4 Constraints instrumentation and validation monitoring . . . 67

3.3 Chapter summary . 69

6

4 Context modeling 70
4.1 Introduction . 70
4.2 Context model taxonomy . 73

4.2.1 Overview . 73
4.2.2 Dynamic service context . 74
4.2.3 Taxonomy development methodology 75
4.2.4 Context model taxonomy definition 77
4.2.5 Non-taxonomic relationships 94

4.3 Context modeling . 99
4.3.1 Ontology-based context modeling 100
4.3.2 Description logic - SHOIN (D) 100
4.3.3 Ontology-based service context formalisation 102

4.4 Case study - Context model ontology integration 108
4.4.1 Tool support . 109
4.4.2 Case study . 109

4.5 Chapter summary . 117

5 Context manipulation and reasoning 119
5.1 Introduction . 119
5.2 Context model specification and service context profiles 121
5.3 Context manipulation operators . 124

5.3.1 Service-level context manipulation 125
5.3.2 Process-level context manipulation 127

5.4 Context composition . 130
5.5 Context reasoning . 132

5.5.1 Subsumption . 133
5.5.2 Consistency checking . 134
5.5.3 Context derivation . 135

5.6 Case study . 136
5.7 Chapter summary . 139

6 Context constraints 140
6.1 Introduction . 140
6.2 Context constraints modeling . 143

6.2.1 Context model utilisation for constraints 143
6.2.2 Class model for context constraints modeling 144
6.2.3 Context constraints (CC) . 145

6.3 Context constraints generation . 149
6.3.1 Tool support . 149
6.3.2 ECVC generation process (ECVCGProcess) 151
6.3.3 ECVC generation algorithm (ECVCGAlgorithm) 152
6.3.4 ICVCs generation . 154

6.4 Case study - Context constraints generation 154
6.4.1 Tool support . 154
6.4.2 Case study . 155

7

6.5 Chapter summary . 160

7 Instrumentation and validation monitoring 162
7.1 Introduction . 162

7.1.1 Overview . 162
7.1.2 Overall architecture description 164

7.2 Context constraint configurator generation for ECVCs 167
7.2.1 Generating constraint sets . 169
7.2.2 Selecting constraints (Constraint selector) 172
7.2.3 Configuring constraints (Configurator) 174

7.3 Process instrumentation and validation monitoring 175
7.3.1 Tool support . 175
7.3.2 Instrumentation and validation monitoring 176
7.3.3 Instrumentation and validation service (IVS) 177
7.3.4 Data collectors . 179
7.3.5 Discussion . 181

7.4 Case study . 182
7.5 Chapter summary . 187

8 Evaluation 188
8.1 Introduction . 189

8.1.1 Aims . 189
8.1.2 Evaluation strategy . 190

8.2 Context model ontology . 191
8.2.1 Overview . 191
8.2.2 Case study based evaluation 191
8.2.3 Discussion : Case study based evaluation 195
8.2.4 Analysis of expert opinions : Questions and answers 196
8.2.5 Analysis of expert opinions : Results and discussion 198
8.2.6 Summary and Discussion . 205

8.3 Context manipulation and composition 206
8.3.1 Overview . 206
8.3.2 Validity : Case study based empirical evaluation 206
8.3.3 Discussion . 209

8.4 Context constraints generation . 209
8.4.1 Overview . 209
8.4.2 Performance : Analytical evaluation 210
8.4.3 Discussion . 211

8.5 Constraints instrumentation and validation monitoring 211
8.5.1 Overview . 211
8.5.2 Performance : Analytical evaluation 212
8.5.3 Performance : Experimental evaluation 215
8.5.4 Tool support and discussion 223

8.6 Threats to validity . 224
8.6.1 Empirical methods . 224

8

8.6.2 Analytic methods . 224

9 Conclusions 226
9.1 Overview . 226
9.2 Summary of contributions . 227
9.3 Discussion and future work . 227

9.3.1 Discussion . 227
9.3.2 Future work . 230

Bibliography 232

A OWL-based implementation of the context model ontology 245
A.1 Functional context . 245
A.2 Quality of service context . 248
A.3 Domain context . 250
A.4 Platform context . 251
A.5 Context derivation - SWRL/OWL rule 251
A.6 OWL-based implementation of context model ontology 252
A.7 Analysis of scenarios from classical business domain 266

B Context constraints 270
B.1 Logical view of an ECVC . 270
B.2 Context reasoning service . 270

C Prototype : Constraints instrumentation and validation monitoring 273
C.1 Overview . 273
C.2 Instrumentation and validation monitoring 273

C.2.1 Instrumentation and validation operation for ECVCs 273
C.2.2 Instrumentation and validation operation for ICVCs 275
C.2.3 ICVC Profile . 277
C.2.4 Data collector . 278

C.3 Performance evaluation . 280
C.3.1 Design view of the instrumented process 280
C.3.2 Process coding . 281

D Questionnaire 291

9

List of Figures

1.1 An example of dynamic aspects in a service process 21
1.2 The organization of this thesis . 26

2.1 Related research review . 57
2.2 Context operationalization review . 57

3.1 SLAs attached to different services with dynamic requirements (DR) 60
3.2 Contextualization and context constraints management framework . 62
3.3 Context model utilisation overview 68

4.1 Taxonomy of the context model ontology 80
4.2 Dependencies in functional context . 96
4.3 Dependencies in QoS context . 97
4.4 Dependencies in domain context . 98
4.5 Dependencies in platform context . 98

6.1 Dynamic requirements to context constraints 141
6.2 Context model utilisation for constraints generation 143
6.3 A class model for context constraints modeling 145
6.4 Explicit Context validation constraints generation process (ECVCGProcess) 151
6.5 ECVC generation examples . 153

7.1 Dynamic instrumentation and validation monitoring architecture . . 165
7.2 Context constraints to configurators 166
7.3 Constraint sets, selectors and configurators 168
7.4 Configurator generation process . 168
7.5 An abstract view of a constraints instrumented process 177
7.6 Data collector directives and data collectors 180
7.7 Abstract view of payment confirmation case study design 183

8.1 Evaluation overview . 189
8.2 Context aspects in an e-learning courseware generation scenario . . 193
8.3 Context aspects in a multilingual convenience services scenario . . . 194
8.4 Validity - definition of dynamic service context 199
8.5 Quality of service context categories and their validity 199
8.6 Quality of service context categories and expert opinions analysis . 200

10

8.7 Domain context categories and their validity 200
8.8 Domain context categories and expert opinions analysis 201
8.9 Platform context categories and their validity 201
8.10 Platform context categories and expert opinions analysis 202
8.11 Functional context categories and their validity 202
8.12 Functional context categories and expert opinions analysis 203
8.13 Completeness of QoS context vs. ISO/IEC 9126 204
8.14 Completeness - definition of dynamic service context 205
8.15 P1 with various constraint settings . 219
8.16 P1 T-test analysis . 219
8.17 P1 average execution time . 220
8.18 P2 with various constraint settings . 220
8.19 P2 T-test analysis . 221
8.20 P2 average execution time . 221
8.21 P3 with various constraint settings . 222
8.22 P3 T-test analysis . 222
8.23 P3 average execution time . 223

A.1 Functional context . 245
A.2 Syntax context . 246
A.3 Effect context . 246
A.4 Protocol context . 247
A.5 Quality of service context . 248
A.6 Business context . 248
A.7 Runtime context . 249
A.8 Security context . 249
A.9 Trust context . 250
A.10 Domain context . 250
A.11 Platform context . 251
A.12 SWRL rule for security context derivation 251

B.1 A logical view of a cost constraint . 271

C.1 A part of instrumented process . 280

D.1 Survey - Web interface . 291

11

List of Tables

4.1 QoS classification for behavior, dependency and collection 78
4.2 Table: SHOIN (D) notations . 101

5.1 Security context reasoning . 135

8.1 Algorithm 6.1- Performance evaluation variables and parameters . . 210
8.2 Algorithm 7.2 - Performance evaluation variables and parameters . 212
8.3 Algorithm 7.3 - Performance evaluation variables and parameters . 213
8.4 Algorithm 7.4 - Performance evaluation variables and parameters . 214

12

List of Publications

• Claus Pahl, Veronica Gacitua-Deca, Kosala Yapa Bandara and MingXue Wang.
Ontology-based Compostion and Matching for Dynamic Cloud Service Co-
ordination, International Journal of Metadata, Semantics and Ontologies
(IJMSO), Inderscience, 2011.

• Claus Pahl, Veronica Gacitua-Deca, MingXue Wang and Kosala Yapa Ban-
dara. Ontology-based Compostion and Matching for Dynamic Service Coor-
dination. The 5th International Workshop on Ontology, Models, Conceptual-
ization and Epistemology in Social, Artificial and Natural Systems, ONTOSE
2011, Co-located with 23rd International Conference on Advanced Informa-
tion System Engineering, Springer, June 2011, London, England.

• Claus Pahl, Veronica Gacitua-Decar, Ming Xue Wang and Kosala Yapa Ban-
dara. A Coordination Space Architecture for Service Collaboration and
Cooperation. The 9th International Workshop on Systems/Software Archi-
tectures, IWSSA’11, Co-located with 23rd International Conference on Ad-
vanced Information System Engineering, Springer, June 2011, London, Eng-
land.

• Claus Pahl, Kosala Yapa Bandara and MingXue Wang. Context Constraint
Integration and Validation in Dynamic Web Service Compositions. M. Sheng,
J. Yu, and S. Dustdar (Eds.) Enabling Context-Aware Web Services: Meth-
ods, Architectures, and Technologies, Chapman and Hall/CRC Press, 2010,
Australia.

• MingXue Wang, Kosala Yapa Bandara and Claus Pahl. Process as a Ser-
vice - Distributed Multi-tenant Policy-based Process Runtime Governance.
IEEE International Conference on Services Computing, SCC 2010, July 2010,
Miami, USA.

• MingXue Wang, Kosala Yapa Bandara and Claus Pahl. Distributed Aspect-
Oriented Service Composition for Business Compliance Governance with
Public Service Processes. The Fifth International Conference on Internet
and Web Applications and Services, ICIW 2010, IEEE, May 2010, Barcelona,
Spain.

• Kosala Yapa Bandara, MingXue Wang and Claus Pahl. Context Modeling
and Constraints Binding in Web Service Business Processes. Workshop on
Context-Aware Software Technology and Applications, CASTA 2009, Co-
located with ESEC/FSE 2009, ACM Press, Aug. 2009, Amsterdam, The
Netherlands.

• MingXue Wang, Kosala Yapa Bandara and Claus Pahl. Integrated Constraint
Violation Handling for Dynamic Service Composition. IEEE International
Conference on Services Computing SCC 2009, Sept. 2009, Bangalore,India.

• MingXue Wang, Kosala Yapa Bandara and Claus Pahl. Constraint Integra-
tion and Violation Handling for BPEL Processes. The Fourth International
Conference on Internet and Web Applications and Services ICIW 2009, IEEE,
May 2009, Venice, Italy.

• Kosala Yapa Bandara, MingXue Wang and Claus Pahl. Dynamic Integra-
tion of Context Model Constraints in Web Service Processes. International
Software Engineering Conference SE2009, IASTED, Feb. 2009, Innsbruck,
Austria.

14

List of Abbreviations

ATL : ATLAS Transformation Language
BPM : Business Process Management
CMO : Context Model Ontology
CC : Context Constraints
CLiX : Constraints Language in XML
Cset : Constraint Set
Cselector : Constraint Selector
DL : Description Logic
ECVC : Explicit Context Validation Constraint
EU : European Union
E-client : Enterprise Client
ICVC : Implicit Context Validation Constraint
ISO : International Organisation for Standardization
IEEE : Institute of Electrical and Electronic Engineers
IVS : Instrumentation and Validation Service
NFR : Non-Functional Requirements
OCL : Object Constraint Language
OWL : Ontology Web Language
OMG : Object Management Group
ODM : Ontology Definition Metamodel
PL : Process Level
QVT : Query/View/Transformation
QoS : Quality of Service Properties
RDF : Resource Description Framework
SCP : Service Context Profile
SOA : Service Oriented Architecture
SL : Service Level
SLA : Service Level Agreement
SWRL : Semantic Web Rule Language
UML : Unified Modeling Language
WSDL : Web Service Description Language
WS-BPEL : Web Services Business Process Execution Language
W3C : World Wide Web Consortium
XML : Extensible Modeling Language

Glossary of Definitions

• Context constraints - Dynamic requirements are implemented as assertions
in terms of dynamic service context called context constraints.

• Constraints instrumented process - A service process equipped with context
constraints.

• Constraints instrumentation - equip a service process with constraints as pre
and post conditions.

• Context model ontology - A conceptualized model of dynamic service con-
text and their relationships.

• Dynamic service context - Dynamic service context is client, provider or
service related dynamic requirements, which enables or enhances effective
composition and collaboration between them.

• Dynamic aspect - A process run-time relevant aspect attached to a service
from a process perspective.

• Dynamic requirement - A requirement relevant to one dynamic aspect or
combination of dynamic aspects.

• Dynamic validation - validation at process run-time.

• Dynamic instrumentation - instrumentation at process run-time.

• Dynamic service process - A Web service process in which services are com-
bined at service process run-time.

• Explicit context category - A context category defined in a SCP called explicit
context category.

• Implicit context category - A context category which is implicitly connected
to an explicit context category.

• Inward perspective - How the service execution interacts with its environ-
ment is defined by inward perspective.

• Outward perspective - How the client or deployment environment impact
on service execution is defined by outward perspective.

• Process - A combination of services to perform a specific task.

• Service - A Web service, which has one operation.

• Service level agreement(SLA) - A SLA is a formal definition of an agreement
that exists between a service provider and a customer.

• Service context profile (SCP) - An instance level specification of context
model ontology attached to a service.

• Transient context (TC) - An instance level specification of monitored context,
derived context or an operator resulted context.

• Validation - A process which determines whether a context constraint is true
or false.

• Validation monitoring - A process for collecting and storing the results of
context constraints validation.

• Web service technology stack - A Web service architecture consist of dis-
covery, description, packaging, transport and network layers and a set of
protocols for each layer.

17

Chapter 1

Introduction

Contents
1.1 Motivation . 18

1.2 Problem definition . 22

1.2.1 Central hypothesis . 22

1.2.2 Detailed research problems 23

1.3 Contributions . 24

1.4 Organization of the thesis . 26

1.1 Motivation

Service-centric applications need monitoring at run-time because of numerous

reasons, such as new versions of selected services, new services supplied by dif-

ferent vendors, different execution time contexts that hamper the correctness and

quality levels of Web service applications, etc. Conventional applications are thor-

oughly validated before their deployment [Medjahed 2007], but often shifting the

validation to run-time is needed to address monitoring and flexibility require-

ments [Wang 2009c, Baresi 2010b, Baresi 2011].

The validation monitoring of dynamic aspects attached to services and pro-

cesses at run-time is becoming increasingly necessary and context-aware tech-

niques are a possible method to address those challenges. The Software and Ser-

vices Challenges Report - a contribution to the preparation of the Technology

18

Pillar on "Software, Grids, Security, and Dependability" of the 7th EU Frame-

work Programme - introduces context as a central notion for future service plat-

forms and technologies. The following paragraph is an excerpt from the report

[Fitzgerald 2006]. The desired state for software and services (third-generation services)

is concerned with context-determined, consumer-driven, dynamically composed services.

Mere enabling and integration of services alone is not sufficient. There is a dramatic in-

crease in the threshold level of services management, quality, reliability, interoperability,

security, and trust required across the heterogeneous enterprises involved. Also, the term

’context-determined’ replaces the more commonly used term ’context-aware’ to emphasize

a more active stance on how software and services should help users to create new and

meaningful knowledge through the use of third-generation services. We observe that the

third-generation Web services need to focus on operational features (e.g., services

defined in WSDL), QoS features (e.g., services defined in OWL-S framework), and

also features of the execution environment (e.g., ubiquitous services). Our focus

is on context-aware third-generation Web services and applications. The notion of

context can be used to define temporal and spatial properties of Web services in

dynamic environments [Sheshagiri 2004]. In [Medjahed 2007], the notion of con-

text is used to define functional and non-functional features of Web services. The

recent trends in context-aware Web service compositions are compositions of spa-

tial and temporal contexts in mobile service applications [Sheshagiri 2004], con-

text communities and service discovery [Medjahed 2007, Doulkeridis 2006], con-

text matching for service selection [Medjahed 2007] and context-based mediation

approaches [Mrissa 2006b]. The basic Web service technology stack provides the

interoperability and messaging mechanisms by which information can be trans-

mitted between actors on the Web, but essentially more work is needed regarding

how contextual information can be represented, where it can be stored, how and

by whom it can be maintained, when it can be shared, what kind of reasoning is

possible, and how to ensure the scalability and consistency of service applications.

19

Throughout this thesis, we discuss dynamic requirements of service processes

at process execution time. We define dynamic requirements as requirements relevant

to the composition and execution of services at process run-time. In SOA (Service Ori-

ented Architecture) applications, requirements validation monitoring at process

run-time is demanding. For example, SLA (Service Level Agreement) monitor-

ing at provider end and client end. The service matching and service selection

approaches at service composition support design-time validation for service-

based applications [Medjahed 2007], but do not appropriately support run-time

validation and monitoring. Web services appear from heterogeneous domains

and environments. The latest trends in the service computing domain are host-

ing functionalities, data, software, infrastructure and even hardware as services.

There are tens of thousands Web services available over the web, even for a single

task there are many services available. The business needs are rapidly changing.

The changes to available services are increasing because of technological enhance-

ments and changing needs. The SLAs agreed between providers and clients need

to be monitored taking into account the respective execution contexts. There are

some aspects such as response time, availability, some business constraints, etc.,

which can only be measured at run-time and not at design-time. This shows that

Web service processes demand dynamic requirements validation and monitoring

at run-time.

According to our investigations, dynamic aspects are not appropriately ad-

dressed so far in the literature on Web service processes at process run-time. Fig-

ure 1.1 illustrates a few dynamic aspects in a simple example. In this example,

we assume this process is a Web service process with three services. We also

assume that service providers provide services and in return they charge from

enterprise clients. In here, the E-client sets two constraints for this particular pro-

cess instance. They are that the total cost of the process should be less than 0.3

Euro and that the process response time should be less than 2 seconds. The cost

20

Billing Service Banking Service Pay Confirmation
Service

User Request

Bill - Euro

Bank Account
Details (GBP)

Payment
details

Payment
details

Payment
confirmation

Response Time ?

Cost ?

Currency ?

Context

Currency ?

Response
Time ?

Cost ?

Response
Time ?

Cost ?

Service Process

Security ?

User
Device?

Figure 1.1: An example of dynamic aspects in a service process

of each service varies and the response time of each service can only be mea-

sured at process run-time. We can also see a semantic mismatch of output and

input parameters of services one and two. If a service fails at run-time, the ser-

vice needs to be replaced without violating these constraints. Moreover, we may

find situations, such as the integrity of a banking service, needs to be captured

from the defined security information (security is combination of integrity, au-

thentication, non-repudiation, and confidentiality), payment confirmation needs

to be sent to a users’ mobile device, which supports MMS messaging, etc. We

use the notion of context to define and capture these very different dynamic as-

pects. These create the following challenges on service composition and execution

at process run-time. The dynamic aspects of services and processes can be de-

fined and modeled using context representations. The dynamic requirements can

be generated as context constraints. The context specifications attached to service

processes can be manipulated, composed and reasoned about to support dynamic

requirements. The dynamic requirements validation monitoring at process run-

time needs constraints instrumentation and validation monitoring to be applied

21

at process run-time.

1.2 Problem definition

We define objectives of our research based on motivations in section 1.1. Our

main focus is firstly to develop a comprehensive context model that conceptual-

izes services and their dynamic requirements and secondly dynamic instrumen-

tation and validation monitoring of dynamic requirements in a service process at

process run-time. The objective of our research is defining an approach for con-

ceptualizing dynamic service context, manipulating and reasoning about context

aspects for dynamic requirements, generating context constraints for dynamic re-

quirements, and instrumentation and validation monitoring context constraints at

process run-time.

The overall research problem that we attempt to address is two-fold,

1. What are process execution relevant context aspects (dynamic aspects) of services

and processes?

2. How to manage process execution relevant aspects attached to a process instance to

support monitoring the validation of process execution relevant requirements (dy-

namic requirements)?

Managing implies conceptualization and manipulation of process execution rele-

vant aspects, generation of process execution relevant requirements as constraints,

and instrumentation and validation monitoring of context constraints.

1.2.1 Central hypothesis

The notion of context is widely used to address dynamic requirements in mobile

and pervasive applications. We focus on using the notion of context to address

dynamic requirements for Web service applications at run-time [Fitzgerald 2006].

We define our central hypothesis as,

22

Instrumenting context constraints at process run-time can validate dynamic

requirements in Web service business processes.

1.2.2 Detailed research problems

We expand the main research problem into detailed research problems and define

their objectives and boundaries, having the focus on the central hypothesis. We

identify four detailed research problems that need to be explored.

• How can we conceptualize (represent) dynamic aspects (contexts) attached

to composition and execution time of Web service processes?

The objective is to identify and model dynamic aspects attached to Web ser-

vices and processes to provide a shared conceptualization. Dynamic aspects

can be attached to functional features of services, quality of service features

of services, and the environment in which the services are executed.

• How can we manipulate and reason about context specifications attached to

services and processes?

The objective is to manipulate and reason about context in context specifica-

tions attached to services and processes to support dynamic requirements.

• How can we define dynamic requirements as context constraints?

The objective is to define dynamic requirements as context constraints, which

can be instrumented and validated at process run-time.

• How can we instrument a service process with context constraints and per-

form validation monitoring at process run-time?

The objective is to instrument and validate dynamic requirements at pro-

cess run-time. The dynamic requirements can be validated against dynamic

service context associated with services and monitored context.

23

1.3 Contributions

A context-aware approach to model and validate dynamic requirements in a Web

service application at run-time is our central point of attention. This research

results in four main contributions.

Dynamic service context modeling. A definition for dynamic aspects attached

to composition and execution of services at process run-time (called dynamic ser-

vice context) is needed. Moreover, a comprehensive classification of dynamic as-

pects and their formalisation in a proper conceptual model is necessary to enrich

service-based applications with shared conceptualization and reasoning about dy-

namic aspects at process run-time. Dynamic service context is defined to represent

composition and execution aspects of services at service process run-time. We de-

fine a comprehensive dynamic service context classification and its formalisation

(formal description) in an OWL-based context model ontology (processable form),

which provides shared conceptualization and reasoning facilities for service-based

applications.

Context manipulation and reasoning. Some context aspects in a context spec-

ification need to be combined, renamed, restricted, and refined as independent

aspects for dynamic requirements. Some context aspects in context specifications

of a service process need to be composed on a service-by-service basis. These

also include some situations that are difficult to address using available OWL-DL

operators and some context specifications that need to be adapted at process run-

time. The context reasoning can use the underlying description logic (DL) of the

OWL-based context model ontology for context derivation and consistency check-

ing. An operator calculus, which needs to be supported by context reasoning

techniques is suitable for addressing context manipulation and composition. An

operator calculus and reasoning techniques are proposed to manipulate, compose

and reason about dynamic service context attached to services and processes for

24

dynamic requirements.

Context constraints. Dynamic requirements need to be generated in terms of

dynamic service context in the context model ontology to enrich them with the

special featues provided by the context model ontology, such as shared conceptu-

alization, reasoning capabilities, etc. We generate dynamic requirements as context

constraints in terms of dynamic service context aspects in the context model ontol-

ogy. The context constraints are context-based restrictions. The context constraints

can be defined within the context model ontology, but that approach has major

drawbacks, such as the complete ontology needs to be reasoned about even for

a simple context validation, a simple change in a dynamic requirement requires

changes in the context model ontology, etc. These drawbacks affect the flexibility

and performance of the service process. Therefore, we contribute two types of con-

text constraints, explicit context validation constraints (ECVCs use ontology-based

context specifications) and implicit context validation constraints (ICVCs focus on

context derivation and consistency checking using the context model ontology).

These context constraints are separated from the context model ontology.

Instrumentation and validation monitoring at run-time. Dynamic requirements

attached to composition and execution of services at process run-time need to be

validated. The proposed architecture and components enable instrumentation and

validation monitoring of ECVCs and ICVCs, without re-deploying the process.

The performance of the instrumentation and validation monitoring needs to be

acceptable. The instrumentation implies weaving context constraints, constraint

services and data collectors to a deployed service process.

In summary, contextualization and managing context constraints in our approach

implies:

• Conceptualization of dynamic service context (ontology-based context mod-

eling)

• Context manipulation, composition, and reasoning about context specifica-

25

tions for dynamic requirements

• Context constraints generation for dynamic requirements

• Constraints instrumentation and validation monitoring at process run-time

Managing context constraints can result in service replacement or dynamic re-

composition, which is beyond our scope.

1.4 Organization of the thesis

The organization of this thesis is described in figure 1.2.

Chapter 1 : Introduction

Chapter 2 : Literature review

Chapter 3 : Contextualization and context
constraints management framework

Chapter 4 : Dynamic service context
modeling

[Validity , Completeness]

Chapter 5 : Context manipulation and
reasoning
[Validity]

Chapter 6 : Context constraints for
dynamic requirements

[Performance]

Chapter 7 : Context constraints
instrumentation and validation

monitoring
[Performance]

Chapter 9 : Conclusion
[Contribution discussion and future

research]

Chapter 8 : Evaluation

Case study based empirical
evaluation

Questionnaire based expert
opinions analysis

Case study based
experimental evaluation

Analytical models for
performance analysis

Figure 1.2: The organization of this thesis

Chapter 1 presents the motivation, research problems, and contributions.

26

Chapter 2 presents the literature review within the scope of the thesis and dis-

cusses the gaps and challenges, which we address in this thesis.

Chapter 3 presents the overall architecture and research approach to address the

main challenges identified in chapter 2.

Chapter 4 presents a classification of dynamic service context with the objective

of creating a more complete taxonomy and formalisation of context into a context

model ontology.

Chapter 5 presents context manipulation, composition, and reasoning. New op-

erators are introduced for manipulation and composition.

Chapter 6 presents context constraints modeling for dynamic requirements. A

new architecture and an algorithm for context constraints generation are intro-

duced.

Chapter 7 describes context constraints instrumentation and validation monitor-

ing at process run-time. A new architecture and algorithms for constraints instru-

mentation and validation monitoring are introduced.

Chapter 8 presents the evaluation approaches and evaluation results of main con-

tributions.

Chapter 9 summarises the contributions presented in this thesis and provides an

overview of future work and research directions.

27

Chapter 2

Literature review

Contents
2.1 Introduction . 28

2.2 Notion of context for Web services 30

2.2.1 Context definition . 30

2.2.2 Context categorization . 32

2.3 Context modeling and manipulation 37

2.3.1 Context modeling . 37

2.3.2 Context manipulation and reasoning 41

2.4 Constraints generation and validation monitoring 44

2.4.1 Constraints generation . 44

2.4.2 Constraints instrumentation and validation monitoring . 48

2.5 Discussion . 52

2.1 Introduction

This section analyses the body of work related to context-aware Web services, con-

text modeling and manipulation, context constraints generation, and constraints

instrumentation and validation monitoring in Web service business processes. The

analysis focuses on identifying possible gaps and the challenges in the literature.

Web services can be classified into three generations [Fitzgerald 2006]. First-

generation Web services are described using functional properties from the service

process design perspective. Second-generation Web services are described using

28

functional and quality of service properties from the service process design per-

spective. Dynamic service composition, which is service composition at process

run-time [Agarwal 2008, Dustdar 2008] is becoming a vital aspect for service pro-

cess design in emerging service computing applications. Web service applications

need changes at process run-time; therefore, process design-time perspectives are

not enough and process run-time perspectives are necessary. The requirements

can be frequently changed at service process run-time (dynamic requirements)

due to various reasons, such as dynamic user needs, various quality of service fea-

tures, a service update, service execution middleware update, server updates, var-

ious networks, devices, etc. Third-generation Web services need to be described

using functional properties, quality of service properties, and environmental as-

pects on service execution from the perspective of service process run-time. Our

particular concern is the composition and execution aspect of Web services for

third-generation Web service applications.

A notion of context is used in Web service applications, such as business ap-

plications, mobile applications, ubiquitous applications, etc. In section 2.2, we

analyse the notion of context of Web services in the literature to identify gaps in

defining context towards composition and execution aspects of services and pro-

cesses at run-time. In other words, we need to define dynamic service context from

the process run-time perspective. Context modeling, manipulation, and reasoning

are explored in service-based applications, such as mobile applications and ubiq-

uitous applications to address dynamic aspects. We carry out a detailed analysis

of the previous work related to context modeling, manipulation, and reasoning in

section 2.3. In 2.4, we analyse in detail the previous work related to constraints

generation, instrumentation, and validation monitoring towards dynamic service

applications. The gaps in the state of the art along with useful approaches and

technologies are described. Finally, at the end of the chapter in section 2.5, we

identify some weaknesses and limitations of the state of the art, which defines

29

where this work will build on. Each piece of related research is considered with

respect to its relevance and significance.

2.2 Notion of context for Web services

The notion of context has been modeled and exploited in many areas of informat-

ics since the early 1960s [Coutaz 2005]. The notion of context has been defined

by the scientific community as having application domain perspectives without

reaching a clear consensus. However, it is commonly agreed that context is about

evolving, structured, and shared information spaces, which are designed to serve

a particular purpose [Coutaz 2005]. In this section, we explore the notion of con-

text defined in the state of the art associated with Web service domains in section

2.2.1, and context categorizations in section 2.2.2 examining gaps related to dy-

namic aspects attached to the composition and execution of services.

2.2.1 Context definition

We explore the context definitions used in previous work related to context-aware

service applications. Perhaps the most highly cited work on context definition is

[Dey 2000]. They define context as "any information that can be used to charac-

terize the situation of an entity, in which an entity can be a person, place, physical

or computational object that is considered relevant to the interaction between an

entity and an application, including the application and the user themselves". Ser-

vice composition should not be confused with functional and non-functional prop-

erties [O’Sullivan 2002]. In [Medjahed 2007], context is any information that can

be used by a Web service to interact with clients and clients to interact with Web

services. Web services that use context, whether available to clients or providers

are called context-aware. In [Chen 2006], the authors define the term context as

having a service requester perspective and a service perspective. In the service re-

30

quester perspective, context is defined as the surrounding environment affecting

the requester’s Web service discovery and access, such as the requester’s profiles

and preferences, network channels and devices that the requesters are using to

connect to the web, etc. In the services’ perspective, context is defined as the

surrounding environment affecting Web services delivery and execution, such as

service profiles, networks and protocols for service binding, devices and platforms

for the service execution, etc. In [Maamar 2006], authors define two abstract types

of context, C-context for the context of a composite service, and W-context for the

context of a single Web service. According to them, the context of Web services

has fine-grained content, whereas the context of composite services has coarse-

grained content. Their C-context permits monitoring the deployment progress of

a composite service specification from a temporal perspective (such as, what oc-

curred, what is occurring, and what might be occurring with the component Web

services), and the W-context caters for participating service compositions. The au-

thors in [Rosemann 2008] point out that another area for investigating the notion

of context in process modeling is the requirements engineering discipline. They

introduce the notion of an immediate context of a business process, which includes

elements that go beyond the constructs that constitute the pure control flow, and

covers the elements that directly facilitate the execution of a process. They sug-

gest extending this view towards a wider perspective on the environment of a

business process. In [Doulkeridis 2006], context is defined as the implicit infor-

mation related to both the requesting user and the service provider that can affect

the usefulness of the returned results, having the focus on service discovery for

pervasive computing.

In particular, the notion of context can be used to define dynamic aspects

of Web service processes. The available context definitions of Web services do

not sufficiently describe dynamic aspects associated with the composition and

execution of Web services at process run-time such as response time, dynamic

31

business features, dynamic execution environments (different middleware), etc.

2.2.2 Context categorization

Context categorization in the general Web services domain. A Web service

description is only complete once the non-functional aspects are also expressed

[O’Sullivan 2002, O’Sullivan 2006]. The non-functional properties of services in-

clude availability, channels, charging styles, settlement models, settlement con-

tracts, payment, service quality, security, trust, and ownership. The service match-

ing framework proposed by [Medjahed 2007] is a promising work for Web service

composition in the context-aware Web services domain. This framework combines

the concepts Web service, policy-based context modeling, and policy-based service

matching focusing on service composition at process design phase. Their context

categorization is detailed, but the categorization has inconsistencies. For example,

most of their value-added contexts are quality of service contexts and the service

execution perspective is not sufficiently described, such as environmental context

where services are executed, performance of services, availability of services, etc.

A general structure of a Web services community proposed in [Medjahed 2005] en-

ables clustering Web services based on their domain of interest. This classification

is more detailed, compared to the classification in [Medjahed 2007], particularly

the quality of operation in [Medjahed 2005] is comprehensive in addressing qual-

ity of service properties. However, some properties need to be added, for example

the trust property in [Hasselbring 2006]. Moreover, their dynamic semantics can

also provide some inputs for defining dynamic properties of Web services.

The context of Web services is categorized as provider-related context, customer-

related context and collaboration-related context, which uses the concept of Web

service community and a goal template to facilitate service selection [Boukadi 2009,

Boukadi 2008]. The customer-related context is a set of available information as

well as meta-data used by service providers to adapt their services, for example,

32

customer profile, environmental context, customer preferences, etc. The provider-

related contexts are conditions under which providers can offer their Web services

for external use, for example, service capability, history related to previous events

and situations, quality of service, etc. The collaboration-related context referring

to the general context in which the enterprise collaboration will be created and

changed over time, for example, data, location, business domain, etc. They con-

sider only explicit contexts, which are explicitly defined by service providers and

customers. The implicit contexts are out of scope in their work. The goal templates

in [Boukadi 2009, Boukadi 2008] contain both functional and contextual parame-

ters used to select services. Their focus is on static context and service selection

for Web services composition at process design-time.

How context permits determining the semantics of Web service interfaces is

motivated and addressed by [Mrissa 2006b, Mrissa 2006a, Mrissa 2007, Mrissa 2008].

Their focus is on data heterogeneities that arise when Web services from different

origins take part in a composition. They propose annotating Web service descrip-

tions with data semantics. This annotation is integrated into a semantic mediation

architecture that handles information heterogeneities using semantic objects and

Web service contexts. Context is proposed to integrate with WSDL by amending

the WSDL message part through adding new context attributes. Their context

model revolves around the notion of a semantic object. A semantic object has a

data part and semantic part. A data part has a value v of type t described in

a type system language, a semantic part has a concept c of the application do-

main, and a context C is represented as a tree of meta-attributes referred to as

modifiers. These modifiers make explicit the semantic properties of semantic ob-

jects. However, their work is more about context integration with the focus on

mediation towards semantic Web service composition and does not address con-

text in detail. However, this idea emphasises the need for context descriptions for

service interfaces. Web services can originate from various providers, and that

33

leads to context heterogeneity for service composition [Sattanathan 2006]. The

focus in [Sattanathan 2006] is on context reconciliation among different Web ser-

vices while defining Web service context as a set of common meta-data about

the current execution status of a Web service and its capability of collaborat-

ing with peers. Like in [Maamar 2006, Mrissa 2006b, Mrissa 2006a, Mrissa 2007,

Mrissa 2008], [Sattanathan 2006] addresses context at a very abstract level.

A comprehensive context model of context classifications for business pro-

cesses is proposed in [Rosemann 2008, Rosemann 2006]. Their concern is explor-

ing extrinsic drivers for process flexibility, which is an important requirement in

modern business processes. The extrinsic drivers for flexibility are studied in the

context of a process, and they argue that a stronger and more explicit considera-

tion of contextual factors can make the process more adaptive. They discuss why

context matters and how context can be conceptualized, classified, and integrated

with existing approaches to business process modeling. They focus on a goal-

oriented process modeling approach to identify relevant context elements and

propose a framework and a meta-model for classifying relevant context. They pro-

pose a stratified layer framework by incorporating and differentiating four types

of context. They are the immediate, internal, external, and environmental context.

The immediate context of a business process describes elements that go beyond

the constructs that constitute the pure control flow and covers those elements that

directly facilitate the execution of a process. However, their classification is more

conceptual. They emphasise that the concept of immediate context is prevalent in

process modeling and suggest to extend this view in a wider perspective for an

environment of a business process.

Context categorization in pervasive computing domain. The notion of context

is used to define dynamic aspects in pervasive computing applications. The no-

tion of context is explored for physical and conceptual objects including person,

activity, computational entity, and location in pervasive computing applications

34

[Wang 2004, Roy 2010]. The authors in [Fujii 2009] propose a semantics-based

context-aware dynamic service composition framework, which allows users to re-

quest applications in an intuitive manner (e.g. user request in a natural language).

Applications adapt to different users by utilizing user context information when

composing applications, and adapt an application for dynamic environments by

autonomously composing a new application and migrating to it when the user

context changes. They use user context information such as location, time, and

history to achieve adaptability at dynamic service composition. These are appli-

cation dependent dynamic aspects for pervasive applications. A set of elements,

user context, computing context, time context, physical context, and context his-

tory, which make up a full definition of context [Mostéfaoui 2003]. The user con-

text focusses on user role, identity, age, location, preferences, social situation, etc.

The computing context focuses on network connectivity and nearby resources

such as printers, displays, etc. The time context focuses on time of day, week,

month, seasons of the year, etc., The physical context focuses on weather, tem-

perature, etc. The context history focuses on recording the above context across

a time span. These context types focus on service discovery and composition in

pervasive environments. The focus on pervasive applications is providing the

right information to the right users, at the right time, in the right place, and on

the right device [Bikakis 2008]. Therefore, it is necessary for a system to have

thorough knowledge about people and devices, their interests and capabilities,

and tasks and activities being undertaken. All this information falls under the

notion of context in [Bikakis 2008]. A number of observations about the nature of

context information in pervasive computing systems are context information has

a range of temporal characteristics, context information is imperfect, context has

many alternative representations and context information is highly interrelated

[Henricksen 2002].

The challenges of large-scale ubiquitous computing can be tackled with a struc-

35

tured and flexible approach to context [Coutaz 2005]. For them, the context is not

simply the state of a predefined environment, which has a fixed set of interaction

resources. It is part of a process of interacting with an ever changing environment

composed of reconfigurable, migratory, distributed, and multi-scale resources. In

[Lee 2007], the authors define context types for context-aware frameworks in ubiq-

uitous environments. They define four types of definitions - sensed context (con-

text gathered from sensors), combined context (context calculated from sensed

context), inferred context (context inferred from sensed context), and learned con-

text (context made from a learning algorithm). Two kinds of context are identified

as service context and user context in [Doulkeridis 2006] for context-aware service

discovery in mobile services domain. The service context can be the location of

a service, its version, the provider’s identity, type of the returned results, and its

cost of use. The user context defines the user’s current situation, such as location,

time, temporal constraints, as well as device capabilities, and user preferences.

Their concern is matching user context against service context in order to retrieve

relevant services with respect to context-awareness.

Context categorization in e-learning domain domain. The context, adaptivity,

context-aware systems, and ontologies are explored in e-learning applications.

The authors in [Soylu 2009b, Soylu 2009a] use the constructed theory and practices

in context-aware literature to enable anywhere and anytime adaptive e-learning

environments. They propose eight categories for context-aware settings where

they need to achieve an optimal granularity and need to represent main actors of

a typical pervasive computing setting. They also emphasise that this categoriza-

tion provides an initial step towards a generic conceptualization. Their context

categories include user context (internal, external), device context (hard, soft), ap-

plication context, information context, environmental context (physical, digital),

time context, historical context, and relational context.

In contrast to conventional applications (validated before deployment), service-

36

centric applications can heavily change at run-time, for example, they can bind to

different services according to the context in which they are executed or providers

can modify internals of their services [Baresi 2005]. A more extensive context clas-

sification has to be done having the perspective of service process run-time. The

literature does not appropriately discuss a comprehensive categorization of dy-

namic aspects attached to the composition and execution of services at process

run-time.

2.3 Context modeling and manipulation

In Web service business processes, notion of context is mostly described for service

matching, selection, and mediation applications focusing on service composition

at process design-time. We review context definitions for service applications in

section 2.2 and Web service context categorization in section 2.2.2. In this section,

we further explore context modeling in section 2.3.1 and context manipulation

and reasoning in section 2.3.2 to identify gaps in the literature.

2.3.1 Context modeling

The pervasive computing community increasingly understands that the develop-

ment of context-aware applications should be supported by adequate context in-

formation modeling and reasoning techniques to reduce the complexity of context-

aware applications [Bettini 2010]. The learning techniques, such as Bayesian net-

works, fuzzy logic, etc. [Khedr 2004, Ngo 2004], statistical methods [Cakmakci 2002],

and ontologies [Wang 2004] can be used to model context information [Soylu 2009b,

Soylu 2009a]. In [Strang 2004], the authors survey the most relevant current ap-

proaches to model context for ubiquitous computing systems. The approaches are

classified relative to their core elements, and evaluated with respect to their ap-

propriateness. The authors in [Strang 2004] classify modeling approaches based

37

on a scheme of data structures, which are used to exchange contextual informa-

tion in the respective system. Their categorization include, key-value models,

markup scheme models, graphical models, object-oriented models, logic-based

models, and ontology-based models. Context modeling and implementation use

XML, XML based CC/PP [Doulkeridis 2006], UML [Kapitsaki 2009], Topic Maps

[Goslar 2004], RDF [Medjahed 2007], and OWL [Wang 2004] in various application

domains. The authors in [Ibáñez 2010] describe how an RDF vocabulary is used to

model functional and non-functional properties of basic activities of XML-based

BPEL processes [Alves 2006]. However, based on a survey on the most important

existing context modeling approaches, authors in [Strang 2004] conclude that the

most promising approach, which satisfies requirements in ubiquitous computing

applications is ontology-based context modeling. [Wang 2004] shows several rea-

sons to use ontologies for context modeling, such as logical inference, knowledge

sharing, knowledge reuse, etc. Moreover, authors of [Hervás 2010] have listed sig-

nificant benefits and functionalities of ontology-based modeling, such as explicit

knowledge representation, expressive power, reasoning and inference, detection

of inconsistencies, simplifying functional complexities, etc.

There are complete semantic ontology frameworks to model semantic descrip-

tions of Web services, such as WSMO [Lausen 2005], SWSF [Battle 2005], and

OWL-S [Martin 2004]. These model semantic Web services in a top-down fashion.

They define complete frameworks for describing the semantics of Web services.

The authors in [Kopecky 2008] emphasise the importance of ontology-based mod-

eling of semantics on top of WSDL and propose SAWSDL [Farrell 2007] annota-

tions with concrete semantic constructs. In the METEOR-S project [Aggarwal 2004],

a semantic Web service designer tool supports the design and development of se-

mantic Web services. The incorporation of semantic descriptions into a service

is achieved by means of service source code annotations. The complete descrip-

tion of the semantics of an operation involves the description of inputs, outputs,

38

constraints to be satisfied, exceptions thrown by each operation, and the func-

tional description of the operation. The METEOR-S architecture incorporates data

semantics, functional semantics, and quality of service semantics to support ac-

tivities in the complete Web process life cycle, and also uses WSDL annotations,

WSDL-S, and OWL-S for describing semantics.

Ontologies are used to build consensual terminologies for the domain knowl-

edge in a formal way so that they can be more easily shared and reused [Ye 2007].

Ontology is referred to as a shared understanding of some domains, which has

a set of entities, relations, functions, axioms and instances [Gu 2004]. The au-

thors in [Gu 2004] describe their reasons for selecting OWL [McGuinness 2004]

to realize their context model, which is that OWL is more expressive than RDF

[Brickley 2004]. OWL supports semantic interoperability to exchange and share

context knowledge between different systems and OWL is a W3C standard. The

authors of [Chen 2003, Chen 2004] emphasise the suitability of OWL for build-

ing a common knowledge representation for context-aware systems to share and

reason with contextual knowledge.

OWL facilitates greater machine interpretability of Web content than that sup-

ported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabu-

lary along with formal semantics [McGuinness 2004]. OWL has three expressive

sublanguages. They are OWL-Lite, OWL-DL, and OWL-Full. OWL-Lite sup-

ports classification hierarchy and simple constraints. OWL-DL supports maxi-

mum expressiveness while retaining computational completeness (all conclusions

are guaranteed to be computable) and decidability (all computations finish in fi-

nite time). OWL-DL includes all OWL language constructs, but they can be used

only under certain restrictions, such as a class cannot be an instance of another

class. OWL-Full has maximum expressiveness and the syntactic freedom of RDF

with no computational guarantees. For example, a class can be treated simulta-

neously as a collection of individuals and as an individual on its own. OWL-Full

39

also allows an ontology to augment the meaning of the pre-defined RDF/OWL

vocabulary. However, it is unlikely that any reasoning software will be able to

support complete reasoning for every feature of OWL-Full [McGuinness 2004].

Description logic is used for the decidable fragment of OWL, called OWL-

DL [Baader 2007]. In [Serrano 2007], the focus is on an OWL-based ontology

for creation, delivery, and management of context-aware services, and also for

the integration of user context information in service management operations for

heterogeneous networks. The person, place, task, and object are considered as

fundamental contextual data. In [Lee 2007], the focus is on a context ontology for

ubiquitous environments using OWL and SWRL. Their context types are sensed

context, combined context, inferred context and learned context. [Hong 2008] also

proposes a context ontology focused rule-based approach for ubiquitous learn-

ing environments. An interesting comparison of available context-aware systems

modeling, and reasoning can be found in [Bikakis 2008]. OWL is a common for-

malism for context representation. A number of query languages (e.g. RDQL

[Seaborne 2004], RQL [Karvounarakis 2002], TRIPLE [Sintek 2002]), and reason-

ing tools (e.g. FaCT++ [Tsarkov 2007], RACER [Haarslev 2001], Pellet [Sirin 2007])

have been developed to support development of complete OWL-based applica-

tions. The query languages and reasoning tools can retrieve relevant information,

check the consistency of the available data, and derive implicit ontological knowl-

edge. OWL-DL is based on the SHOIN (D) description logic [Baader 2003].

OWL-DL also has the inference ability [Hong 2008].

The dynamic aspects attached to the composition and execution of services

need shared conceptualization and reasoning facilities such as consistency check-

ing, deriving implicit dynamic aspects from explicit dynamic aspects, etc. for

addressing dynamic requirements at service process run-time. According to our

understanding, the literature does not appropriately discuss a comprehensive con-

ceptual model which addresses dynamic requirements attached to composition

40

and execution of services at process run-time.

2.3.2 Context manipulation and reasoning

The ontology-based context aspects and specifications need to be manipulated,

composed and reasoned about to address dynamic requirements. For example,

to capture integrity aspect of a service from the given security context. In this

section, we review the state of the art for manipulation and composition aspects

on specifications and ontology-based reasoning methods.

Context manipulation and composition. The research towards manipulating con-

text specifications in dynamic environments and requirements is not new. Static

QoS specifications are valuable, but they have limitations, such as QoS character-

istics and requirements change dynamically due to changing user preferences or

changes in the environment. They do not allow objects of a system to be aware

of the QoS they require or provide [Frølund 1998b]. In contrast, an object, which

is QoS-aware is able to communicate and manipulate its QoS information. The

authors in [Frølund 1998b] provide a run-time representation of QoS specification

for dynamic systems that change and evolve over time. This representation en-

ables systems to create, manipulate, and exchange QoS information, and thereby

negotiate and adapt to changing QoS requirements and conditions. The au-

thors introduce a language called QML (QoS Modeling Language)[Frølund 1998a]

to capture component-level QoS properties and design a QML-based run-time

QoS fabric called QRR (QoS run-time Representation). The QRR allows dynamic

creation, manipulation, communication, and comparison of QoS specifications

[Frølund 1998b]. The authors in [Cámara 2008] present an approach to the flexi-

ble composition of possibly mismatching behavioural interfaces in systems where

context information can vary at run-time. This approach simplifies the specifica-

tion of composition/adaptation by separation of concerns, and is able to handle

41

context-triggered adaptation policies. However, manipulation and composition

operators for dynamic aspects and specifications, which can work with the de-

scription logic of ontology-based specification are still lacking.

The service profile in OWL-S [Martin 2004] provides the information needed

for an agent to discover a service. This representation includes a description of

what is accomplished by the service, limitations on service applicability, quality of

service, and requirements that the service requester must satisfy to use the service

successfully. This approach does not discuss about manipulation and composition

of dynamic aspects in ontology-based specifications for dynamic requirements.

The authors in [Kaiya 2005] propose a method of requirements analysis by using

ontology techniques where they establish a mapping between requirement speci-

fications and ontological elements. Ontology-based manipulation of architecture

styles can be found in [Pahl 2009, Pahl 2007]. The authors propose an ontolog-

ical approach for architectural style modeling based on description logic as an

abstract meta-level modeling instrument. They use description logic to define an

ontology for the description and development of architecture styles that consist

of an ontology to define architecture styles through a type constraint language,

and an operator calculus to relate and combine architecture styles. They give an

overview of the central operators renaming, restriction, union, intersection and re-

finement, and define the semantics of an operator calculus. Instead of general on-

tology mappings, they introduce a notion of a style specification and define style

comparison and development operators on it. They also introduce three types of

composite elements for architecture style specifications, called structural compo-

sition, sequential composition, and behavioural composition. This is interesting

work, which can provide some inputs for developing an operator calculus to ma-

nipulate and compose ontology-based context aspects and specifications towards

dynamic requirements. However, more work is still necessary, such as composing

dynamic aspects for various dynamic requirements at process run-time. For ex-

42

ample, the security of a process is the weekest security of a constituent service, a

language aspect of a process is the language common to all services, etc.

Context reasoning. A key concern in the study of context-aware systems is rea-

soning about context [Wang 2004, Lee 2007]. The context reasoning can be OWL-

DL reasoning or rule-based reasoning [Bikakis 2008]. OWL-DL reasoning takes

advantage of the class relationships, property characteristics, and property limi-

tations while rules are used to combine information about various contexts using

algebra [Hong 2008, Ranganathan 2002]. Ontology-based models provide logi-

cal characterization for the interpretation of objects, classes, and relationships

[Pessoa 2007]. This type of modeling permits the specification of a domain to

allow semantically consistent inferences and assure shared and reusable repre-

sentation of context information among context providers, service platforms and

applications. This further enables the development of systems that are able to

derive implicit information through the analysis of information represented ex-

plicitly [Pessoa 2007]. Rule languages provide a formal model for context reason-

ing. They are easy to understand, widely used, and there are many systems that

integrate them with the ontology model [Bikakis 2008]. SWRL is based on a com-

bination of OWL-DL and unary/binary datalog [Boley 2010] sublanguages of the

Rule Markup Language [Boley 2010, O’Connor 2005a]. SWRL [Horrocks 2004b]

rules (Horn-like rules) reason about OWL individuals, primarily in terms of OWL

classes and properties [O’Connor 2005b, O’Connor 2005a]. The rules can be used

to infer new knowledge from existing OWL knowledge bases [O’Connor 2005a].

The aim of context reasoning is to deduce new knowledge based on available con-

text data [Bikakis 2008]. The ultimate goal is to make the service more intelligent

and closer to the specific needs of their users [Bikakis 2008]. As a reasoning tool,

Pellet is the first sound and complete OWL-DL reasoner with extensive support for

reasoning with individuals (including nominal support and conjunctive query),

user-defined data types, and debugging support for ontologies [Sirin 2007]. Pel-

43

let implements several extensions to OWL-DL, such as a combination formalism

for OWL-DL ontologies, OWL/Rule hybrid reasoning, etc. It has proven to be a

reliable tool for working with OWL-DL ontologies and experimenting with OWL

extensions [Sirin 2007]. However, reasoning methods applied on dynamic aspects

of service processes for dynamic requirements at process run-time are still lacking.

2.4 Constraints generation and validation monitoring

Globalization and the need for accessibility causes a significant shift in busi-

ness processes from static solutions to flexible processes that can address rapidly

changing business needs [Ardagna 2011]. The industry has a major interest in

the QoS of a workflow and workflow systems [Cardoso 2004]. Currently, ad hoc

techniques are applied to estimate the QoS of a workflow [Cardoso 2004]. Most of

the previous work can be viewed as QoS-based design, QoS-based selection and

execution, QoS-based monitoring and QoS-based adaptation [Cardoso 2004]. In

SOA, constraint-based service selection has been explored from process design-

time perspectives [Alrifai 2009, Boukadi 2008, Aggarwal 2004, Rajasekaran 2004].

The constraints validation that traditionally pertains to development time, now

needs to be extended to run-time for addressing emerging challenges in Web ser-

vice applications [Bianculli 2008], such as SLAs monitoring.

2.4.1 Constraints generation

In this section, we explore the previous work related to constraints generation

(requirements or QoS-based constraints) and specification technologies towards

service-based applications.

A context constraint specifies that certain context attributes must meet cer-

tain conditions to permit a specification operation [Strembeck 2004]. A mul-

tilevel context model in [Boukadi 2008] defines how context data can become

44

context assertions, then composite context assertions, and finally context con-

straints, which can be used in service selection. They define a context assertion

as a predicate that checks the validity of a condition and consists of an oper-

ator and two operands. Their context constraint consists of context data and

one or more context assertions including composite context assertions. Con-

text constraints generation is restricted to context instances and their assertions.

The assertions can be simple assertions and composite assertions. This funda-

mental idea of context constraints is interesting for context ontology integrated

service-based applications. The idea behind the service selection approaches in

[Boukadi 2008] and [Medjahed 2007] are similar. The constraints representation

module in [Channa 2005, Aggarwal 2004] is a set of classes, attributes, instances,

and relationships between them that allow users to represent business constraints

in ontologies. Their concern is business constraints for selecting Web services for a

given process. However, constraints generation and specification need to be more

precise than their detailed ontologies to make them more flexible in modifications

and validations.

The constraints are successfully applied in numerous domains such as com-

puter graphics, natural language processing, database systems, resource allo-

cation, planning, and scheduling [Karakoc 2009]. In [Karakoc 2009], constraint

translator approach converts a work flow of a Web service composition and con-

straint specifications into a constraint language. Service constraints are constructed

from the service templates so that service variables are mapped to constraint vari-

ables and a flow model is converted into a set of constraints in the constraint

language of the constraint engine [Karakoc 2009]. These constraints are quality

conditions that reflect the users requirements on a composite service. The service

selection should satisfy these specified constraints. The service process is then

deployed and executed. They assume that the constituent services are stable at

process run-time. Moreover, this approach does not address process run-time as-

45

pects (e.g. service response time, reliability, availability, etc.); therefore this work

is less suitable for dynamic service applications.

In [Frølund 1998b], the authors provide a run-time representation of QoS spec-

ification, which allows dynamic changes in dynamic systems (systems, which

change due to changing user preferences or changes in the environment). These

specifications are developed using object-oriented programming constructs; there-

fore less compatible for service-based applications, which are based on XML-

based specifications. Formal methods are also used in some approaches to specify

constraints, such as in [Mahbub 2005] where constraints are specified in an event

calculus. The UML [Priestley 2003] standard is already equipped with the Object

Constraint Language (OCL) [OCL 2010] to express constraints, which cannot be

conveyed by the graphical elements in UML. OCL is a declarative language (first

order logic language), which can be used to specify functional behaviour of ele-

ments in a software system (e.g. invariants on class diagrams) [Cacciagrano 2006].

SoaML integrates modeling capabilities to support SOA [SoaML 2009]. For ex-

ample, ServiceContract and ServiceInterface elements of the SoaML profile sup-

port contract-based and interface-based approaches respectively. USDL is made

up of a set of modules including service level agreements and each addresses dif-

ferent aspects of the overall service description [USDL 2011]. These modules have

dependencies among each other, as they reuse concepts from other modules.

The XML schema does not allow to express complex constraints and define

inter-dependencies. Therefore, it is necessary to have more expressive technolo-

gies [Cacciagrano 2006]. The constraints language in XML (CLiX) is gaining in-

creased momentem for constraint specifications [Cacciagrano 2006, Jungo 2007,

Nentwich 2002, Dui 2003, Nentwich 2005]. It allows the specification of static and

dynamic integrity constraints of Web service parameters by means of logic formu-

las. The existential and universal quantifiers are used to iterate over sets of nodes

and boolean operators that allow to build more complex formulas, which we find

46

suitable for defining dynamic requirements that need to be validated at process

run-time. The xlinkit validator engine facilitates validation of CLiX logic formulas

[Nentwich 2002].

We observe some challenges not appropriately addressed so far. The con-

straint representation modules define constraints in ontologies [Aggarwal 2004,

Boukadi 2008]. However, defining dynamic requirements as context constraints

within the ontology has major drawbacks, such as the complete context ontology

is involved in reasoning for a simple context validation (e.g., cost of a service need

to be less than 0.2 USD), the complete context ontology is repeatedly involved for

each and every context validation, a change in one dynamic requirement needs a

change in the ontology, etc. These drawbacks affect the flexibility and performance

of the service process. But the complexity of some context constraints, which

need context derivation and consistency checking, can be reduced by implement-

ing them using the underlying description logic of the context model ontology.

However, context reasoning is more costly than validation against context specifi-

cations, which are small in size. Dynamic requirements are specific to application

scenarios (e.g. security of a service process attached to one scenario is integrity

context of constituent services) and the context model ontology is common to all

service processes. Therefore, it is necessary to separate context constraints from

the context model ontology. These context constraints need to be supported by the

shared conceptualization and context reasoning facilitated by the context model

ontology. In our scope, most of the dynamic requirements are not complex and

need to bind dynamic aspects with simple logic. However, some complex dynamic

requirements can be simplified using the context reasoning capabilities provided

by the context model ontology. The state of the art does not sufficiently address

dynamic requirements in service processes, which can be supported by dynamic

aspects reasoning and shared conceptualization.

47

2.4.2 Constraints instrumentation and validation monitoring

In this section, we explore previous work related to requirements (or QoS) instru-

mentation and validation monitoring in service-based applications.

Web service composition lets developers create applications on top of the de-

scription, discovery, and communication capabilities of service-oriented comput-

ing [Milanovic 2004]. Composition of Web services has received much interest to

support business-to-business or enterprise application integration [Srivastava 2003].

XML-based standards have been introduced to formalise the specification of Web

services and their flow-composition. WS-BPEL (or BPEL) is a OASIS standard

used for specifying business process behaviour based on Web Services [Alves 2006],

which exports and imports functionality by using Web Service interfaces exclu-

sively. WS-BPEL defines a model and a grammar for describing the behavior

of a business process based on interactions between the process and its part-

ner services [Alves 2006]. Service composition can be static composition or dy-

namic composition. Combining services for a composite service or process in a

pre-determined manner is called static composition. Combining component ser-

vices in a composite service at process run-time is called dynamic composition

[Dustdar 2008, Bastida 2008].

The service selection algorithm in [Yu 2007] focuses on selecting individual

services that meet QoS constraints and also provide the best value for the user-

defined utility function. The user-defined utility function is defined by a weighted

sum of system parameters including system load, cost, and other attributes. This

can be seen as constraints validation in service selection at process design-time.

The research work on validation at design-time always assumes that the services

are error-free at run-time. In the METEOR-S project [Aggarwal 2004], a constraint

analyzer deals with constraints. Any constituent set of services of a process, which

satisfies the given constraints is a feasible set. Their focus is on using business con-

straints, technological constraints, and partnerships to select services for a Web

48

service process at process design-time. The METEOR-S allows the process design-

ers to bind Web services to an abstract process. However, the use of SWRL and

OWL to provide descriptive rules for specifying constraints is planned, but not

properly realized.

In [Mahbub 2005], the authors present a framework to support run-time ver-

ification of requirements for service-based systems. Their framework supports

the run-time monitoring of behavioural properties of service based systems. The

behavioural properties (e.g. a conditional structure of service execution), which

are specified using an XML schema that represents formulas of an event calculus

(EC) [Shanahan 1999] are extracted from the process specification. Event calcu-

lus is a first-order temporal logic language that can be used to specify the events

that occur within a system and the effects of these events [Mahbub 2005]. The

authors in [Mahbub 2005] classify five types of events attached with behaviour,

invocation events (service-level invocation), reply events (service-level reply), re-

turn events (process-level return), request event (process-level request), and as-

signment events. In [Moser 2008b, Moser 2008a], the authors propose a tool for

monitoring and dynamic adaptation of BPEL processes. Their monitoring focuses

on computing quality of service (QoS) data for various service selection strate-

gies to support dynamic service adaptation. Their service adaptation happens at

run-time by dynamically selecting an alternative service for an existing service

used in the process, without any changes to the deployed BPEL process. The tool

further provides transformation components to compensate for service interface

mismatches, which are likely to occur when using alternative services offered by

different providers. However, this approach assumes that the quality of service

used in the service selection is guaranteed for service executions, which is not

the case for dynamic aspects and more exploration is still necessary for validation

monitoring of dynamic aspects at process run-time. The authors in [Ehlers 2011]

present a framework that allows for autonomic on-demand adaptation of the mon-

49

itoring coverage at run-time. Their objective is self-adaptive monitoring to inves-

tigate performance anomalies in component based software systems. They use

goal-oriented monitoring rules specified in OCL. The continuous evaluation of

the monitoring rules enables to zoom into the internal realization of a compo-

nent, if it behaves anomalous. Their monitoring and analysis process contains

probe injection, probe activation, data collection, data processing, visualisation

and self-adaptation. In order to monitor the internal behaviour of components,

probes can be instrumented at various measuring points in the control flow of the

components. This is similar to an idea; dynamic instrumentation of constraints

as pre/post conditions of services in a service process. However, it goes beyond

fixed assignment of monitoring probes.

Run-time monitoring of web service compositions has been widely acknowl-

edged as a significant and challenging problem [Barbon 2006]. [Foster 2006] pro-

vides an approach to specify, model, verify and validate the behaviour of web

service compositions based on interaction requirements. The compatibility of

Web services is important for service compostion. An approach for compatibil-

ity analysis for Web services based on sequences of messages, exchanged data

flow, constraints attached to data flow and temporal requirements is proposed in

[Guermouche 2008]. WS-BPEL does not allow to define temporal constraints in

service composition [Kallel 2009]. A formalism to capture the timed behavior of a

composite Web services process is proposed in [Kazhamiakin 2006]. An approach

for monitoring temporal constraints (such as availability, throughput, reliability,

etc.) by translating them into timed automata is proposed in [Raimondi 2008].

Dynamic monitoring using a code weaving approach is proposed in [Baresi 2005].

Their code weaving blends monitoring rules with an abstract service process be-

fore the process deployment, assuming all candidate services are stable. However,

in this approach, a service failure or monitoring rule failure needs process rede-

ployment. This approach does not sufficiently address late-binding [Canfora 2005],

50

in which services are selected and combined at process run-time. The authors in

[Leitner 2010] propose a system that integrates event-based monitoring, predic-

tion of SLA violations using machine learning techniques, and automated run-

time prevention of those violations by triggering adaptation actions in service

composition. They use predictions of SLA violations, which are generated us-

ing regression from monitored run-time data to trigger adaptations in the service

composition.

Web service technology aims to reuse distributed functionalities. However,

there are challenges to realize its full potential, such as to ensure that the be-

haviour of Web services is consistent with their requirements [Wang 2009c]. The

authors in [Wang 2009c] propose an online monitoring approach for Web service

requirements. The monitoring approach covers five kinds of system events rele-

vant to client request, service response, application, resource, and management.

Though these five parts are separated, they are closely related, such as lacking

resources leads to bad response time, malicious request results in failure of appli-

cation, etc. Their monitoring model tries to answer "What should be monitored?",

while their monitoring framework tries to answer "How to monitor?". The mon-

itoring framework is composed of distributed probes (probes extract events from

the target system), an agent (active events collector), a central analyzer (process

different kinds of monitored events), and a management center (human-friendly

management interface). Their probes are generated from the information con-

tained in the service constraint specification and this approach focuses on the

monitoring of individual Web services, including client and operating environ-

ment. The monitoring framework begins monitoring a service for specified con-

straints, once all the monitoring codes are successfully deployed. The instru-

mentation is the most widely used monitoring mechanism. Traditionally, instru-

mentation code is inserted manually and in [Wang 2009c] the monitoring code

is embedded inside the target code. In recent years, some new instrumentation

51

mechanisms (such as Javaassit and AspectJ) have been developed to instrument a

java code automatically according to configuration information [Wang 2009c].

However, previous work does not sufficiently address instrumentation and

validation monitoring of dynamic requirements at process run-time, which is a

necessary requirement for Web service applications. In particular, the explicit

information about dynamically managing requirements instrumentation and val-

idation monitoring in a BPEL process at process run-time is not appropriately

addressed.

2.5 Discussion

This discussion focuses on analysing the most important previous work to high-

light gaps in the literature. The gaps are discussed and clearly defined at the end

of the discussion.

There is no specific definition for context in information science. The no-

tion of context has been defined in various application domains from more gen-

eral to more specific terms [Dey 2000, Coutaz 2005, Maamar 2006, Medjahed 2007,

Fujii 2009, Rosemann 2008, Hong 2008, Lee 2007, Boukadi 2008]. The notion of

context has been widely used in mobile [Sheshagiri 2004] and ubiquitous [Lee 2007,

Hong 2008] applications to define spatial and temporal aspects. Recently, the

notion of context has been explored in service matching [Medjahed 2007] and

service selection [Boukadi 2008] research in the Web services domain. However,

these context definitions are not complete in addressing the notion of context of

third-generation Web services. In particular, to address service composition and

execution aspects attached to dynamic requirements at process run-time. In other

words, the available context definitions do not focus on dynamic service context.

A proper definition to define dynamic service context is still lacking.

According to our investigations, a context classification to address dynamic

aspects of Web services is needed. The authors in [Rosemann 2008] propose a

52

conceptual context model for context classification for business processes in gen-

eral and state the importance of further research on business process execution

aspects, called immediate context. A more detailed solution related to context

and context-aware Web services for Web service process domain is proposed in

[Medjahed 2007]. This is context-based service selection for service composition

at process design-time. Their context categorization is detailed, but it is about

static context and does not sufficiently address dynamic requirements based as-

pects such as run-time context, execution environment context, etc. Their previous

work in [Medjahed 2005] presents Web service clusters in a detailed classification.

They detail static semantics, dynamic semantics, and also quality of operations.

However, their focus is on semantic clusters for services, which reinforces the con-

cept of a service registry. Dynamic service context is increasingly demanding and

dynamic requirements validation at service process run-time is a challenging di-

rection. However, a comprehensive solution towards this direction is still lacking.

There is some work on context models associated with Web service applica-

tions [Chen 2004, Wang 2004, Lee 2007, Chen 2006]. Most of these context models

are domain-specific and application-dependent. A more general context model

to address dynamic aspects associated with service composition and execution

from run-time perspective is needed. In this thesis, we focus on process run-time

aspects. Consequently, a context model ontology to formalise dynamic service

context is a challenge. It is necessary to have a shared conceptualization of dy-

namic aspects attached to composition and execution of services, having a partic-

ular focus on process run-time aspects. Context modeling uses XML, XML-based

CC/PP [Doulkeridis 2006], UML [Kapitsaki 2009], Topic Maps [Goslar 2004], RDF

[Medjahed 2007], and OWL [Wang 2004] in various application domains. How-

ever, ontology-based context modeling is the most promising approach for Web

service applications [Strang 2004, Bikakis 2008, Hervás 2010]

A run-time representation of QoS specification for dynamic systems is pro-

53

posed in [Frølund 1998b]. A mapping between a requirement specification and

ontological elements is proposed in [Kaiya 2005] for requirement analysis. The

authors in [Pahl 2009, Pahl 2007] propose an approach for manipulating architec-

tural style modeling based on description logic as an abstract meta-level modeling

instrument. Context-aware systems support context reasoning, such as OWL-DL

reasoning and rule-based reasoning [Wang 2004, Lee 2007, Bikakis 2008]. In Web

service applications, context aspects in context specifications need to be combined,

renamed, restricted and refined as independent aspects for dynamic requirements.

For example, some context aspects in context specifications of a service process

need to be composed on a service-by-service basis. These include some function-

alities, which are difficult to address using the available OWL-DL operators, such

as the security of a process is the weakest security of all individual services, some

context specifications need to be adapted at process run-time, etc. These aspects

are not sufficiently addressed in the literature. An operator calculus is a promising

solution to address context manipulation and composition. An operator calculus

needs to be supported by context reasoning. For example, operators can make

context specifications inconsistent.

There is a significant shift in business processes from static solutions to flex-

ible processes that can address rapidly changing business needs [Ardagna 2011].

So far in the literature of ontology-based specifications, constraints are defined

within the ontology [Channa 2005, Aggarwal 2004]. However, defining dynamic

requirements as context constraints within the ontology has major drawbacks,

which can affect the flexibility and performance of the service process. The con-

text reasoning is more costly than validation against context specifications. How-

ever, some context constraints, which need context derivation and consistency

checking need context reasoning. A standard constraint specification language

can be adapted for defining context constraints. Constraint language in XML

(CLiX) is gaining increased momentum in defining constraints [Cacciagrano 2006,

54

Jungo 2007, Nentwich 2002, Dui 2003, Nentwich 2005] for rapidly changing busi-

ness needs. Context constraints need to be supported by shared conceptualization

and context reasoning.

Conventional applications are usually validated before deployment and testing

is the usual means to discover failures before release. In contrast, service-based

applications can heavily change at run-time and testing activities cannot foresee all

these changes [Baresi 2005]. Therefore, shifting validation to run-time and intro-

ducing the idea of validation monitoring is important. In their work, monitoring

rules are blended with an abstract service process. Service composition is sepa-

rated from rule integration, which is of our interest. However, they instrument the

abstract service process before deployment. In [Baresi 2005], the authors assume

that all services in an abstract service process are stable, but if a service fails at

run-time, they need to redeploy the whole process. If a monitoring rule fails, then

the process designer needs to change priorities or redeploy the whole process.

Therefore, this approach is not sufficient for dynamic requirements instrumen-

tation and validation monitoring. In [Wang 2009c], the monitoring framework

begins to monitor a service against specified constraints, once all the monitoring

codes are deployed successfully. However, the service process needs to be rede-

ployed for a requirement change (to instrument a new requirement) at process

run-time. This approach monitors individual Web services for attached require-

ments, but process level requirements are missing. The proposed approach in

[Mahbub 2005] discusses run-time verification of behavioural properties, while

the approach in [Moser 2008b] addresses dynamic behaviour based on monitored

QoS data attached to various service selection strategies. Both approaches address

the behaviour of service processes, such as verifying behavioural requirements of

a service process, selecting behaviour based on monitored QoS data, etc. However,

both approaches do not sufficiently address dynamic instrumentation of require-

ments. Although requirements monitoring at process run-time is addressed in the

55

state of the art [Baresi 2005, Wang 2009c, Mahbub 2005, Moser 2008b], address-

ing run-time instrumentation of requirements for run-time validation monitoring,

which we consider necessary for Web service applications is still lacking.

We identify gaps in the literature and define challenges as follows:

• The available context definitions are not rich enough to precisely address

service composition and execution related aspects at process run-time. A

new context definition for dynamic service context is required.

• The available context categorizations and modelings do not sufficiently de-

scribe and conceptualize dynamic service context. A complete context model

ontology to conceptualize dynamic service context is needed.

• The manipulation and reasoning about dynamic service context specifica-

tions at service process run-time is necessary for dynamic requirements.

This is not sufficiently addressed in the literature.

• The dynamic requirements can be defined as context constraints, and need

to be supported by shared conceptualization and context reasoning features

of the ontology. This is not sufficiently addressed in the literature.

• The available constraint instrumentation and validation monitoring approaches

do not sufficiently address run-time instrumentation and validation moni-

toring of dynamic requirements.

We analyse some closely related work on context operationalization in service

processes at process design-time and process run-time as in figure 2.1 to locate our

work. The notion of context attached to Web service processes and its operational-

ization to address dynamic requirements in a service process at process run-time

is necessary. The illustration mainly focuses on context operationalization and

service composition. The related work on context operationalization is illustrated

from domain specific to more general Web service processes. The context explo-

ration from abstract to more detail is considered for both domain specific and

56

Context
Abstract to Detail

Context
Abstract to Detail

Proposed
Research

Baresi et al.
(2005) Runtime
monitoring using
monitoring rules

Sattanathan et al.
(2005) (Abstract)

Context reconciling for
service composition

Euzenat et al. (2008)
Dynamic context
management for

pervasive
applications

Medjahed B. et al.
Matching (2007)
Context-based

matching at process
design-time

Boukadi et al. (2008)
Context constraints
for service selection

and composition

Aggarwal et al. (2004)
Constraints-based
service selection

Karakoc et al. (2009)
Constraints-based
service selection

Rosemann et al. (2008)
Contextualization of
business processes

(Abstract)

Doulkeridis et al.
(2006)

Context-aware
service discovery
(Mobile domain)

@Process Design-Time @Process Run-Time

Service
Composition

@
D

om
ai

n
S

pe
ci

fic
W

eb
S

er
vi

ce
P

ro
ce

ss
@

G
en

er
al

W
eb

S
er

vi
ce

P
ro

ce
ss

Context
Operationalization

Wang et al. (2009)
Online monitoring of

pattern-based
specification of service

constraints

Chen et al. (2006)
Service discovery

based on user
context

Figure 2.1: Related research review

more general Web service processes. The related work on service composition is

illustrated from process design-time to run-time. Finally, the proposed work is

located as in figure 2.1.

A selected set of previous work related to context operationalization for ser-

vice processes is illustrated in figure 2.2. We review the state of the art in three

Domain Specific General Abstract Detailed Representation Constrants Rules Policies Design-Time Run-Time
Medjahed B. et al. (2007) Y Y RDF Y Y
Doulkeridis et al. (2006) Y (Pervasive) Y CC/PP
Boukadi et al. (2008) Y Y OWL Y
Rosemann et al. (2008) Y Y
Aggarwal et al. (2004) Y Y Y
Karakoc et al. (2009) Y Y Y
Baresi et al. (2005) Y Y Y
Sattanathan et al. (2006) Y Y OWL-C Y
Wang et al. (2004) Y (Pervasive) Y OWL
Kapitsaki et al. (2009) Y UML Y

Our Work Y Y OWL Y Y

Design Time: At process design time
Run Time: At process runtime

Context Modeling and Operationalization in Web Service Processes

Previous Work
Service Process OperationalizationContext

Figure 2.2: Context operationalization review

57

perspectives, which are service process, notion of context and operationalization.

The service processes are considered from general and domain specific perspec-

tives. The notion of context is reviewed from abstract, detailed and representation

language perspectives. The context operationalization in a service process is con-

sidered from constraints, rules, policies, design-time and run-time perspectives.

Our focus is highlighted as illustrated in figure 2.2. The blank spaces represent

either not applicable or undiscussed.

58

Chapter 3

Contextualization and context
constraints management
framework

Contents
3.1 Motivation . 59

3.2 Contextualization and context constraints management framework 61

3.2.1 Dynamic service context modeling 63

3.2.2 Manipulation and reasoning context specifications 64

3.2.3 Context constraints generation 65

3.2.4 Constraints instrumentation and validation monitoring . 67

3.3 Chapter summary . 69

3.1 Motivation

The overall objective is ontology-based contextualization and context constraints

management for Web service processes to support dynamic requirements valida-

tion monitoring at process run-time.

Web services are independent components that can be composed and invoked

in order to satisfy business needs. A Web service is a self-contained, self-describing,

modular application that can be published, located, and invoked across the Web

[Rao 2004]. The number of services available for a single task is increasing. Avail-

able services are frequently updated. Web services provided by different providers

59

bring heterogeneous dynamic features with them, such as security, cost, availabil-

ity, platform features, etc. Moreover, business needs and client (or user) needs

are rapidly changing, service providers and service users may need to moni-

tor their SLAs [Ehlers 2011]; therefore, a Web service process needs to be flex-

ibly related to its dynamic aspects to monitor the changing nature of business

processes. Monitoring SLAs in a service process is important for service users

and service providers, figure 3.1. Moreover, in multi-tenant service applications

Process
Instance

DR1, DR2,
DR3, DR4 S1

S2

S3

DR5, DR6,
DR7, DR8

DR9,
DR10

Process running
environment

Client Providers

Service execution
environment

 DR1: Performance < 20 ms
 DR2: Reliability > 0.9

OR Integrity = 1
 DR3: Connectivity > 54 Mbit/s
 DR4: Cost < 0.2 USD

 DR5: Performance < 30 ms
 DR6: Reliability > 0.9

OR Authentication =1
 DR7: Connectivity > 54 Mbit/s
 DR8: Cost < 0.1 USD

 DR9:Performance < 25 ms
 DR10: Cost < 0.3 USD

Figure 3.1: SLAs attached to different services with dynamic requirements (DR)

[Aulbach 2008], one process instance can be used for various clients who are at-

tached to different SLAs, consequently constraint sets generation and instrumen-

tation is required to support validation monitoring of SLAs at process run-time.

SLAs address aspects that we capture in our context model later on.

Service-based applications are developed by combining heterogeneous ser-

vices to perform business tasks. The service composition can be a static composi-

tion or a dynamic composition. For static composition, services to be composed

60

are decided at process design time. For dynamic service composition, services to

be composed are decided at process run-time [Dustdar 2008]. The pre-deployment

validations, such as service matching and service selection at process design time

are inadequate for tackling rapidly changing aspects in which service-oriented

applications are deployed [Baresi 2005, Zhao 2007]. The monitoring of functional

and non-functional behaviour of service applications needs to be shifted towards

run-time [Baresi 2005]. Services are provided by heterogeneous platforms and en-

vironments that can result in service failures, SLAs may not be met as agreed,

constituent services can be updated and better services can be made available.

These are a few examples to show the importance of run-time validation monitor-

ing of dynamic requirements.

At the present time, business and user needs are becoming more and more

dynamic and new dynamic business applications are emerging. Service providers

provide services of various qualities. For example, providing software services is

itself a business and each service invocation is charged by the provider, hardware

is provided as services, and software is provided as services. With these emerg-

ing trends, monitoring dynamic requirements attached to composition and execution of

services at process run-time is one of the emerging needs, which is not adequately

addressed so far in the literature. We explore these emerging needs and introduce

a contextualization of dynamic requirements and a context constraints manage-

ment framework to support validation monitoring of dynamic requirements at

process run-time.

3.2 Contextualization and context constraints management

framework

This section defines a framework in figure 3.2 that integrates different services

involved in the contextualization and context constraints management problem.

61

S1 F1

S2

S3

S4

Context Model Ontology

User
Specifications

Service Context
Profiles

Context Constraints
Generation

Instrumentation and
Validation Monitoring

Context Manipulation
and Reasoning

Data
Collectors

Reasoning
Services

Contextualized
Web Services

Provider

SLA

Dynamic
Requirements

BrokerUser SLA

Dynamic
Requirements

Figure 3.2: Contextualization and context constraints management framework

In this framework, the contextualized Web services are provided by service

providers. A context model ontology to conceptualize context aspects is described

in chapter 4. The service context profiles, which semantically enhance WSDL

to define provider specifications about services, chapter 5. In the proposed ap-

proach, dynamic requirements are captured from SLAs (service level agreements

[Verma 2004]) and generated as context constraints in terms of context aspects in

the context model ontology, see figure 6.1 in chapter 6. A contextualized Web ser-

vice process at the broker needs to be instrumented with context constraints for

validation monitoring of dynamic requirements at run-time (e.g., some dynamic

requirements in figure 1.1), see figure 7.1 in chapter 7. The data collectors and

reasoning services, which support context constraints validation monitoring are

implemented and maintained at the broker, chapter 7. An instrumented service

62

process instance can have services (e.g., S1, S2, S3, and S4) and constraints, in-

cluding process behaviour constraints (e.g., F1). The overall framework consists

of four main activities, which address challenges identified in section 2.5.

• Conceptualize dynamic service context in a context model ontology

• Manipulate and reason about ontology-based context specifications

• Dynamic requirements are generated as context constraints

• Constraints instrumentation and validation monitoring

Our main concerns within the framework are defined by the highlighted process

components. The subsequent methodologies in addressing and evaluating the

above four activities are described in each sub-section. These sub-sections are

further detailed in chapters 4, 5, 6 and 7, respectively. We assume, dynamic re-

quirements can be captured from service level agreements, but discussing service

level agreements is beyond our focus.

3.2.1 Dynamic service context modeling

Dynamic service context is defined to represent composition and execution as-

pects of services at service process run-time. A comprehensive dynamic service

context classification, and it’s formalisation (formal description) in an OWL-based

context model ontology (processable form) is our primary concern. This context

model ontology provides shared conceptualization and reasoning features for Web

service applications. The relationships of context categories are defined based on

description logic [Baader 2003].

We investigate and organise dynamic aspects attached to composition and ex-

ecution of services at process run-time. The empirical analysis of different case

study scenarios is used in the investigation [Pahl 2008]. The available classifica-

tions such as [Rosemann 2008], [Medjahed 2007], [Medjahed 2005], etc. provide

63

some input. The orientation of dynamic aspects in a more general classification is

identified as an important concern. We observe dynamic aspects relevant to ser-

vice interfaces, quality of service properties and process execution environments

are three general perspectives. The orientations provided by literature (for ex-

ample, [Chung 2009], [Medjahed 2005], [Rosemann 2008], etc.) also provide some

input.

A properly formalised context model is defined using comprehensive con-

text categories and their relationships. The dynamic service context has taxo-

nomic relationships and non-taxonomic relationships, which we define in a con-

text model ontology (for example, trust is a combination of technical assertions

and relationship-based factors [Hasselbring 2006], so that trust can be a combina-

tion of security and reputation context). The shared conceptualisation of dynamic

service context is needed. The ontology web language (OWL) is used as the for-

malisation language, which has relevant merits [ODM 2009], such as tractability,

interoperability, etc. We used Protégé as a tool, which is a free, open-source plat-

form that provides a growing user community with a suite of tools to construct

domain models and knowledge-based applications with ontologies 1.

We evaluate context categories to check whether they represent dynamic re-

quirements (validity), and they cover all necessary dynamic requirements (com-

pleteness). These aspects are evaluated based on empirical case study scenarios

and expert’s opinions through a survey.

3.2.2 Manipulation and reasoning context specifications

Context aspects and specifications attached to services (service context profiles)

and processes need to be manipulated, composed, and reasoned out in service

composition and execution at process run-time. The idea of relating and ma-

nipulating architecture descriptions and composite elements in architecture de-

1http://protege.stanford.edu/overview/

64

scriptions proposed in [Pahl 2009] is relevant work and we extend this work for

ontology based context specifications to address dynamic requirements.

Some context aspects in a context specification need to be combined, renamed,

restricted and refined as independent aspects for dynamic requirements. Some

context aspects in context specifications of a service process need to be composed

on a service-by-service basis. These include some situations (e.g., the security of

a process is the weakest security of all individual services), which are difficult to

address using the available OWL-DL operators and some context specifications

that need to be adapted at process run-time are proposed as manipulation and

composition operators. An operator calculus is a suitable way for addressing con-

text manipulation and composition. An operator calculus needs to be supported

by context reasoning. The OWL-based context ontology is based on description

logic, which facilitates context reasoning [Wang 2004, Horrocks 2003]. The context

reasoning has different functionalities such as subsumption, consistency check-

ing, and context derivation. Context reasoning can be adapted to reason about

dynamic aspects in context specifications using the context model ontology.

The context manipulation and composition operators and context reasoning

are evaluated for validity (validity means that context manipulation operators

and context compositions can process contexts for dynamic requirements) using

the empirical analysis of application scenarios.

3.2.3 Context constraints generation

Dynamic requirements in composition and execution of services at process run-

time need to be defined as context constraints. The context constraints can use the

features of the context model ontology, such as shared conceptualization, reason-

ing, etc., see section 2.3.2. Our context constraint generation combines logical re-

lations and dynamic aspects (context) to define context constraints. Consequently,

a constraint generation process and its components need to be defined.

65

The constraint representation modules define constraints within ontologies

[Aggarwal 2004, Boukadi 2008]. However, defining dynamic requirements (DRs)

as context constraints within the ontology has major drawbacks, which we discuss

in detail in section 2.4.1. In our context constraint generation process, the context

constraints are separated from the context model ontology. However, the features

of the context model ontology are used for explicit context validation constraints

(ECVCs) and implicit context validation constraints (ICVCs). The ECVCs (e.g.,

use shared conceptualization) define dynamic requirements attached to ontology-

based context specifications of constituent services and processes. An ICVC define

a dynamic requirement, which needs to derive implicit contexts from the explicit

contexts and validate them using the context model ontology. A standard con-

straint specification language can be adapted for defining ECVCs. This approach

reduces the above mentioned drawbacks and provides flexibility for instrumen-

tation and validation. However, defining ICVCs using reasoning features of the

context model ontology is more practical than a seperate constraint specification

language.

We propose the constraints language in XML (CLiX)2 3 as a possible specifi-

cation language [Nentwich 2005] for ECVCs. CLiX is a constraint language that

combines first order logic with XPath 4, which is a W3C standard. However, this

approach is not rich enough to use the reasoning features of a context model on-

tology, which is necessary to validate implicit contexts in ICVCs. Therefore; we

use OWL API to implement reasoning services for ICVCs. More details about

these languages and tools are described in chapter 6. The performance of ECVCs

generation is important for a practical solution. In this approach, we propose an

ECVC generation process and an algorithm to define the generation process. The

time complexity of the ECVC generation algorithm is evaluated analytically.

2http://clixml.sourceforge.net/
3http://code.google.com/p/openclixml/
4http://www.w3.org/TR/xpath/

66

3.2.4 Constraints instrumentation and validation monitoring

A Web service application needs constraints instrumentation to enable dynamic

requirements validation monitoring at process run-time. We shift the constraint

instrumentation and validation monitoring to process run-time.

The service-based systems can consistently change at run-time [Baresi 2010b].

For example, service applications can bind to different services according to the

context they are executed in, providers can modify their services, and these as-

pects can hamper the correctness and quality levels of these service applications.

The pre-deployment validations, such as service matching and service selection

at process design-time are inadequate for tackling changing aspects in which

service-oriented applications are deployed [Baresi 2005, Zhao 2007, Baresi 2010b].

Web service technology aims to reuse distributed functionalities. However, there

are challenges to realize its full potential, such as to ensure that the behavior of

Web services is consistent with their requirements [Wang 2009c]. However, these

approaches do not suffciently address dynamic instrumentation of requirements

with a service process and their validation monitoring at process run-time. In

Web service applications, it is necessary dynamic requirements are added to ser-

vice processes for validation monitoring at process run-time (section 3.1). Con-

sequently, an architecture and methodologies are required. We generate context

constraints based on dynamic requirements and propose architecture and com-

ponents to instrument a deployed service process for validation monitoring of

context constraints at process run-time. The proposed architecture enables instru-

mentation and validation monitoring of ECVCs and ICVCs without re-deploying

the process. We use WS-BPEL [Alves 2006] as the service execution engine and

xlinkit validator 5 as a validator engine for CLiX-based constraints. We implement

this archiecture and components using Java as the programming language. More

information about these engines, languages and tools can be found in chapter 7.

5http://www.messageautomation.com/

67

The context model (section 3.2.1), its application in the form of service con-

text profiles and the operators on context specifications (section 3.2.2), and their

integration with dynamic requirements through context constraints (section 3.2.3)

need to be supported at process run-time focusing on context constraints valida-

tion monitoring. The context constraints generation, instrumentation, and valida-

tion monitoring at the broker in figure 3.2 is detailed in figure 3.3.

<Invoke>
Service

<Invoke>
ServiceFunctional Context:

Post = …
QoS Context:
...

Functional Context:
Pre = …

QoS Context:
...

Contextualized
Web Service

SLA

Constraints
Validation
Monitoring

Contextualized
Web Service

SCP

Constraints
Instrumentation

Constraints
Generation

SCP

...
SCP

...
SCP

Figure 3.3: Context model utilisation overview

Service context profiles on the server-side define the provider specifications,

which are updated dynamically. The server- and client-side specifications define

SLAs captured in terms of a context model. The client-side specifications spec-

ify the minimum requirements, whereas the provider-side specifications specify

the maximum range of capabilities. Dynamically, the client requirements are vali-

dated against profile or monitored data. Corresponding constraints are generated.

An architecture for dynamic instrumentation of context constraints and con-

text constraints validation monitoring at process run-time is proposed, chapter 7.

The instrumentation process is defined using algorithms and algorithms are ana-

lytically evaluated for performance. The instrumentation and validation monitor-

68

ing are implemented and also evaluated for performance using case study-based

controlled experiments.

3.3 Chapter summary

This chapter describes the overview of contextualization and context constraints

management in a service process for validation monitoring of dynamic require-

ments at process run-time. We propose a contextualization and context constraints

management framework. The framework has four main activities. The con-

text modeling process focuses on conceptualization of dynamic service context.

The other activities of the framework demonstrate the implementation of the for-

malised conceptualization and its benefits. The context manipulation and reason-

ing activity focuses on manipulation, composition and reasoning about context

specifications and monitored contexts of a process instance to support dynamic

requirements. We generate context constraints for dynamic requirements. The

instrumentation and validation monitoring activity focuses on instrumentation

of context constraints at process run-time for validation monitoring of dynamic

requirements. While most context aspects are oriented towards services, our

framework demonstrates the need to look at these from the perspective of pro-

cess run-time. We detail context modeling in chapter 4, context manipulation and

reasoning in chapter 5, context constraints generation in chapter 6, and context

constraints instrumentation and validation monitoring in chapter 7.

69

Chapter 4

Context modeling

Contents
4.1 Introduction . 70

4.2 Context model taxonomy . 73

4.2.1 Overview . 73

4.2.2 Dynamic service context . 74

4.2.3 Taxonomy development methodology 75

4.2.4 Context model taxonomy definition 77

4.2.5 Non-taxonomic relationships 94

4.3 Context modeling . 99

4.3.1 Ontology-based context modeling 100

4.3.2 Description logic - SHOIN (D) 100

4.3.3 Ontology-based service context formalisation 102

4.4 Case study - Context model ontology integration 108

4.4.1 Tool support . 109

4.4.2 Case study . 109

4.5 Chapter summary . 117

4.1 Introduction

Service-oriented computing has the capacity to address the dynamic nature of

business applications. The notion of context is becoming a central element for

addressing dynamic aspects, particularly in pervasive and mobile application do-

mains [Roy 2010, Wang 2004], which cover external (environmental) aspects of

services such as location, time, client’s requirements, etc. Recently, the notion

70

of context has been explored in service matching and service selection research

focusing on service composition at process design-time [Medjahed 2007].

We extend these perspectives for Web service business applications, focusing

on a context-aware approach to address dynamic aspects in Web service processes.

We particularly focus on dynamic requirements in composition and execution of

services at service process run-time. Consequently, a definition for dynamic ser-

vice context is needed (the challenge identified in section 2.5). The explicit formal-

isation of dynamic aspects relevant to composition, deployment, and execution of

Web services at process run-time in distributed and heterogeneous environments

is still lacking, which we refer to as contextualization (the challenge identified

in section 2.5). The contextualization output, a context model ontology provides

a reusable set of context categories and relationships for context-aware service-

based applications. In the context model ontology, context categories are foma-

lised as concepts (classes in OWL terminology), basic relationships are formalised

as roles (properties in OWL terminology), and the complex relationships are for-

malised in rules. We use the term instances for individuals because in our work,

most of the individuals are instances.

The proposed dynamic service context model addresses runtime aspects of ser-

vices and processes from inward and outward perspectives (section 4.2.4) whereas

service description models such as USDL [USDL 2011], WSMO [Lausen 2005] and

OWL-S [Martin 2004] describe functional and non-functional service properties

from only one perspective; what a service provides to its environment but not

how an environment impacts on a service or process. OWL-S and USDL are

complementary [Kona 2009]. OWL-S strength lies in describing the structure of

services in a formal way, while USDL is good for describing services in various

perspectives. USDL describes a service in terms of port type and message. USDL

is made up of a set of modules: legal, pricing, participants, service level, tech-

nical, functional and interaction [USDL 2011]. The semantics are given in terms

71

of how a service affects the external world [Kona 2009]. However, how the exter-

nal world affects a service and process is missing. Integrity of a service/process

can be defined in numerous ways, such as transaction integrity (executing trans-

actions consistently with the ability to recover as required), interaction integrity

(providing users with up-to-date, secure access to information and content) and

information integrity (ensuring reliable, complete and manageable information).

Trust of a service/process can be defined in numerous ways in different appli-

cations, such as WS-Trust (defines a trust model for Web services), a trust vector

in [Park 2005] includes direct trust, authenticity and reputation relationships, etc.

The direct trust is trust that is obtained by entities from direct interaction [Li 2009].

It is not the intention of our framework to provide a complete description of all

these definitions and relationships, which are application dependent and practi-

cally impossible to formalise within the scope of our work. Our dynamic service

context model provides a comprehensive set of high-level terms for dynamic ser-

vice context, a framework and technologies, which can be used by software ar-

chitects to address runtime aspects of a service process. For example, monitoring

SLA violations at process runtime.

We discuss the contextualization of Web service processes as a major goal in

this chapter. The technical contribution of this chapter is a semantic model of

context (context model ontology) that formalises dynamic aspects of Web services

and processes, facilitates reasoning, and supports shared conceptualization. In

section 4.2, we describe the context model taxonomy exploring dynamic service

context, taxonomy development methodology, context taxonomy definition, and

non-taxonomic relationships. In section 4.3, we describe context modeling includ-

ing ontology-based context modeling principles, description logic - SHOIN (D),

and ontology-based dynamic service context formalisation in detail. In section 4.4,

we describe a case study to illustrate the context model ontology integration with

a Web service and technological tools. Finally, we conclude the chapter in section

72

4.5.

4.2 Context model taxonomy

4.2.1 Overview

The notion of context is extensively investigated in mobile and pervasive applica-

tions to define locative and temporal aspects in dynamic applications [Hong 2008,

Lee 2007, Sheshagiri 2004]. CONON [Wang 2004] and SOUPA [Harry 2004] are

widely used context models in pervasive computing environments. They have the

fundamental context classifications, such as device, location, person, and activ-

ity for capturing information about the execution situation. While these context

models do not characterise dynamic aspects of Web services as software entities

embedded into business processes, their formal context representation, knowledge

sharing, and reasoning aspects provide some inputs for our research. The notion

of context and classifications are used to define functional and non-functional

features of Web services [Medjahed 2007, Medjahed 2005] focusing on context

matching for service selection, but only statically for the process design stage.

The authors in [Rosemann 2008] address context in business processes in general

and propose a conceptual context taxonomy. They state the importance of further

research on process execution aspects, called immediate context [Rosemann 2008].

The previous work on pervasive and ubiquitous applications uses context on-

tologies, which are tightly coupled with individual applications [Euzenat 2008]. In

their work, a context ontology is a part of application-dependent middleware and

service compositions are tightly coupled with applications. We focus on a general

context-aware middleware for dynamic service composition applications, where

services are combined at process run-time. The requirements attached to compo-

sition and execution of services at process run-time are the main concern. Com-

pared to previous work, the proposed context model is not tightly coupled with

73

individual Web service applications. Our approach is a general context model

that addresses domain specific aspects as well. The service providers can use the

context model for developing context-aware services, which can also be organized

in service communities proposed in [Medjahed 2007, Mrissa 2008].

4.2.2 Dynamic service context

A notion of context is a major challenge, requiring greater expressiveness, rea-

soning capabilities, and architectural components than are provided by the cur-

rent widely accepted building blocks of the Web service stack. However, there is

no widely accepted definition for context in information science. Context is de-

fined and used in various applications with their own perspectives [Martin 2006,

Euzenat 2008, Dey 2000], such as to define locative and temporal aspects in mobile

[Sheshagiri 2004] and ubiquitous [Hong 2008, Lee 2007] applications. The service

composition can be static or dynamic composition. In static composition, services

to be composed are selected at process design-time. In dynamic service compo-

sition, services to be composed are selected at process run-time [Dustdar 2008].

In previous works on service composition, context has been explored for various

service discovery and selection phases at process design-time [Medjahed 2007].

However, there is still a gap where dynamic service context and context opera-

tionalization are needed at service process run-time in order to validate dynamic

requirements. Therefore, the notion of context needs to be rich enough to il-

lustrate dynamic aspects relevant to composition and execution aspects of Web

services and processes. In order to fulfill the above mentioned needs, we define

dynamic service context.

Dynamic service context is client, provider, or service related information, which enables

or enhances effective composition and collaboration between them.

Consequently, the explicit formalisation of dynamic aspects relevant to composi-

tion and execution of Web services into a processable model (context model) is

74

the central objective, which we address in this chapter. The context manipulation

and operationalization to address dynamic requirements is needed, which is our

secondary objective that we address in chapters 5, 6 and 7.

4.2.3 Taxonomy development methodology

A more general complete context taxonomy is important for the development of

context-aware Web service applications. First, we discuss the taxonomy devel-

opment methods, which includes empirical experiments before detailing context

model ontology development.

These context aspects need to cover effective composition and collaboration.

The effective composition and collaboration involves service composition and

collaboration at Web service process run-time. Therefore, dynamic aspects rele-

vant to composition and execution phases of Web services need to be considered.

Here are some motivating examples for identifying dynamic aspects of dynamic

service context,

• Service response time is a constraint - the exact service response time can not

be pre-defined. It changes over executions. Thus, service response time is a

dynamic aspect, which is needed for effective composition and collaboration

at process run-time.

• Cost of a service process is a constraint - cost of constituent services and

processes can be changed based on currency exchange rates. Thus, cost

of a service is a dynamic aspect, which supports effective composition and

collaboration at process run-time.

• A service can be executed on selected devices - service execution can depend

on device features; thus, device context is needed for effective composition

and collaboration of Web services.

75

• A service needs high bandwidth - A service needs high bandwidth for its

execution; thus, connectivity context is needed for effective composition and

collaboration of such services.

These are all requirements, but requirements related to the service execution con-

texts. For example, functionality and quality of service provided at provider-end,

and the platform and domain aspects (environmental aspects at execution), such

as execution engine, network/platform services, domain ontologies, etc.

Our context taxonomy development methodology has two steps where we de-

fine all the possible context categories and organise context categories in a more

general taxonomy. Step 1 involves two parts. They are analysis of context classifi-

cations in literature and analysis of real world application scenarios for capturing

dynamic service context, which we define in section 4.2.2. In Step 2, we describe

context orientation in which first we use two general perspectives and then detail

the orientation of context categories based on various criteria.

Step 1. This step involves two parts where we focus on capturing all the possible

context categories relevant to dynamic service context:

• In the first part, we consider domain specific context taxonomies, com-

prehensive business services, and process context models, particularly de-

scribed in [Rosemann 2008, Medjahed 2005, Medjahed 2007, Heravizadeh 2008,

O’Sullivan 2002, Roy 2010, Wang 2004]. We capture dynamic aspects, having

the perspective of Web services in general focusing on service composition

and execution at service process run-time. Most of the previous work is do-

main specific, such as [Wang 2004], [Roy 2010], [Chen 2004], etc. However,

the community structure proposed in [Medjahed 2005] is more general than

other approaches and we adopt some aspects such as run-time attributes,

business attributes, and security attributes from it.

• In the second part, we use an empirical analysis of application scenarios in

76

the classical business domain. Scenarios from up to date commercial ap-

plications with different system architectures are considered. We explore

dynamic aspects of constituent services relevant to application scenarios fo-

cusing on service composition and execution at service process run-time.

The respective results are detailed in Appendix A.7.

Step 2. The orientation of context attributes in a general context taxonomy is an

important contribution to the literature towards context-aware Web services.

• We analyse the identified context categories in terms of inward and outward

perspectives on Web services. In the inward perspective, dynamic aspects

relevant to service interfaces and quality of service properties are explored.

In the outward perspective, dynamic aspects relevant to process execution

environment are explored.

• We further classify context categories and sub categories having different cri-

teria until the taxonomy becomes a general classification. This detailed clas-

sification is also supported by the literature related to various non-functional

and context classifications, such as [Chung 2009], [Medjahed 2005],

[Medjahed 2007], [Wang 2004], etc.

Step 1 and Step 2 are iteratively followed until the context taxonomy becomes

stable.

4.2.4 Context model taxonomy definition

Our context taxonomy focuses on dynamic aspects to manage dynamic require-

ments in Web service processes at process run-time. This context taxonomy is lo-

cated in the immediate layer of the abstract context taxonomy in [Rosemann 2008],

i.e. has a technical focus. This taxonomy forms the core of our context model

ontology that enhances the taxonomy by further specifications and reasoning fea-

tures [Bandara 2009, Pahl 2010].

77

We define inward and outward perspectives in section 4.2.3 (Step 2) focusing

on organising dynamic service context in a general context taxonomy.

• The inward perspective describes how a service execution interacts with its

environment. The functional context captures the functional capabilities from

an input/output and pre-condition/post-condition perspective and the qual-

ity of service context captures non-functional aspects of services.

• The outward perspective describes how the client (or user) and deployment

environment impact on service execution. The domain context captures dy-

namic requirements stemming from the application domain of the service

and the platform context captures dynamic requirements stemming from the

technological environment of the service.

As defined in section 4.2.3 (Step 2), the detailed classification of context cate-

gories can be exemplified as follows. The quality of service classification towards

behavior, dependency, and determination criteria can be described as in table 4.1.

However, this classification does not distinguish QoS properties of services to-

Categories Behavior Dependency Determination
[Static/Dynamic] [Primary/Dependent]

Input Static Primary Extracted from specifications
Performance Dynamic Primary Execution monitoring
Reliability Dynamic Primary Execution monitoring
Availability Dynamic Primary Execution monitoring
Cost Static Primary Extracted from specifications
Reputation Dynamic Primary Extracted from specifications
Regulatory Static Primary Extracted from specifications
Security Dynamic Dependent Execution monitoring
Trust Dynamic Dependent Execution monitoring
Connectivity Dynamic Dependent Execution monitoring

Table 4.1: QoS classification for behavior, dependency and collection

wards major demands in the industry today. For example,

• Services with high performance are important for communication processes

• Services with less cost are important for cost-effective processes

• Services with high security are important in payment processes

78

• Services with high trust are important for on-line buying process

Having various classifications, we observe four main categories of quality of ser-

vice properties: run-time context, financial and business context, security context,

and trust context as demanding a general direction of classification. The quality

of service properties are a subset of non-functional properties.

We define a comprehensive context model classification with four core dimen-

sions (functional context, quality of service context, domain context, platform con-

text) and detail each dimension with sub-categories of context aspects. These four

core dimensions represent fundamental dimensions of dynamic service context rel-

evant to Web service compositions and executions. The comprehensive context

model classification needs to be completed, which we evaluate in chapter 8. How-

ever, this classification can be expanded without breaking its generality so that

it provides a flexible context infrastructure for further improving service-based

architectures and applications in the future. The context categories in the context

model taxonomy have hierarchical relationships. The ontology-based represen-

tation of the context model taxonomy reinforces the expressiveness of context

relationships further including non-taxonomic relationships and context reason-

ing. This is meant to be a flexible and evolvable context model that provides a

vocabulary of context aspects, their properties, and their explicit and implicit rela-

tionships. We define context model as a DL specification, Context Model = 〈Σ, Φ〉
with

• a signature Σ = 〈C, R〉 consisting of concepts C and roles R to define context

aspects and their attributes (section 4.3.3).

• context descriptions φ ∈ Φ based on Σ. Φ = 〈C ↔ R〉 defines properties in

terms of concepts and roles as DL formulas.

The mechanisms for evolution and other forms of modifying context descriptions

are an important part of the overall framework, which we detail in chapter 5. The

context model taxonomy is described in figure 4.1.

79

Context Model

SyntaxContext

Effect

ProtocolContext

RuntimeContext

Functional
Context

InputContext

OutputContext

PreConditionContext

PostConditionContext

QoS
Context

PerformanceContext

ReliabilityContext

AvailabilityContext

FinancialContext

CostContext

ReputationContext

RegulatoryContext

SecurityContext

IntegrityContext

AuthenticationContext

Non-RepudiationContext

TrustContext

ConfidentialityContext

Domain
Context

SemanticContext

LinguisticContext

MeasuresAnd
StandardsContext

Plarform
Context

DeviceContext

ConnectivityContext

Figure 4.1: Taxonomy of the context model ontology

Functional context (FunctionalContext)

The functionality of a service is defined in the service interface. At the mo-

ment, service interfaces are implemented in the Web service description language

(WSDL), which is the W3C standard. The context of functionality, which we call

FunctionalContext is still missing in parts of the service interface. FunctionalCon-

text describes the operational features of services and their operations. However,

FunctionalContext does not work alone in context-aware services and links to

non-functional context categories, such as quality of service context - section 4.2.4,

domain context - section 4.2.4, and platform context - section 4.2.4 in our context

model.

SyntaxContext. Syntax refers to the ways symbols can be combined to create well-

formed sentences (or programs, models) in a language. Syntax defines the formal

80

relations between the constituents of a language, thereby providing a structural

description of the various expressions that make up legal strings in the language

[Slonneger 1994]. The inputs and outputs are major constituents of a program

or model in general. Inputs to outputs of a program need to be defined using

the syntax of a language (programming or modeling language). The inputs and

outputs are major constituents of Web service operations. The inputs and outputs

of operations, and their basic data type descriptions are defined in the service

interface. The service interface does not describe semantics of input/output pa-

rameters, which is a massive limitation in service composition. The semantic

descriptions of input and output parameters are needed. Hence, we focus on

defining semantics of input and output parameters using the notion of context.

We define SyntaxContext as a list of input/output parameters that define mes-

sages of operations and the semantics of these parameters for invoking a service.

EffectContext. The service operations can have some conditions to be satisfied

before and after operation execution. The justification of the need for addressing

pre/post-conditions is described relevant to Semantic Web Services Framework

(SWSF) in [Farrell 2007] and ubiquitous computing environments in [Urbieta 2008].

The features of services are usually described in a syntactic way based on their

inputs and outputs, but global operational conditions are missing. For example, a

service composition/execution can be affected by factors in the execution environ-

ment and some quality of service features. Therefore, the functionalities offered

by services cannot be adequately used by users, clients or devices that populate

the environment [Urbieta 2008]. Some conditions can be mandatory and some of

them can be optional. The pre/post-conditions do not describe facts local to the

service operation, but global to the process operation. We define EffectContext as

pre-conditions and post-conditions of service operations, i.e. the operational effect

of an operation execution. The EffectContext needs to be attached to the service

81

interface to reinforce the service composition.

ProtocolContext. The functionalities offered by services and their dynamic con-

ditions are not properly described so far [Urbieta 2008]. The conditions relevant

to a service operation are described in the EffectContext, but their protocol of

execution can be changed dynamically. We focus on describing the protocol of

executing pre/post-conditions relevant to a service operation using the notion of

context. For example, the composition structure of pre/post-conditions and con-

text of their data flow can be defined in ProtocolContext. For simplicity, we define

ProtocolContext as [status - cs1, cs2, ..., csn] where status can be "pre" or "post" at-

tached to pre-conditions and post-conditions of a service, also cs1, cs2, ..., csn are

pre/post condition constraints in their validation order.

Other concerns. In context-aware services, we ignore data types of parameters,

such as integer, float, boolean, etc. and assume all of them are of the type string

to reduce the complexity. We define each input/output parameter with two fields

- data and context.

We have observed dependencies between functional context categories and

other context categories in the context taxonomy, which is discussed in detail

with examples below. For example,

- A financial service may have an input parameter transactionAmount that has

transactionAmount : data = 8000

transactionAmount : context = USD : CurrencyContext

- A pervasive service may have an input parameter distance that has

distance : data = 200

distance : context = yards : MeasuresContext

- A language translation service may have an input parameter message that has

82

message : data = ”Bill-Bezahlung”

message : context = German : LanguageContext

Each parameter of a context-aware service has both data and context informa-

tion. One can argue that the parameter transactionAmount of the financial service

can be of data type currency, but the currency instance (e.g. USD) is still miss-

ing. Similarly, distance can be argued to be of type float, but the measurement

unit is missing. In context-aware services, we use both data and context of each

parameter, which resolves this limitation.

The pre- and post-conditions of a service can be used to validate dynamic

requirements relevant to a service,

• Service impact validation, for example, security of a service needs to be

validated before invoking a service, while response time of a service needs

to be validated after invoking a service.

• Environmental impact validation, for example, DeviceContext needs to be

validated before invoking a service.

The ProtocolContext of a service operation can represent the control structure of

pre/post-conditions. For example, the ProtocolContext relevant to a subset of

pre-conditions of a constituent service operation, such as

• user name, address, and account number verification are needed in that

order before invoking a banking service operation.

Quality of service context (QoSContext)

The number of service providers and number of services available for a single

task are increasing. The difference among services with equal functionality is the

different level of quality of service.

83

RuntimeContext:

The RuntimeContext is relevant for the measurement of properties that are re-

lated to the execution of a service. The RuntimeContext has some common fea-

tures such as dynamic behavior, primary dependency, and collection in execution

monitoring, with relation to the previous classification in table 4.1. Moreover, the

quality criteria for elementary services proposed in [Zeng 2004, Medjahed 2005],

and the ISO9126 standard [9126-1 2001] are useful in detailing RuntimeContext

categories.

PerformanceContext. The measurement of the time behavior of services in terms

of response time, throughput, etc. is called performance. The performance of

a service is the expected response time in milliseconds between the time a re-

quest is sent to a service and the time the results are received. That is, perfor-

mance of a service is the sum of service execution time and message transmission

time. The service execution time depends on the complexity of the operational

task and hardware/software facilities available at the service provider end. The

message transmission time depends on the network bandwidth available at the

time of service request. Therefore, the performance of a service is a dynamic

aspect, which changes at each operation execution. If the performance context

is response time then Per f ormanceContext(Si , OPj) > TExecution(Si , OPj) where

TExecution(Si , OPj) is execution time of operation j in service i.

ReliabilityContext. The ability of a service to be executed within the maximum

expected time frame is defined in ReliabilityContext. We define reliability of a

service S as the probability that a request is successfully responded to within

the maximum expected time frame defined in the Web service description. The

reliability is a measure relevant to hardware and/or software features of Web

services, and strength of network connections between the requester and provider.

We define the value of ReliabilityContext based on the past invocations using

the expression ReliabilityContext = NS
M ; where NS is the number of times that

84

the service S has been successfully delivered within the maximum expected time

frame, and M is the total number of invocations of service S (1 is perfect, closer

to 0 is less reliable).

AvailabilityContext. The probability that a service is accessible is defined in the

AvailabilityContext. We define availability of a service S as the probability that

the service is accessible. The service providers define the availability of a service

as a percentage based on their criteria. For example, AvailabilityContext(Sj) is

UpTimeSj
/TotalTimeSj

where UpTimeSj
is the length of time that the service is

accessible, and TotalTimeSj
is the length of time that the service is available.

FinancialContext:

These contexts allow the assessment of a service from a financial and business

perspective. We observe cost, reputation, and regulatory factors as key important

attributes of a service.

CostContext. The amount of money required for provision and execution. The

CostContext of a service is the fee that a client has to pay for invoking that service.

Given an operation op of a service s, the CostContext of an operation can be de-

fined as Cost(s,op). At the moment, service providers advertise prices of service

operations or provide facilities for potential requesters to inquire, as a separate

task, which is not integrated with the service descriptions. Cost can be defined

in various currencies, hence selecting the best service needs a currency conver-

sion service. Moreover, we can observe that the taxonomic relationships are not

sufficient to define relationships between CostContext and CurrencyContext.

ReputationContext. This measures the service’s trustworthiness. The reputation

of a service depends on end users’ experiences using the service. Different end

users can have different values for one service. The value of reputation is the

average ranking given to a service by the end users [Zeng 2004]. The Reputation-

Context can be defined as, ∑n
i=1 Ri

n , where Ri is the end users’ ranking of a service’s

85

reputation and n is the number of times a service has been graded. The end users

are given a range of values by the service providers so that they can select a rank-

ing. For example, on amazon.com the given range is [0,5] and the given positive

feedback percentage on ebay.co.uk. The ReputationContext of a service needs to

be dynamically updated and easily accessible through the service description.

RegulatoryComplianceContext. This is a measure of how well a service is aligned

with government, organizational, and international regulations. The regulatory

compliance could be a value within a range, such as between 1 and 10. The lowest

value refers to an operation, which is highly compliant with regulations. Unlike

reputation, regulatory compliance is not frequently changing, but can be changed

from time to time. If there is more than one service available for a single task, then

it is important to define and access regulatory compliance information of a service

at service composition and execution of service-based applications development.

SecurityContext:

The focus is on data protection for Web service messages at XML message level.

SecurityContext states whether a Web service is compliant with security require-

ments. Security requirements can be of the types integrity, authentication, non-

repudiation and confidentiality, which we call context categories of SecurityCon-

text. For example, a banking service needs authentication checks. Security en-

forcement meta-data can be defined in four context categories. These context

categories describe how a service operation is compliant with security require-

ments. Service providers collect, store, process, and share information relevant

to millions of users who have different security requirements regarding their in-

formation. We define SecurityContext based on integrity, authentication, non-

repudiation and confidentiality, which are the known standards to define secu-

rity. Security aspects validation can be integrated with a service operation as

pre-condition/post-condition checks of the operation. We define these validations

86

as constraints validation. Different operations of a service may need different se-

curity settings. For example, Operation1 may need to validate all four aspects as

pre-condition checks, Operation2 may need integrity and authentication as pre-

condition checks, and Operation3 may need only integrity as a post-condition

check. The order of pre-condition and post-condition checks relevant to each op-

eration of a service can be defined in ProtocolContext, in our context framework

- section 4.2.4. Moreover, we observe that the taxonomic relationships are not

sufficient to define all these relationships. In order to reduce the complexity of

using SecurityContext, we represent them with boolean values either 0 and 1. We

assume that the security processing and logging systems are maintained at both

the service provider end and the client end, which justify boolean results. For

example, if a service operation has an IntegrityContext 1, that means integrity

checks are involved with that operation execution. Similarly, it works for other

security aspects. We define the usage of integrity, authentication, non-repudiation

and confidentiality in Web services domain as follows.

IntegrityContext. This ensures the protection of information from being deleted

or altered in any way without the permission of the owner of that information. In-

tegrity checks are used to check whether information are deleted or altered in any

way by intruders. Encryption techniques are used to protect information from be-

ing deleted or altered. We define integrity of an operation OPk in a service Sj based

on attached encryption capabilities, so that relevant decryption techniques can be

used to decrypt messages used in the operation - Integrity(S j
OPk

) = (EnDecryptk),

where (EnDecryptk) is the encryption/decryption technique. However, we define

IntegrityContext of a service as a boolean value 1 or 0 to indicate that a mes-

sage encryption feature is available or not with a particular service operation -

IntegrityContext(Sj
OPk

)Available = (1|0).

AuthenticationContext. This ensures that both consumers and providers are iden-

tified and verified. Authentication ensures that a service user and provider are

87

authenticated, for example through passwords. We define authentication of an

operation OPk in a service Sj as Authentication(Sj
OPk

) = (PWk). PWk can be user

id and password, a certificate encoded in a HTTP basic authentication header, or

WS-Security header information [Erradi 2005]. If authentication is successfully

validated, then the service operation is executed and the result is routed to the

message queue associated with the destination end point, otherwise a SOAP fault

is returned. Here, we define AuthenticationContext of a service operation as a

boolean value 1 or 0 to indicate that a authentication feature is available or not

with a particular service operation - AuthenticationContext(Sj
OPk

)Available = (1|0).

Non-RepudiationContext. The ability of the receiver to prove that the sender re-

ally did send a message. Non-repudiation checks meta-data relevant to the digital

signature of a user, which is used to request a service operation and read oper-

ation output. The service operation is executed only for valid digital signatures,

and the operation result can only be read using a valid signature. A digital signa-

ture can only be created by one person. The non-repudiation of an operation OPk

in a service Sj is defined as Non-repudiation(Sj
OPk

) = (DSm), where DSm is digital

signature of user m. We define the Non-RepudiationContext of a service operation

as a boolean value 1 or 0 to indicate that a non-repudiation feature is available or

not with a particular service operation - Non-RepudiationContext(Sj
OPk

)Available =

(1|0).

ConfidentialityContext. This ensures the protection of information from being

read or copied by anyone who has not been explicitly authorized by the owner of

that information. Confidentiality checks whether some operations of a service are

explicitly authorized by the service provider. That is authorisation validation is

needed to invoke some operations. We define confidentiality of an operation OPk

of a service j as Con f identiality(Sj
OPk

) = (E-Client1...E-Clientn). E-Clienti , i =

1...n are authorised end users. We define the ConfidentialityContext of a service

operation as a boolean value 1 or 0 to indicate a confidentiality feature is available

88

or not with a particular service operation - Con f identialityContext(Sj
OPk

)Available =

(1|0).

Security settings are determined based on 1 or 0 of each sub context category

of SecurityContext. There are 24 security settings relevant to Web services.

Integrity Authentication Non-Repudiation Confidentiality
1 1 1 1
1 1 1 0
1 1 0 0
...
0 0 0 0

The security setting 1111 implies all the security aspects are involved. The

security setting 0000 implies none of these security aspects are involved. These

security settings can be default settings for services and can also be dynamically

changed, for example, ignoring non-repudiation means dynamically setting 0 for

the Non-RepudiationContext.

TrustContext:

Trust is a key prerequisite for the wide adaptation of Web services in service-

based applications. Most of us purchasing items via the Internet feel reluctant

about transactions at some point, when providing credit card details or receiving

unexpected items. We need guarantees that the other party does not misuse con-

fidential information, and merchants need guarantees that they will receive pay-

ments for the goods delivered [Atif 2002]. The trust relationships of a service is an

important aspect in service composition. An attribute that refers to the establish-

ment of trust relationships between client and provider - which is a combination

of technical assertions (measurable and verifiable quality) and relationship-based

factors (reputation, history of cooperation). This work does not focus on detail-

ing trust relationships, which can be found in [Yahyaoui 2010, Spanoudakis 2009,

Spanoudakis 2007, Hasselbring 2006]. We assume Web services have trust certifi-

cates issued by third party organizations to reduce the complexity of trust rela-

89

tionships. These third party organizations are responsible for maintaining trust

relationships with Web service providers, so that they issue trust certificates for

individual Web services. The trust certificates of services need to be validated

at process run-time. TrustContext of operation OPk in a service Sj is defined as

TrustContext(Sj
OPk

) = (TCertk), where TCertk is the trust certificate of operation

k.

We highlight two prominent features of the quality of service context in this

paragraph. Quality of service context are features about Web services, some of

which can be defined at the service provider end, such as cost, regulatory etc.

Some of them can be accurately measured only at service run-time, such as re-

sponse time, availability etc. Two examples to clarify selected QoSContext are:

A service S1, which has a cost,

(S1 : Service) hasCostContext→ (0.1 USD)

and a service S1, which has response time estimation,

(S1 : Service)
hasResponseTimeContext→ (< 200 ms).

Domain context (DomainContext)

DomainContext defines the non-technical aspects of the environment, where the

services are composed, deployed, and executed. Each application domain has

its own requirements for interacting with Web services in that domain. Multi-

application context modeling is being addressed by the pervasive computing re-

search community [Euzenat 2008, Roy 2010, Wang 2004]. Due to the evolving na-

ture of context-aware computing, completely detailing, categorising, and formal-

ising all context information relevant to all the application domains is likely to be

an in-surmountable task [Wang 2004]. We define a framework of DomainContext

that defines high level contexts relevant to domain aspects, which are common,

abstract, and influence service-based applications in general. High level context

90

categories capture domain specific general features, which are reusable. A high

level context category can have sub-categories of context devised in a top-down

way, which facilitates extensibility in a hierarchical manner.

SemanticContext. This refers to semantic frameworks (i.e. concepts and their

properties) in terms of vocabularies, taxonomies or ontologies. Our context clas-

sification is towards a more general context framework for Web services. Se-

manticContext refers to semantic frameworks relevant to domain specific ser-

vices, such as a context framework for an air conditioning monitoring service

in [Euzenat 2008]. Some service-based applications use domain specific tightly

bound SemanticContext frameworks, such as CONON in [Wang 2004], which

provides a context-enabled deployment environment for Web services. We do

not detail the SemanticContext framework because its elaboration depends on

the application domain such as CONON in [Wang 2004], SOUPA in [Chen 2004].

We define SemanticContext in an abstract view, as a domain-dependent semantic

framework, which facilitates contextual support in the deployment and execution

environments for service-based applications.

LinguisticContext. The language used to express queries, functionality, and re-

sponses. Creating a comprehensive ontology that can be useful to the future lin-

guistic community of practice is a daunting task, and the project GOLD, which

is an ongoing work at the moment is a stepping stone. Linguistically related

concepts are organized in four major domains - expressions, grammar, data con-

structs, and meta concepts in [Farrar 2003]. More details about the GOLD on-

tology can be found in [Farrar 2003, Farrar 2010]. Moreover, social networks are

increasingly popular at the moment, and new services attached with linguistic

features are needed. As a complete framework, LinguisticContext is complex.

LinguisticContext supports context-aware Web services. In the initial phase of

linguistic support for context-aware Web services, we define LinguisticContext as

the language used to express queries, functionality, and responses. Further ex-

91

plorations focusing on a complete LinguisticContext framework for context-aware

Web services is needed, but it is out of our scope in this thesis.

MeasuresContext. Measures and Standards refers to locally used standards for

measurements, currencies, etc., which are defined in MeasuresContext. The Mea-

sures and Standards context refers to domain-dependent measures and standards

relevant to Web services. One of the prominent attempts is the QUOMOS (Quan-

tities and Units of Measure Ontology Standard) project from OASIS (Advanced

Open Standards for the Information Society). The preliminary work on QUO-

MOS came out of the Ontology Summit in 2009. Their technical committee is

now working on developing an ontology to specify the basic concepts of quan-

tities, systems of quantities, systems of measurement units, scales, various base

dimensions, metric prefixes (nano, micro, milli, etc.), rules for constructing var-

ious derived units (joules, watts, etc.) for use across multiple industries. We

have emphasized the importance of such an ontology in [Bandara 2009] towards

context-aware Web service applications.

DomainContext categories are necessary to be used with other context cate-

gories in our context model. DomainContext mainly facilitates context for the

deployment and execution environment. However, some of them can be attached

to FunctionalContext of services, such as CurrencyContext and LanguageContext,

which can be contexts of input parameters of a service.

(para1 : InputContext)
hasLanguageContext→ (German : LanguageContext).

Some SemanticContext can also support domain-dependent services. For exam-

ple, a domain-dependent food service uses a pizza ontological framework as in

[Sheshagiri 2004].

Platform context (PlatformContext)

PlatformContext defines the technical aspects of the environment, where the ser-

vices are composed, deployed and executed. If we use a mobile device to deploy

92

and run a service process, then the mobile device has many limitations compared

to a usual PC, such as lack of processing power, lack of memory, etc. The con-

nectivity bandwidth can also impact on process execution, for example, low band-

width can cause security problems, service time outs etc. We define two high level

context categories under PlatformContext.

DeviceContext. This refers to the computer/hardware platform on which the

service is provided. DeviceContext plays a major role in pervasive and ubiqui-

tous systems, and we have observed the emergence of new device related con-

straints in service-based applications. The need for modeling device capabilities

and status is obvious since service deployment decisions are based on this in-

formation [Chrysoulas 2007]. Moreover, we have observed that output data pro-

cessing is also affected by device features, for example, some mobile phones do

not support MMS messaging. An OWL-based ontology has been proposed in

[Bandara 2004], with the aim of providing a formal framework to describe de-

vices and their services to support effective service discovery. The usability and

appropriateness of this ontology should be further investigated and refined ac-

cordingly [Bandara 2004]. Some services are specifically supported and offered by

devices. The capabilities and characteristics of a device may play an integral role

for a service. Moreover, some external information about the device may also be

important, for example, when selecting a fax service using dynamic service com-

position, the location context of the fax machine can be a dynamic requirement.

A more complete DeviceContext framework is needed to facilitate emerging fu-

ture trends, but it is not easy and a pluggable DeviceContext framework could

be a feasible solution. In this thesis, we do not focus on providing a complete

DeviceContext framework, and we define DeviceContext as hardware and plat-

form features, their relationships and environmental aspects such as location. For

example, (N95 : DeviceContext) hasFeature→ (MMS : MobileMessageContext).

ConnectivityContext. This refers to the network infrastructure used by the service

93

to communicate. Ontology-based network management has recently evolved from

a theoretical proposal to a more mature technology [Vergara 2009]. Ontology-

based manipulation of network infrastructure such as connections, bandwidths,

connection features, and their relationships are important in currently emerging

service-based applications. We define ConnectivityContext as network infrastruc-

tures, their features, and their implicit relationships used by the Web services

to communicate. For example, (Wi f iConnection : ConnectionContext) hasBandwith→
(10 Mbps).

During the execution of a Web service S(i1, ..., in), S takes some information

as input and outputs some information. One can argue these outputs update the

information space of the requester of a service S, defined in [Keller 2006]. Infor-

mation space itself is not enough to address the dynamic nature of a Web service

process, hence we define the context space of a service process, which is initially

null and then enriched from context instances at service composition, deployment,

and executions. Context instances are provided by functional and non-functional

features of constituent services, and by deployment environment-based factors

such as DomainContext and PlatformContext. The context space evolves during

the execution of each service. Where possible, these context categories can be

aligned with standardised or widely-used vocabularies, such as software quality

standards (ISO 9126) or business directory information (UDDI) for the quality of

service context. Overall, this is a flexible and evolvable context taxonomy that

provides a vocabulary of context, properties, and explicit relations.

4.2.5 Non-taxonomic relationships

Although we have developed a flexible taxonomy to align all context categories,

there are many types of non-taxonomic relationships in existence between context

categories. One context category can depend on different context categories in

different cases creating non-taxonomic relationships. Taxonomic relationships are

94

defined in subsumption relationships. Non-taxonomic relations are mostly aspect-

specific, i.e. local or non-local in terms of the hierarchy of the context model.

Here are some examples to illustrate local and non-local relationships, which are

difficult to define using taxonomic relations.

• Local : SecurityContext is the integration of Integrity, Authentication, Non-

repudiation and Confidentiality contexts. Different levels of each factor can

bring different levels of security. All the constituent context categories are

local to SecurityContext.

• Non-local : Non-local relationships can be changed case by case. TrustCon-

text is a combination of technical assertions (measurable and verifiable qual-

ity) and relationship-based factors (reputation, history of cooperation). The

constituent context categories of TrustContext are distributed in the context

taxonomy and not local in the TrustContext. We have observed that some of

the non-local relationships have dependencies. For example, the TrustCon-

text has relationships with measurable and verifiable aspects.

Trust can be defined in various ways in different cases. For example, - a re-

quester and provider interact through an exchange of encrypted and signed mes-

sages accompanied by additional trust information to establish identity and trust

context of each participant. A Web service, which is guaranteed as a secure and

reputed service from a reputed organisation can be considered as a trusted ser-

vice. Moreover, integrity (data cannot be modified undetectably) is violated when

a message is actively modified in a transit. Message integrity can be implemented

in case by case, such as signing a message, adding a check digit to the message,

XML signature and XML encryption used in WS-Security for SOAP messages,

Temporal Key Integrity Protocol (TKIP) used in wireless networks, etc. It is not

our intention to define all these cases, which is impossible. However, software

architects can use the proposed techniques to develop their specific cases. Our

95

context model provides an abstract terminological framework, which needs to be

customised in concrete situations. The abstract view of dependencies of context

categories can be modeled as in figures 4.2, 4.3, 4.4 and 4.5.

Functional context:

Figure 4.2: Dependencies in functional context

The abstract view of dependencies of functional context categories can be briefly

illustrated as in figure 4.2. Each Input and Output parameter has data and context

elements. Pre-conditions, Post-conditions and protocol context can be defined us-

ing condition identifiers.

96

Quality of service context: The abstract view of dependencies of quality of ser-

QoS ContextRuntime
Context

Financial
Context

Security
Context

Trust Context

Performance
Context

Reliability
Context

Availability
Context

Cost
Context

Reputation
Context

Regulatory
Context

Integrity
Context

Authentication
Context

Non-repudiation
Context

Confidentiality
Context

Service Functional
Context

Platform
Context

Domain
Context

Figure 4.3: Dependencies in QoS context

vice context categories can be briefly illustrated as in figure 4.3. For example,

security setting is combination of integrity, authentication, non-repudiation and

confidentiality, trust depends on security and reputation, etc. Another QoS as-

pect that can be defined through non-taxonomic relationships is software de-

pendability often defined as a combination of reliability and availability aspects

[Avizienis 2004], but also sometimes in varity of other criteria decided by software

architects [Vladimir 2011]. This adds to our point that not all context aspects can

and should be fixed in one context model.

Domain context: The abstract view of dependencies of domain context categories

97

Domain
Context

Semantic
Context

Linguistic
Context

Measures And
Standards

Context

Service Functional
Context

Platform
Context

QoS
Context

Figure 4.4: Dependencies in domain context

can be briefly illustrated as in figure 4.4. For example, domain contexts provide

inputs for functional context, semantic context can be a conceptual framework

used for domain specific services, etc.

Platform context: The abstract view of dependencies of platform context cate-

Platform
Context

Device
Context

Connectivity
Context

Service
Functional

Context

Domain
Context

QoS
Context

Figure 4.5: Dependencies in platform context

98

gories can be briefly illustrated as in figure 4.5. For example, platform contexts

provide inputs for functional context, device context can be a simple context cate-

gory to complex framework depending on the devices and applications, etc.

Though there are several context models defined in mobile and pervasive ap-

plication domains, they do not sufficiently discuss non-taxonomic relationships.

Taxonomic relationships can be modeled in UML following object-oriented con-

cepts [Priestley 2003], but that is not strong enough to define all non-taxonomic

relationships, such as implicit dependencies between context categories. An inter-

esting modelling approach, which is a keystone in resolving this inconsistency

is ontology-based conceptualization, in which we define taxonomic and non-

taxonomic relationships in a context model ontology. We define non-taxonomic

relationships within the ontology using ontological roles and SWRL rules, which

we describe in detail in section 4.3.

4.3 Context modeling

We realise dynamic service context modeling as ontology-based context represen-

tation and reasoning focusing on dynamic aspects in Web service processes. A

modeling language, which facilitates formalisation support for both taxonomic

and non-taxonomic relationships between context categories/instances, reasoning

support for context instances, and composition support for context categories/in-

stances is needed to model dynamic service context. In existing context-aware sys-

tems, XML, XML-based CC/PP [Doulkeridis 2006], UML [Kapitsaki 2009], Topic

Maps [Goslar 2004], RDF [Medjahed 2007], and OWL [Wang 2004] are widely

used for context modeling and implementation in various domains. We select

ontology-based modeling and OWL-based representation. The background and

relative merits for selecting OWL are described in section 4.3.1. This section fur-

ther describes building blocks used for OWL-based context modeling. The OWL-

99

based context model ontology implementation is illustrated in appendix A. While

description logic (DL) is used to formalise aspects of the context model, OWL will

be further used later on. OWL is necessary to operationalise (make the context

model processable) the context model.

4.3.1 Ontology-based context modeling

Context modeling describes how dynamic aspects of Web services are aligned and

maintained. A context model supports efficient context management. An ontol-

ogy consists of entities, relations, functions, axioms, and instances. Ontologies

have many merits like information sharing, re-usability, extensibility, programma-

bility and reasoning support. The choice of OWL over other approaches for this

research is motivated by several reasons - (1) OWL supports XML-based interop-

erability. (2) OWL ontology provides a logical language support for composition

and reasoning (OWL-DL). (3) OWL ontology supports SWRL (Semantic Web Rule

Language), which supports rule-based context derivation and reasoning. (4) OWL

facilitates shared conceptualization, which is important for cross-organizational

service compositions. (5) The underlying logical language supports context com-

position. (6) The underlying logical language supports context constraints en-

hancements. These properties satisfy best the requirements identified in section

2.5. For example, logical reasoning can reduce the complexity of some dynamic

tasks (device settings for payment confirmation in figure 1.1), shared conceptual-

ization of dynamic aspects of services as necessary, etc. We select the ontology

web language (OWL) as the context formalisation language.

4.3.2 Description logic - SHOIN (D)

We introduce the core elements of the description logic language used with OWL.

The Attribute Concept Language with Complements (ALC) is the basis of many

more expressive description logic languages. The OWL-DL, the description logic

100

variant of OWL is SHOIN (D), a description logic language [Baader 2003]. Each

letter describes a particular feature.

S . An abbreviation for ALC with transitive roles.

H . Role hierarchy (subproperties - rdfs : subPropertyOf).

O . Nominals. (Enumerated classes of object value restrictions - owl : oneOf, owl

: hasValue).

I . Inverse properties.

N . Cardinality restrictions (owl : Cardinality, owl : MaxCardinality).

(D) . Optional inclusion of concrete data types.

In order to encode dynamic aspects in SHOIN (D), and eventually in OWL-

DL, an understanding of the allowed constructors for SHOIN (D) is necessary,

and constructors are illustrated in table 4.2 [Farrar 2010]. C denotes concepts and

R denotes role relationships.

Constructor SHOIN (D) OWL-DL
conjunction C1�C2 intersectionOf(C1,C2)
disjunction C1�C2 unionOf(C1,C2)
negation ¬C1 complementOf(C1)
oneOf o1...on oneOf(o1...on)
exists restriction ∃R.C someValuesFrom(C)on(R)
value restriction ∀R.C allValuesFrom(C)on(R)
atleast restriction ≥nR minCardinality(n)on(R)
atmost restriction ≤nR maxCardinality(n)on(R)
datatype exists ∃R.D someValuesFrom(D)on(R)
datatype value ∀R.D allValuesFrom(D)on(R)
datatype atleast ≥nR minCardinality(n)on(R)
datatype atmost ≤nR maxCardinality(n)on(R)
datatype oneOf v1...vn oneOf(v1...vn)

Table 4.2: Table: SHOIN (D) notations

A DL knowledge base can be constructed as a set of description logic axioms.

The basic constructors of SHOIN (D) can be used with either the or ≡ symbol

to create logical statements of various kinds. The resulting logical statements are

the axioms of a DL. DL axioms can be Terminological axioms (TBox) or Assertional

axioms (ABox). Terminological axioms (statements about entities such as concepts

101

and roles, but not individuals) can be inclusion or equality axioms (or ≡).

A Terminological axiom is denoted by T. Assertional axioms (pertaining only to

individuals) can be concept assertion or role assertion axioms [Farrar 2010]. An

Assertional axiom is denoted by A.

• Inclusion axiom (T). An axiom that gives necessary conditions for some con-

cept to be included (subclassed) in another. A B , where A, B are concepts.

• Equality Axiom (T). An axiom of the general form A ≡ B, where A, B are

concepts.

• Concept Assertion Axiom (A). An axiom is of the form C(i), where C is

some concept from TBox and i is an individual.

• Role Assertion Axiom (A). An axiom is of the form R(a,b), where R is some

role from the TBox and a and b are individuals.

4.3.3 Ontology-based service context formalisation

Our context model ontology consists of concepts (or classes in OWL terminology),

its properties are in the form of roles and individuals. The description logic con-

structors and axioms can be used to formalize the context model ontology. These

logical relations further support context compositions and rule-based context in-

stance derivations.

• Concepts (OWL classes) are interpreted as sets that contain individuals.

• Roles (OWL properties) are binary relations on individuals linking two in-

dividuals.

• Individuals represent context instances of concepts and roles. OWL does

not use the Unique Name Assumption (UNA), i.e. two different names

could actually refer to the same individual. For example, SecOfS1 and

SecurityOfServiceOne refer to the same individual.

102

Subsumption expresses whether or not a contextual concept/role is a subconcep-

t/role of another concept/role. Subconcepts specialise (are subsumed by) their

superconcepts. It uses context instance subsumption based on the hierarchical

relationships of context in the context model taxonomy, i.e.

C D iff CI ⊆ DI

where C and D are concepts or roles and C I and DI their respective interpretations.

Classes can be organised into a concept hierarchy that formalises the taxonomy

described earlier. For example, FunctionalContext subsumes InputContext.

FunctionalContext � InputContext

Subsumption can be used to match user context requirements against provider

context (later called service context profiles) and to determine configurables (ser-

vice selection and process composition), i.e. comparing user requirements (stem-

ming from SLAs) against actual or declared provider properties (through satisfac-

tion and matching). Constraints compare actual and required context properties.

Both structural (subconcept) and logical (implication) subsumption relationships

can be determined automatically. Now we will look into concepts, roles, and the

formalisation of their relationships in detail to specify further characteristics of the

context model. Please note the sub sections in 4.3.3, we illustrate DL constructs by

concrete context model examples. These examples are part of our context model

that further axiomatise taxonomic and non-taxonomic aspects. However, most of

these axioms might be necessary in concrete situations, which cannot be provided

in a generic context model as discussed above. Thus, we provide here a list of

modeling features for a software architect, illustrated by concrete context model

examples.

103

Concept description

The building blocks of an OWL ontology are classes that represent concepts (DL

term). SHOIN (D) axioms can be used to specify complex class descriptions –

classes can be a subclass or disjoint with other classes:

• Subclasses represent hierarchical relationships between classes. For exam-

ple, Security subsumes Integrity.

Security � Integrity

• Disjointness means that individual components are different. For exam-

ple, high security and high performance together is hard to achieve. Extra

processing is required for highly secured processes.

Security � Per f ormance ≡ ⊥ (owl:Nothing)

• Completeness means that a context is built only from pre-specified con-

texts. For example, security is an integration of integrity, authentication,

non-repudiation and confidentiality.

Security ≡ Integrity � Authentication � Non-repudiation � Con f identiality

• Composed class descriptions: The composition of more than one context

category can be described in complex class descriptions. For example, an Ef-

fectContext can have either a Pre-ConditionContext or a Post-ConditionContext

or both.

E f f ectContext � Pre-ConditionContext � Post-ConditionContext

The PlatformContext has both DeviceContext and ConnectivityContext.

Plat f ormContext � DeviceContext � ConnectivityContext

104

These descriptions can be used to further constrain the subsumption rela-

tionships between EffectContext and PlatformContext and their respective

subclasses.

Role description

Context in the taxonomy can have relationships, which can be formalized within

the context model ontology as roles (DL term). Roles represent relationships be-

tween individuals or an individual and data literals. In this work, individuals

are context instances. Generally, a role could be an object role, datatype role or

annotation role based on how they are used within the structural elements of

ontologies [Horridge 2004].

• Object roles link an individual to an individual. For example, a service

instance has security instance 1111,

hasSecurity (Service(s), Security(1111))

• Datatype roles link an individual to an XML schema datatype value or an

RDF literal. For instance, for device d,

hasDisplaySettings (Device(d), ”6 × 8(in)”)

• Annotation roles can be used to add information (metadata) to contextual

concepts, individuals and object/datatype roles.

An annotation role of a concept,

hasType (Device, ”Mobile”)

An annotation role of an individual,

hasproducer (Device(d), ”Bell”)

105

An annotation role of an object role,

hasSameMeaning (hasPart, hasComponent)

and an annotation role of datatype role,

means (hasDisplaySettings, ”de f ines device display settings”)

Roles can be specifically used to express context constraints of concrete ser-

vices that needs to be monitored and validated at run-time, such as the required

dimensions of a particular device.

Note that roles can also be categorised in terms of their roles within the context

model vocabulary. Generic (core) roles are hard-coded into the context model tax-

onomy, such as hasPart, e.g., hasPart (Security, Integrity). Some roles are aspect-

specific, such as hasSecurity of a service, e.g., hasSecurity (Service(s), Security(1111)).

The second category is introduced to further qualify context. Note, that they could

have been done as hasPart or subconcept roles with typed instances, but in this way

they become part of the vocabulary. The introduced roles have one (or more) of

the following functional, transitive or symmetric properties [Horridge 2004].

• Functional. A role R is functional, if for a given individual there is at most

one individual that is related to the individual via the role. For example, if

a service has at most one cost then hasCost is functional.

Service(s). ∃hasCost ≤ 1 (Cost)

• Inversible. A role R is inversible, if the role links individual a to individual

b then its inverse will link b to a. For example,

If hasPart(Security(s), Integrity(i)) � isPartO f (Integrity(i), Security(s))

Then hasPart ≡ (isPartO f)− .

106

• Transitive. A role R is transitive, if the role relates individual a to individual

b and individual b to individual c then individual a is related to individual

c via R. For example,

If hasPart(QoS(q), Security(s)) � hasPart(Security(s), Integrity(i)) Then

hasPart(QoS(q), Integrity(i)).

⇒ Tr(hasPart)

• Symmetric. A role R is symmetric, if the role relates individual a to indi-

vidual b then individual b is also related to individual a via R. For example,

integrity and authentication are parts of security, That is

hasSibling(Integrity(i), Authentication(a)) �
hasSibling(Authentication(a), Integrity(i))

⇒ hasSibling ≡ (hasSibling)−

Knowledge about functional, transitive or symmetric roles can be used to de-

termine the validity of context constraints by matching observed (monitored) ac-

tual conditions with the requirement context constraints using OWL-DL-based

inference.

Rule-based context

OWL-DL can be extended with rules. OWL-DL is expressive, a decidable frag-

ment of first-order logic, and thus cannot express arbitrary axioms. The only

axioms it can express are of a certain tree structure [Grosof 2003]. In contrast,

decidable rule-based formalism such as Horn-like rules do not share this restric-

tion, but lack some of the expressive power of OWL-DL, such as restrictions on

universal quantification and lack of negation in their basic form [Motik 2005]. In

order to overcome the limitations of both approaches, OWL-DL can be extended

with rules. However, this extension is undecidable, which loses any form of tree

107

structure properties. Rules can also be used with OWL-DL to a certain extent,

where decidability is obtained by restricting the rules to so-called DL-safe rules

[Motik 2005].

The implicit context can be derived from the explicit context in the context

model ontology based on rules in the form,

Antecedent→ Consequent; Antecedent implies Consequent.

Antecedent and consequent consist of one or more context concepts and role de-

scriptions. For example, if in a client context, a mobile device is indicated in the

respective context aspect, the output message display should be matched with the

display settings of the device,
hasMessage (client,message) ∧ hasDevice (client,mobile)

→ hasDisplaySetting (message,3x5inches).

These rules can be implemented for instance as SWRL (Semantic Web Rule

Language) rules. SWRL is intended to be the rule language of the semantic Web,

and all rules are expressed in terms of OWL classes (concepts in our case), prop-

erties (roles in our case) and individuals. SWRL is a combination of variable free

OWL-DL (section 4.3.2) and variable supported RuleML (Rule Markup Language)

[Boley 2010]. SWRL extends the set of OWL axioms to include Horn-like rules.

It thus enables Horn-like rules to be combined with an OWL knowledge base

[Horrocks 2004a]. OWL knowledge bases consist of OWL-DL and OWL axioms,

described in section 4.3.2.

4.4 Case study - Context model ontology integration

The context model ontology includes contextual concepts, individuals, roles and

role characteristics. These can be integrated with Web services and processes. This

integration can formalise dynamic service context, generic roles, aspect-specific

roles, reasoning aspects, etc. The following case study illustrates dynamic service

context integration with a Web service.

108

4.4.1 Tool support

We implement the context model ontology and ontology integration with Web ser-

vices using the Protege 4.0.2 ontology development environment, which is built

on top of the OWL API that facilitates more flexible development and a straight-

forward migration path for OWL-based applications. This is a design-time tool.

This ontology development environment is also integrated with reasoners. This is

compatible with both Java 5 and Java 6 versions.

4.4.2 Case study

In this section, we describe the OWL formalised context integration with a Web

service (HSBC Banking Service - Banking Service in figure 1.1) and illustrate the

detailed implementation in appendix A. In most cases, object roles and data type

roles are used to establish context integration relationships in a Web service.

Functional context integration

The FunctionalContext formalised in OWL can be integrated with a Web service.

For example, we consider a HSBC banking service to illustrate FunctionalCon-

text integration. We assume this banking service has only one operation. The

syntax, effect, and protocol context of the service imply FunctionalContext of the

operation.

1. SyntaxContext: We consider two input parameters, one with context (trans-

actionAmountIns), and one without context (accountNumberIns) to illustrate

input context integration. We define each parameter to be attached with its data

and context. The ontology-based roles are used to define context integration.

HSBCBankingService has an input parameter transactionAmountIns.

That is, HSBCBankingService has an object role hasInputContext connecting to

an instance of transactionAmountIns. The instance of transactionAmount-

109

Ins is of the type InputContext. The transactionAmountIns has

• an object role hasContext connected to an instance USD. The instance USD is

of the type CurrencyContext.

• a data type role hasData connected to a string. We assume all the data is of

the type String.

That is,

hasInputContext (Service(HSBCBankingService), InputContext(transAmountIns))

� hasContext (InputContext(transAmountIns), CurrencyContext(USD)) �
hasData (InputContext(transAmountIns), ("100":String))

Some parameters may not have context, but have only a data element, such as

Account number. That is,

hasInputContext (Service(HSBCBankingService), InputContext(accNumberIns))

� hasData (InputContext(accNumberIns), ("100":String))

Similar to input parameters, some output parameters can have context, some may

not. This can be integrated in the same way as inputs. An OWL code excerpt of

the InputContext integration to the HSBCBankingService can be illustrated as

follows,

1 <Serv ice rdf : about ="# HSBCBankingService ">

2 <rdf : type rdf : resource="&owl ; Thing"/>

3 <hasInputContext rdf : resource ="# accountNumberIns "/>

4 <hasInputContext rdf : resource ="# transactionAmountIns "/>

5 </Serv ice >

6

7 <InputContext rdf : about ="# accountNumberIns ">

8 <rdf : type rdf : resource="&owl ; Thing"/>

9 <hasData rdf : datatype="&xsd ; s t r i n g "> ISS1234 </hasData >

10 </InputContext >

11

12 <owl : Thing rdf : about ="# transactionAmountIns ">

13 <rdf : type rdf : resource ="# InputContext "/>

110

14 <hasData rdf : datatype="&xsd ; s t r i n g ">3000</hasData >

15 <hasContext rdf : resource ="#USD"/>

16 </owl : Thing>

17

18 <CurrencyContext rdf : about ="#USD">

19 <rdf : type rdf : resource="&owl ; Thing"/>

20 </CurrencyContext >

Lines 1-5 specify that the HSBCBankingService service has two input parame-

ters accountNumberIns and transactionAmountIns. Lines 7-10 specify the

parameter accountNumberIns and its data. Lines 12-20 specify the parameter

transactionAmountIns, its data and context.

2. EffectContext: HSBCBankingService has an input parameter (accountNum-

berIns:InputContext), that needs to be verified before invoking the service. That

is, (UserAccountVerification:Pre-ConditionContext) is a pre-condition of the service.

Similarly, the HSBC service has CurrencyContext verification of (transactionAmount-

Ins:InputContext), and encryption verification of all inputs as pre-conditions.

hasPreConditionContext(Service(HSBCBankingService), Pre-ConditionContext(Us-

erAccountVeri f ication)) � hasPreConditionContext(Service(HSBCBankingService)

, Pre-ConditionContext(CurrencyTypeVeri f ication)) � hasPreConditionContext(Se-

rvice(HSBCBankingService), Pre-ConditionContext(EncryptionVeri f ication)).

Post-ConditionContext can also be integrated with services, similar to Pre-Conditi

onContext. An OWL code excerpt of the EffectContext integration to the HSBCBan-

kingService can be illustrated as follows,

1 <Serv ice rdf : about ="# HSBCBankingService ">

2 <rdf : type rdf : resource="&owl ; Thing"/>

3 <hasPreConditionContext rdf : resource ="# CurrencyTypeVerif i cat ion "/>

4 <hasPreConditionContext rdf : resource ="# Enc ryp t ionVer i f i c a t i on "/>

5 <hasPreConditionContext rdf : resource ="# UserAccountVer i f i ca t ion"/>

6 </Serv ice >

7

111

8 <PreConditionContext rdf : about ="# Enc ryp t ionVer i f i c a t i on ">

9 <rdf : type rdf : resource="&owl ; Thing"/>

10 </PreConditionContext >

11

12 <PreConditionContext rdf : about ="# UserAccountVer i f i ca t ion">

13 <rdf : type rdf : resource="&owl ; Thing"/>

14 </PreConditionContext >

15

16 <owl : Thing rdf : about ="# CurrencyTypeVerif i cat ion ">

17 <rdf : type rdf : resource ="# PreConditionContext "/>

18 </owl : Thing>

19

20 <owl : Class rdf : about ="# PreConditionContext ">

21 <rdfs : subClassOf rdf : resource ="# Ef fec tContext "/>

22 </owl : Class >

Lines 1-6 specify that the service HSBCBankingService has three pre-conditions

CurrencyTypeVerification, EncryptionVerification, and UserAcco-

untVerification. Lines 8-10 specify that the EncryptionVerification is

an instance of Pre-ConditionContext. Lines 12-14 specify that the UserAccou-

ntVerification is an instance of Pre-ConditionContext. Lines 16-18 specify

that the CurrencyTypeVerification is an instance of Pre-ConditionContext.

Lines 20-22 specify that the relationship between Pre-ConditionContext and Ef-

fectContext, which is a subsumption relationship.

3. ProtocolContext: In the HSBCBankingService example, the order of executing

pre-conditions is defined in the ProtocolContext. This is an object role relation-

ship.

hasProtocolContext(Service(HSBCBankingService), ProtocolContext(Pro1-

HSBCBankingService))

In order to define the ProtocolContext instance, we use a data type role relation-

ship.
hasDe f inition(ProtocolContext(Pro1-HSBCBankingService), (Pre-

EncryptionVeri f ication, UserAccountVeri f ication, CurrencyTypeVeri f ication :

112

String))

An OWL code excerpt of the ProtocolContext integration to the HSBCBankingser-

vice can be illustrated as follows,

1 <Serv ice rdf : about ="# HSBCBankingService ">

2 <rdf : type rdf : resource="&owl ; Thing"/>

3 <hasProtocolContext rdf : resource ="# Pro1−HSBCBankingService "/>

4 </Serv ice >

5

6 <Protoco lContext rdf : about ="# Pro1−HSBCBankingService ">

7 <rdf : type rdf : resource="&owl ; Thing"/>

8 <hasDe f in i t i on rdf : datatype="&xsd ; s t r i n g ">

9 Pre −
10 Encrypt ionVer i f i c a t i on ,

11 UserAccountVeri f ica t ion ,

12 CurrencyTypeVer i f i ca t ion .

13 </hasDef in i t ion >

14 </ProtocolContext >

Lines 1-4 specify that the service HSBCBankingService has a ProtocolContext

instance called Pro1-HSBCBankingService. Lines 6-14 specify the Protocol-

Context instance. It is the execution sequence of pre-conditions in this example.

Quality of service context integration

Here, we use the HSBCBankingService and its quality of service context (QoSCon-

text) integration. The Web service (HSBCBankingService) has an object role has-

CostContext connecting to 0.1, which is an instance of CostContext. The instance

0.1 has an object role hasCurrencyContext connecting to GBP, which is an instance

of CurrencyContext. This can be formalised as,

hasCostContext(Service(HSBCBankingService), CostContext(0.1)) �
hasCurrencyContext(CostContext(0.1), CurrencyContext(GBP))

The HSBCBankingService service also has reputation, security, trust and

performance contexts.

113

hasReputationContext(Service(HSBCBankingService), ReputationContext(1)),

hasSecurityContext(Service(HSBCBankingService), SecurityContext(1111)),

hasTrustContext(Service(HSBCBankingService), TrustContext(TCert[HSBCBank-

ingService])), hasPer f ormanceContext(Service(HSBCBankingService), Per f orma-

nceContext(per f -HSBCBankingService)) � hasResponseTime(Per f ormanceContext

(per f -HSBCBankingService), ” < 600 ms”).

An OWL code excerpt of the QoSContext integration to the HSBCBankingService

can be illustrated as follows,

1 <Serv ice rdf : about ="# HSBCBankingService ">

2 <rdf : type rdf : resource="&owl ; Thing"/>

3 <hasCostContext rdf : resource ="#0 . 1 "/>

4 <hasReputiat ionContext rdf : resource ="#1"/>

5 <hasSecur i ty rdf : resource ="#1111"/ >

6 <hasTrustContext rdf : resource ="# TCert [HSBCBankingService]"/ >

7 <hasPerformanceContext rdf : resource ="# perf−HSBCBankingService "/>

8 </Serv ice >

9

10 <owl : Thing rdf : about ="#0 . 1 ">

11 <rdf : type rdf : resource ="# CostContext "/>

12 <hasCurrencyContext rdf : resource ="#GBP"/>

13 </owl : Thing>

14

15 <owl : Thing rdf : about ="#1" >

16 <rdf : type rdf : resource ="# Reputat ionContext"/>

17 </owl : Thing>

18

19 <Secur i tyContext rdf : about ="#1111" >

20 <rdf : type rdf : resource="&owl ; Thing"/>

21 </SecurityContext >

22

23 <Secur i tyContext rdf : about ="#1111" >

24 <rdf : type rdf : resource="&owl ; Thing"/>

25 <hasNon−RepudiationContext rdf : resource ="#1"/>

26 <hasConf ident ia l i t yContex t rdf : resource ="#1"/>

27 <hasAuthenticat ionContext rdf : resource ="#1"/>

114

28 <has In t eg r i tyContex t rdf : resource ="#1"/>

29 </SecurityContext >

30

31 //1 i s an ins t ance of a l l four c a t e g o r i e s .

32 <Authenticat ionContext rdf : about ="#1" >

33 <rdf : type rdf : resource ="# Conf iden t i a l i t yCon tex t"/>

34 <rdf : type rdf : resource ="# In t eg r i tyCon tex t "/>

35 <rdf : type rdf : resource ="# NonRepudiationContext "/>

36 </Authenticat ionContext >

37

38 //All four ca t egor i e s are par ts of Secur i tyContext

39 <owl : ObjectProperty rdf : about ="# isPar tOf ">

40 <rdfs : domain rdf : resource ="# Authenticat ionContext "/>

41 <rdfs : domain rdf : resource ="# Conf iden t i a l i t yCon tex t"/>

42 <rdfs : domain rdf : resource ="# In t eg r i tyCon tex t "/>

43 <rdfs : domain rdf : resource ="# NonRepudiationContext "/>

44 <rdfs : range rdf : resource ="# Secur i tyContext "/>

45 <owl : inverseOf rdf : resource ="# hasPart "/>

46 </owl : ObjectProperty >

47

48 <owl : Thing rdf : about ="# TCert [HSBCBankingService]" >

49 <rdf : type rdf : resource ="# TrustContext "/>

50 </owl : Thing>

51

52 <owl : Thing rdf : about ="# perf−HSBCBankingService ">

53 <rdf : type rdf : resource ="# PerformanceContext"/>

54 <hasResponseTime rdf : datatype="&xsd ; s t r i n g">& l t ; 600 ms</hasResponseTime>

55 </owl : Thing>

Lines 1-8 specify that the service HSBCBankingService has cost, reputation,

security, trust and performance contexts. Lines 10-13 specify the CostContext

of the service. Lines 15-17 specify the ReputationContext of the service. Lines

19-46 specify the SecurityContext of the service including authentication, non-

repudiation, confidentiality, and integrity contexts. Lines 48-50 specify the Trust-

Context of the service. TCert[HSBCBankingService] is the trust certificate of HS-

BCBankingService. Lines 52-55 specify the PerformanceContext of the service.

115

Domain context and Platform context integration

DomainContext and PlatformContext bring environmental aspects into Web ser-

vices. In the previous example,

hasCurrencyContext(CostContext(0.1), CurrencyContext(GBP))

describes the usage of CurrencyContext relevant to HSBCBankingService. If

this service is used somewhere in Germany, then the CurrencyContext needs to

be changed accordingly. That is, CurrencyContext of the service changes based

on the domain. Moreover, PlatformContext brings heterogeneous platform as-

pects into service processes. For example, HSBCBankingService needs connectivity

bandwidth greater than 5 Mbps.

needConnectivityContext(Service(HSBCBankingService), ConnectivityContext(conn-

ectivity)) � hasConnectivityStrength(ConnectivityContext(connectivity), "> 5")

An OWL code excerpt of above context integration with the HSBCBankingSer-

vice can be illustrated as follows,

1 <Serv ice rdf : about ="# HSBCBankingService ">

2 <hasCostContext rdf : resource ="#0 . 1 "/>

3 <needConnect ivi tyContext rdf : resource ="# connec t iv i ty "/>

4 </Serv ice >

5

6 // se rv i c e cos t has domain context

7 <owl : Thing rdf : about ="#0 . 1 ">

8 <rdf : type rdf : resource ="# CostContext "/>

9 <hasCurrencyContext rdf : resource ="#GBP"/>

10 </owl : Thing>

11 <owl : Thing rdf : about ="#GBP">

12 <rdf : type rdf : resource ="# CurrencyContext"/>

13 </owl : Thing>

14 <owl : Class rdf : about ="# CurrencyContext">

15 <rdfs : subClassOf rdf : resource ="# MeasuresContext "/>

16 </owl : Class >

17 <owl : Class rdf : about ="# MeasuresContext ">

18 <rdfs : subClassOf rdf : resource ="# DomainContext"/>

19 </owl : Class >

20

116

21 //se rv i c e connec t iv i ty has platform context

22 <owl : ObjectProperty rdf : about ="# needConnect ivi tyContext">

23 <rdfs : range rdf : resource ="# Connect ivi tyContext "/>

24 <rdfs : domain rdf : resource ="# Serv ice "/>

25 </owl : ObjectProperty >

26

27 <owl : Thing rdf : about ="# connec t iv i ty ">

28 <rdf : type rdf : resource ="# Connect ivi tyContext "/>

29 <hasConnect iv i tySt rength rdf : datatype="&xsd ; s t r i n g ">

30 > ; 5 Mbps</hasConnect iv i tyStrength>

31 </owl : Thing>

32

33 <owl : DatatypeProperty rdf : about ="# hasConnect iv i tySt rength">

34 <rdfs : domain rdf : resource ="# Connect ivi tyContext "/>

35 </owl : DatatypeProperty >

36

37 <owl : Class rdf : about ="# Connect ivi tyContext ">

38 <rdfs : subClassOf rdf : resource ="# PlatformContext"/>

39 </owl : Class >

Lines 1-4 specify that the HSBCBankingService has CostContext and Connectivity-

Context. With regard to the CostContext, the focus is on CurrencyContext change

in various domains. Lines 7-19 specify the CostContext, which is attached to Cur-

rencyContext. The CurrencyContext is a DomainContext. Lines 22-39 specify the

connection bandwidth, which is a PlatformContext.

4.5 Chapter summary

In this chapter, first we defined dynamic service context, which is one of the main

challenges identified in section 2.5. Then, we defined a context model ontology

to describe dynamic aspects of Web service processes (the core challenge identi-

fied in section 2.5). In defining a context model, we captured dynamic service

context attached to dynamic requirements at service process run-time using an

empirical analysis of application scenarios from the classical business domain and

117

the state of the art review of previous classifications. We also considered the

context orientation as an important aspect in defining a general context model.

We considered inward and outward perspectives and the related previous work.

This context model is at the core a classification and formalisation of dynamic

aspects. It works as a shared conceptualization framework for Web service pro-

cesses. This context model is embedded into a rich conceptual modeling tech-

nique, including language and elements to specify and reason about dynamic

service context in a context model ontology. We formalised the context taxonomy

as an OWL-based context model ontology to gain benefits outlined in section 4.3.1.

The proposed context model ontology, which is located at the immediate context

in [Rosemann 2008], can serve as a part of middleware component for managing

dynamic aspects at service process run-time in dynamic service applications.

The proposed context model ontology can also be adapted to fill the gap

between application-dependent context-aware middleware and general context-

aware service community frameworks proposed in [Medjahed 2007, Mrissa 2008].

At the moment, WSDL does not directly support context integration, hence con-

text embedding architecture for WSDL could be a useful future direction of re-

search in the context-aware Web services domain. The related work on semantic

annotation for WSDL (SAWSDL) can possibly be improved to embed context in-

formation towards context annotated WSDL. We detail this idea in section 9.3.2 as

future work.

118

Chapter 5

Context manipulation and
reasoning

Contents
5.1 Introduction . 119

5.2 Context model specification and service context profiles 121

5.3 Context manipulation operators 124

5.3.1 Service-level context manipulation 125

5.3.2 Process-level context manipulation 127
5.4 Context composition . 130

5.5 Context reasoning . 132

5.5.1 Subsumption . 133
5.5.2 Consistency checking . 134
5.5.3 Context derivation . 135

5.6 Case study . 136

5.7 Chapter summary . 139

5.1 Introduction

A context specification needs to be adapted for further processing in several con-

texts. From a process perspective, the context specifications of constituent services

need further processing to derive and adapt dynamic service context. For exam-

ple, several services in a process need to be combined creating the need for the

corresponding dynamic service contexts to be combined. There are some situa-

tions, which cannot be addressed by available OWL-DL operators (e.g., the se-

119

curity of a process is the weakest security of all individual services, the security

of a service is restricted to its integrity context, etc.), and some context speci-

fications need to be adapted at process run-time. We address these limitations

using context manipuation, context composition, and context reasoning. We pro-

pose an operator calculus for context specifications to facilitate manipulation and

composition, and techniques for context reasoning. The context specifications at-

tached to services are provided by service providers. The dynamic aspects in these

specifications need manipulation, composition, and reasoning to support dynamic

requirements (context constraints in chapter 6) attached to composition and exe-

cution of services at process run-time within the semantic client (or broker).

The context model ontology described in chapter 4 is used at the semantic

client and the provider ends. Operator calculus and reasoning can be combined

with OWL-DL constructs and implemented at the semantic client (or broker) to

support dynamic requirements, which are defined in terms of dynamic service

context. OWL-DL is a description logic, which provides maximum expressiveness

while maintaining computational completeness (all conclusions are guaranteed

to be computable) and decidability (all computations will finish in finite time).

OWL-DL includes all OWL language constructs, but they can be used only under

certain restrictions (for example, while a class may be a subclass of many classes,

a class cannot be an instance of another class)[McGuinness 2004]. We use both

description logic and OWL terminologies through out this chapter. We use de-

scription logic-based context reasoning for capturing subsumption relationships

of contextual concepts, checking the consistency of available context information,

and deriving implicit context from explicitly defined context instances. Context

reasoning supports requirements validation of services and composed service pro-

cesses at process run-time. Context instances are generated for each Web service

process based on their constituent services and requirements. Suppose a service

process needs to replace a service Sa with a service Sb, which has a given secu-

120

rity context. If the service context profile of Sb provides integrity, authentication,

non-repudiation and confidentiality, the security context needs to be derived from

the given context. In order to send a mobile message (Pay Confirmation Service

in figure 1.1), display settings and the messaging context (TXT/MMS support) of

the client’s device need to be derived from the device context, that is, the implicit

context needs to be derived from the explicit context. Context categories have re-

lationships between them. A change in one context instance may have an affect

on other context instances.

In section 5.2, we address context model specifications and service context

profiles in detail. We describe context manipulation operators including service-

level context manipulation and process-level context manipulation in section 5.3.

We describe context composition in section 5.4. In section 5.5, we describe context

reasoning in detail and provide a case study analysis in section 5.6. Finally in

section 5.7, we summarise the chapter proposing future work.

5.2 Context model specification and service context profiles

The manipulation and composition of dynamic aspects can be precisely described

at DL-level. We introduced description logic formalisms in section 4.3. Before

addressing the manipulation of context, the notion of a context specification and

its semantics need to be made precise.

We assume context model to be a DL specification, Context Model = 〈Σ, Φ〉,
see section 4.2.4. For instance, for the SecurityContext, we define Σ and Φ as

follows.

Σ = 〈{IntegrityContext, AuthenticationContext, ...} ; {hasPart, isPartO f}〉

φ =
{

IntegrityContext
isPartO f→ SecurityContext

}

We assume in general the following signature inclusion T ⊂ Σ for all signatures

Σ where T is the context taxonomy signature, as defined in section 4.2.4.

121

Σ = < {FunctionalContext, QoSContext, DomainContext, Plat f ormContext, ...} ;

{hasPart, isPartO f , hasCost, hasCurrency, hasSecurity, hasIntegrity, ...} >

T = < {FunctionalContext, QoSContext, DomainContext, Plat f ormContext, ...} ;

{hasPart, isPartO f , ...} >

If the taxonomy is not adhered to or other changes or extensions take place, con-

text modeling might require syntactical elements to be renamed.

The Context Model = 〈Σ, Φ〉 can be interpreted by a set of models M. The

model notion [Kozen 1990] refers to algebraic structures that satisfy all context

descriptions φ in Φ. The set M contains algebraic structures m ∈ M with

• instances CI for each contextual concept (class) C,

• roles RI ⊆ CI
i × CI

j for all context roles R : Ci → Cj

such that m satisfies the context description. We define the satisfaction relation

over the connectors of the description logic SHOIN (D).

We define the Context specification, which is application-specific and have

instances and instance-level axioms as,

(Context speci f ication ∈ Context Model), where Context Model = 〈Σ, Φ〉.

The consistency of a context specification ensures that a context model does not

contain any contradictory facts. A context specification is consistent, if there are

models that satisfy the specification. For example, based on the descriptions of a

contextual concept, a reasoner can check whether or not it is possible for a concept

to have any instances. The concept is deemed to be inconsistent if it cannot have

any instances - section 5.5.2.

We use the notion of a service context profile (SCP) to extend the context spec-

ification notion towards a Web service. A service context profile captures context

model instances of individual services, i.e. adding instance-level axioms to the

122

context specification. The context model provides a contextualization framework

(Chapter 4), in which service-related context aspects are captured. The SCP is

maintained at the service provider end. A service context profile is represented as

an association of values (instances) to context model aspects

SCP =[{F(1)...F(nF)} ,

{Q(1)...Q(nQ)} ,

{D(1)...D(nD)} ,

{P(1)...P(nP)}]

where {F(1)...F(nF)} are functional context instances, {Q(1)...Q(nQ)} are quality

of service context instances, {D(1)...D(nD)} are domain-based context instances,

and {P(1)...P(nP)} are platform-based context instances. Each of the instance

elements is typed by the respective context model aspect, see section 4.4.2. We use

the following example to illustrate a SCP with a selected set of functional and QoS

contexts.

1 <owl : Thing rdf : about ="# HSBCBankingService ">

2 <rdf : type rdf : resource ="# Serv ice "/>

3

4 Funct iona l Context

5

6 <hasProtoco lContext rdf : resource ="# Pro1−HSBCBankingService "/>

7 <!−− ht tp :// . . . /ServiceContextOntology.owl #Pro1−HSBCBankingService −−>

8 <Protoco lContext rdf : about ="# Pro1−HSBCBankingService ">

9 <rdf : type rdf : resource="&owl ; Thing"/>

10 <hasDef in i t ion rdf : datatype="&xsd ; s t r i n g ">

11 Pre−
12 Encrypt ionVer i f i c a t i o n ,

13 UserAccountVeri f i ca tion ,

14 CurrencyTypeVer i f i ca t ion .

15 </hasDef in i t ion >

16 </ProtocolContext >

17

18 <hasPreConditions rdf : resource ="# UserAccountVer i f i ca t ion"/>

19 <!−− ht tp :// . . . /ServiceContextOntology.owl # UserAccountVer i f i ca t ion −−>

20 <owl : Thing rdf : about ="# UserAccountVer i f i ca t ion">

21 <rdf : type rdf : resource ="# Ef fec tContext "/>

123

22 </owl : Thing>

23

24 <hasInputContext rdf : resource ="# transactionAmount "/>

25 <!−− ht tp :// . . . /ServiceContextOntology.owl # transactionAmount −−>

26 <owl : Thing rdf : about ="# transactionAmount ">

27 <rdf : type rdf : resource ="# InputContext "/>

28 <hasData rdf : datatype="&xsd ; s t r i n g ">3000</hasData >

29 <hasContext rdf : resource ="#USD"/>

30 </owl : Thing>

31

32 QoS Context

33

34 <hasCostContext rdf : resource ="#0 . 1 "/>

35 <!−− ht tp :// . . . /ServiceContextOntology.owl #0 . 1 −−>

36 <owl : Thing rdf : about ="#0 . 1 ">

37 <rdf : type rdf : resource ="# CostContext"/>

38 <hasCurrencyContext rdf : resource ="#GBP"/>

39 </owl : Thing>

40

41 </owl : Thing>

SCPs are used as inputs at validation monitoring, figure 7.1.

5.3 Context manipulation operators

We introduce context manipulation operators, before addressing composition op-

erators that preserve the internal composition structure (i.e. are reversible). The

consistency of context specifications is a concern. We have two perspectives of

context manipulation. They are service-level and process-level perspectives. At

service-level, we discuss context aspects relevant to individual services, e.g., ma-

nipulating different context aspects of single service. At process-level, we discuss

context aspects relevant to contextualized service processes, e.g., manipulating

single context aspect relevant to different services in a process. We define three

fundamental context manipulation operators for service-level context manipula-

tion. They are Renaming, Restriction, and Refinement operators. We also define

two operators, Union and Intersection for process-level context manipulation. We

discuss the consistency preservation of context specifications by the operators. We

use DL-level formalisms described in section 4.3 to define context manipulation

operators.

124

5.3.1 Service-level context manipulation

Renaming. If the taxonomy is not adhered to or other changes or extensions

take place, context modeling might require syntactical elements to be renamed.

A Renaming operator can be defined element-wise for a given signature Σ. By

providing mappings for the elements that need to be modified, a new signature

Σ′ is defined,

Σ′ def= Σ [n1 �→ n′1, . . . , nm �→ n′m]

for all concepts or roles ni(i = 1, . . . , m) of Σ that need to be modified. For

example, concepts OSContext is used instead of PlatformContext and roles

hasOperatingSystem is used instead of hasPlatform.

Σ′ = Σ [{Plat f ormContext �→ OSContext } ;

{hasPlat f orm �→ hasOperatingSystem }]

Restriction. While context aspects are often used as is, it is sometimes desirable

to focus on specific parts. Restriction is an operator that allows context combina-

tions to be customised and undesired elements (and their roles) to be removed, A

restriction can be expressed using the Restriction operator 〈Σ, Φ〉|Σ′ for a context

specification, defined by

〈Σ, Φ〉|Σ′ def= 〈Σ ∩ Σ′, {φ ∈ Φ | rls(φ) ∈ rls(Σ ∩ Σ′) ∧ cpts(φ) ∈ cpts(Σ ∩ Σ′)}〉

with the usual definition of role and concept projections rls(Σ) = R and cpts(Σ) =

C on a signature Σ = 〈C, R〉. For example, if an integrity context of a service is a

concern instead of the complete security context, then the results can be viewed

as,

rls(φ) = {hasIntegrity} and cpts(φ) = {IntegrityContext}

Restriction preserves consistency as constraints are, if necessary, removed. Re-

striction can be applied in combination with any context combinator such as In-

125

tersection, Union or Refinement.

Refinement. Consistency is a requirement that should apply to all combinations

of ontologies. A typical situation is the derivation of a new context from an exist-

ing one [Baresi 2004]. We introduce a constructive operator Refinement, which is

a consistent (i.e. consistency-preserving) extension in terms of contextual concepts

and roles. The Refinement can be linked to the subsumption relation and seman-

tically constrained by an inclusion of interpretations (models that interpret a con-

text). The Refinement preserves existing roles, e.g. the satisfiability of the original

context specification. As the original contextual concept and role types cannot

be further constrained, the extension is consistent. Our consistency-preserving

Refinement operator provides a constructive subsumption variant that allows,

• New subconcepts and new subroles to be added, and

• New constraints to be added, if these apply consistently to the new elements.

Assume a context specification C = 〈Σ, Φ〉. For any specification 〈Σ ′, Φ′〉 with

Σ ∩ Σ′ = ∅, we define a Refinement of C by 〈Σ′, Φ′〉 through

C⊕ 〈Σ′, Φ′〉 def= 〈Σ + Σ′, Φ + Φ′〉

The pre-condition Σ ∩ Σ′ = ∅ implies Φ � Φ′ = ⊥, i.e. consistency is preserved,

which is an important property for dynamic, automated environments. In this

situation, existing roles of C = 〈Σ, Φ〉 are inherited by C⊕ 〈Σ ′, Φ′〉. Existing roles

can be refined as long as consistency is maintained, which might require manual

proof in specific situations that go beyond the operator-based application. A Re-

finement operator can be used to adapt provider context to a context signature

Σ′ and a context description Φ′, e.g, to add device aspects to the context speci-

fication 〈Σ′, Φ′〉 if the user’s device context supports a given feature (example in

figure 1.1),

126

〈Σ′, Φ′〉 ⊕ 〈{DeviceContext, FeatureContext} , {hasDevice, hasFeature}〉

5.3.2 Process-level context manipulation

Adding a context specification to another specification (or removing specific con-

text roles from a context specification) is often required, particularly if service

contexts are combined within a process. The operators Union and Intersection

deal with these situations, respectively. Two context specification C1 = 〈Σ1, Φ1〉
and C2 = 〈Σ2, Φ2〉 can be considered (generally associated to two different ser-

vices) in a process.

• The Intersection of C1 and C2, expressed by C1 ∩ C2, is defined by

C1 ∩ C2
def= 〈Σ1 ∩ Σ2, (Φ1 ∪+ Φ2)|Σ1∩Σ2〉

We describe the ∪+ operator for context specification later in this section,

which is defined on a case by case basis for different context aspects. The

Intersection is semantically defined based on an intersection of context in-

terpretations, achieved through projection onto common signature elements.

• The Union of C1 and C2, expressed by C1 ∪ C2, is defined by

C1 ∪ C2
def= 〈Σ1 ∪ Σ2, (Φ1 ∪+ Φ2)|Σ1∪Σ2〉

Union is semantically defined based on a union of context interpretations.

Both Union and Intersection operations can result in consistency conflicts, but

the combination of two context specifications of two services should be conflict-

free, i.e. semantically, no contradictions should occur. A consistency condition can

be verified by ensuring that the set-theoretic interpretations of two contexts C 1

and C2 are not disjoint, CI
1 ∩ CI

2 �= ∅, i.e. their combination is satisfiable and no

contradictions occur.

127

We describe the operator ∪+ in terms of the types of context aspects involved.

The combination mechanism, which is the functionality of the ∪+ operator, differs

between context aspects. We investigated all context aspects in our context model

ontology to define a complete list of ∪+ operators. C(i) refers to the context aspect

value of service i, e.g., C(i) for the service i can equal to 600(ms) for the response

time aspect.

• The Lowest Common Denominator (∪+
LCD)

∪+
LCD

de f→ Minn
i=1C(i) for all C(i) in the φ.

Example : for a security aspect, the overall security of a process is deter-

mined by the weakest security setting of all individual services.

• The Least Common Subsumer [Cohen 1992] (∪+
LCS)

∪+
LCS

de f→ ⋂n
i=1 C(i) for all C(i) in the φ

Example: for a language aspect, the least common subsumer of all individ-

ually used languages are the language(s) common to all (intersection).

• The Logical OR (∪+
OR)

∪+
OR

de f→ ORn
i=1C(i) for all C(i) in the φ

Example: for the deployment environment, the service deployment envi-

ronment needs secure internet connection or connection bandwidth greater

than 10Mbps.

• The Accumulation (∪+
ACC)

∪+
ACC

de f→ Σn
i=1C(i) for all C(i) in the φ

Example: The cost of a process is an accumulation through summation of

the cost of each service.

• The Logical AND (∪+
AND)

∪+
AND

de f→ ANDn
i=1C(i) for all C(i) in the φ

Example: for the deployment environment, the service deployment environ-

128

ment needs Windows operating system and connection bandwidth greater

than k Mbps.

• The Mediation (∪+
MED)

∪+
MED

de f→ MEDn
i=1C(i) for all C(i) in the φ

Example: in service composition, if an output context (boolean, true or false)

of a service Sj is composed with an input context (integer, 0 or 1) of a service

Sj+1 then a mediation is needed. Mediations are represented as mappings.

In order to illustrate this for a service process P, we assume P has two services

Si and Sj and corresponding context specifications SCPi and SCPj. Both specifica-

tions are characterised in terms of the context aspects in-parameter, out-parameter,

response time, security and language.

SCPi = [int, bool, 1ms, 1111, EN] and SCPj = [int× int, int, 10ms, 1001, FR]

The aim is to combine the SCPs to process-level contexts,

• in, out - sequential composition, which is a causal structural composition

(mediation). Correctness of this composition is a concern. We address this

type of composition further in Section 5.4.

• cost, performance - numerical composition through addition (accumulative).

• security - the lowest common denominator, which is a kind of intersection

for security settings.

• language - intersection as the composition principle.

The results of the combination can be illustrated as follows:

For a service process P,

P =
{

Si, Sj
}

〈Σ, Φ〉p = 〈Σ, Φ〉Si + 〈Σ, Φ〉Sj

129

[int, bool, 1ms, 1111, EN] + [int×int, int, 10ms, 1001, FR]

The composition can be illustrated as,

[bool ∪+
MED int × int], [1ms ∪+

ACC 10ms], [1111 ∪+
LCD 1001], [EN ∪+

LCS FR].

The results of the individual aspect combinations can be illustrated as,

[1ms ∪+
ACC 10ms] = 11 ms, [1111 ∪+

LCD 1001] = 1001.

5.4 Context composition

The explicit support for composition is important for service context profiles.

Composition is also central for service context aspects. As an extension to the

context manipulation operators, we introduce two types of composite elements

for context specifications. In contrast to Union and Intersection, composition

retains subcomponents as identifiable parts of the result and, therefore, makes

composition reversible.

The subsumption is the central relationship in ontology languages, allowing

context taxonomies to be defined in terms of subtype relationships [Baader 2003].

The composition is a fundamental relationship that describes the part-whole re-

lationship between concepts or instances (individuals) [Priestley 2003]. Composi-

tion is less often used in ontological modeling languages. The notion of composi-

tion shall be applied for context in two different ways:

• Structural (service-level) composition. The structural hierarchies define an im-

portant aspect of context [Daconta 2003]. The structural composition can

be applied for instance for input/output or for security with its sub-aspects

confidentiality or availability. In the latter case, composition is more ade-

quate than seeing these as subtypes if their later implementation through

different system components is considered.

• Sequential (process-level) composition. Dynamic elements (services) can be

composed to represent sequential process behavior. While context does not

130

directly represent behavior, we have already seen that context models need

to be aggregated along with the behavioral composition of services in a pro-

cess.

We use the symbol "�" to express composition. The composition is syntacti-

cally used in the same way as subsumption "" to relate context descriptions.

• Context composition hierarchies can consist of unordered subcomponents, ex-

pressed using the component composition operator "�". An example is

Security � Con f identiality, meaning that a Security aspect consists of Con f i-

dentiality as a part as in figure 4.1. The components can be interpreted by

unordered multi-sets. The structural composition C � {D1, . . . , Dn} is de-

fined by C � {D1} � . . . � C � {Dn} where C � {D} means that C is

structurally composed of D if C and D are context specifications. The parts

Di, i = (1, .., n) are not assumed to be ordered. The structurally composed

concepts are interpreted as multi-sets.

• Service processes can be sequences that consist of ordered process elements,

again expressed using the composition operator "�". An example is Process �

Service, meaning that Process is actually a composite service, which contains

for instance a Service element. We see composite process implementations

as being interpreted as ordered tuples providing a notion of sequence. More

complex behavioral compositions are not covered here. The sequential com-

position C � [D1, . . . , Dn] is defined by C � [D1] � . . . � C � [Dn] where

C � [D] means that C is sequentially composed of D if C and D are services.

The sequentially composed concepts are interpreted as tuples. The parts D i

with i = (1, .., n) are assumed to be ordered with D1 ≤ . . . ≤ Di ≤ . . . ≤ Dn

describing an execution ordering ≤ on the Di.

Note, that the composition operators are specific to the respective element

types, whereas subsumption is generic. We allow the composition type delimiters

131

{. . .} and [. . .] to be omitted if the type of the part-element D is clear from the

context.

While subsumption as a relationship is defined through subset inclusion, the

composition relationships are defined through membership in collections (multi-

sets for structural composition and tuples for behavioral composition).

5.5 Context reasoning

Context manipulation and composition can be further supported by context rea-

soning, which we detail in this section. Context reasoning is implemented as

reasoning services, which support context manipulation operators and context

composition described in section 5.3 and section 5.4. The context reasoning ap-

proaches used in most of the context-aware applications are ontology reasoning

and rule based reasoning [Bikakis 2008]. Ontology reasoning approaches integrate

well with the ontology model. Ontology reasoning takes advantage of concept re-

lationships and role relationships (Object roles, Data type roles). The underlying

description logic of the ontology models supports subsumption and consistency

checking of available context information. Rule-based reasoning basically focuses

on if-then-else type rule statements. Rule languages provide a formal model for

context reasoning. They are easy to understand and can be reused. There are

many systems that integrate rules with ontology models [Bikakis 2008]. The se-

mantic Web rule language (SWRL) aims to be the standard rule language of the Se-

mantic Web [Horrocks 2004a]. SWRL can be used for rule-based reasoning, since

it is built on with OWL-DL (variable free and corresponding to SHOIN (D))

and RuleML (variables are used) support. All rules can be expressed in terms of

OWL concepts (classes, properties and individuals). SWRL includes a high-level

abstract syntax for Horn-like rules [Horrocks 2004a]. SWRL-based rules can be

saved as a part of the context model ontology, and reasoning can be supported by

132

the standard tools - such as Pellet, which is the first sound and complete OWL-DL

reasoner with extensive support for reasoning. Pellet also supports OWL/Rule

hybrid reasoning [Sirin 2007].

We use description logic (ABox and TBox reasoning in chapter 4). There are

three major constituents in our context reasoning. They are subsumption, con-

sistency checking, and context derivation. However, a deeper investigation of

the algorithms used in reasoning, and the trade-off between the complexity of

the reasoning problems and the expressive power of the DL are out of our scope

[Küsters 2000]. The context specifications described in section 5.2, context manip-

ulations described in section 5.3, and context compositions described in section

5.4 are further supported by context reasoning.

5.5.1 Subsumption

Subsumption can be used to check whether or not a contextual concept is a sub-

concept of another concept. In other words, to check context instances evolution

based on the hierarchical relationships of context in the context model ontology.

Subsumption relationships can make some implicit context explicit.

C subsumes D :

C D iff CI ⊆ DI for all interpretations I;

C and D are concepts.

In the context model ontology,

QoSContext � RuntimeContext � PerformanceContext;

For example, we can take t1 as an instance of the Performance concept (direct

type). Then t1 becomes indirectly typed with RuntimeContext and QoSContext.

A service with good run-time context can infer that the service has a good perfor-

mance based on ∪+
LCD.

133

Subsumption is needed for context specifications in section 5.2, context ma-

nipulations in section 5.3 and context compositions in section 5.4. For example,

subsumption is needed for the Refinement operator, mediation in the ∪+ opera-

tor, structural composition, etc. Subsumption is also a major constituent in con-

sistency checking. Subsumption plays a major role in context matching scenarios

[Pahl 2011] where the service is required to be better than service user require-

ments, i.e. a service needs to be subsumed by the requirements of the service

user. For instance, QoS values or functional types (in/out) of services need to be

better than service user requirements. In practical terms, Refinement (in section

5.3.1) is a constructive operator that implies subsumption.

5.5.2 Consistency checking

Consistency checking ensures that an ontology does not contain any contradic-

tory facts. Based on the descriptions of a contextual concept, the reasoner can

check whether or not it is possible for a concept to have any instances. A concept

is deemed to be inconsistent if it cannot possibly have any instances.

∃a∈(C�D) iff ¬(C� ¬D); a is an instance, C, D are concepts.

For example,

(DeviceContext PDA) � (DeviceContext Phone) � dis(PDA,Phone);

dis() defines disjointness relation, section 4.3.3.1.

A device N97 cannot be an instance of both PDA and Phone concepts. In a con-

textualized service process, the context specifications (SCPs in section 5.2) need to

be checked for the consistency with the context model ontology. The consistency

checking is also needed for context manipulation (in section 5.3) and composition

(in section 5.4). For example, if a contextual concept in a context specification is re-

named, then the renamed contextual concept needs to be checked for consistency

with the context model ontology (Renaming operator in section 5.3.1).

134

5.5.3 Context derivation

Context derivation is needed for context specifications (for example, SCPs in sec-

tion 5.2) and dynamically generated context instances. Context derivation implies

deriving implicit context from the explicit context in the context model ontology.

These can be implemented as SWRL rules [Horrocks 2004a]. We use the rule-based

context defined in section 4.3.3.3 for context derivation.

Antecedent→ Consequent

Antecedent and Consequent consist of one or more contextual concepts and their

property descriptions.

The derived context affects other context and constraints, which we define

using security context and response time context. Reasoning about SecurityCon-

text (derived context) based on given explicit context of Integrity, Authentication,

Non-Repudiation and Confidentiality is illustrated in table 5.1. Whenever the

conditions specified in the antecedent hold, then the conditions specified in the

consequent must also hold.

Input Rules Service(?s)∧objectRoleHasIntegrity(?s, ?x)
∧objectRoleHasAuthentication(?s, ?x)
∧objectRoleHasConfidentiality(?s, ?x)
∧objectRoleHasNonRepudiation(?s, ?x)
∧swrlb:stringEqualIgnoreCase(?x, ”1”)
→objectRoleHasSecurity(?s, ”1111”)

Explicit Context <Service rdf:ID="ServiceS1">
<objectRoleHasAuthentication rdf:resource="1"/>
<objectRoleHasIntegrity rdf:resource="1"/>
<objectRoleHasConfidentiality rdf:resource="1"/>
<objectRoleHasNonRepudiation rdf:resource="1"/>
</Service>

Output Derived Context <Service rdf:ID="ServiceS1">
<objectRoleHasSecurity rdf:resource="1111"/>
</Service>

Table 5.1: Security context reasoning

The rule defined in table 5.1 can be read as, if a service has its integrity, au-

thentication, confidentiality and non-repudiation equal to 1, then the service has

135

security setting 1111. More details of the implementation can be found in ap-

pendix A.5.

In order to achieve a security setting 1111, an extra processing time is needed

for a service. This can be specified as a rule, if the security setting is 1111, then

the response time needs to be greater than 100 ms.

Service(?s) ∧ ObjectRoleHasSecurity(?s, ?x) ∧
swrlb:stringEqualIgnore-Case(?x,"1111") ∧

DataTypeRoleHasResponseTime(?s, ?y)→ swrlb:GreaterThan(?y,100ms).

A service with security setting 1111 and very low response time (such as less

than 10ms) is hard to achieve. These rules can also be seen as context constraints,

which define requirements.

We can conclude that in a contextualized Web service process, if a context

instance is generated at process run-time then

• This needs to be reasoned for consistency aspects based on the underlying

description logic of the ontology in order to check the validity of the context

instance.

• Context instances need to be checked with derived context rules. They are

SWRL-based rules implemented within the ontology in order to broaden

context information implicitly by introducing derived context deduced from

the generated context instances.

• Derived context needs further reasoning for consistency depending on the

requirements of the application.

These steps can be iteratively used at process run-time.

5.6 Case study

We consider some aspects from the example in figure 1.1 and illustrate different

aspects associated to operator calculus, composition and reasoning techniques.

136

We assume the Pay Confirmation Service invokes a Mobile Service or Email Service

based on the device context of the user.

Renaming operator. The post-condition attached to the context specification of

the Pay Confirmation Service needs to be renamed to make the specification consis-

tent with the context model ontology used at the Broker.

〈Σ, Φ〉|Σ′ = {hasConditionPost → hasPostCondition}

Restriction operator. The Security context of the Pay Confirmation Service is re-

stricted to the Integrity context.

〈Σ, Φ〉|Σ′ = {SecurityContext → IntegrityContext}

Refinement operator. We assume that the Pay Confirmation Service invokes a Mo-

bile Service or Email Service based on the device context of the user. We assume

the pay confirmation output is a MMS message and a user profile is defined in

the domain context. Here, the Pay Confirmation Service is using domain context

where services are composed, deployed and executed. A post-condition of the

Pay Confirmation Service needs to check the user device (defined in the user pro-

file) for the MMS feature. If the user device supports the MMS feature, then the

Mobile Serivce can be invoked. In here, the Refinement operator needs to process

relevant 〈Σ′, Φ′〉 defined in the domain context specification and mobile device

context specification while keeping the consistency to derive the MMS feature (for

example, if device is N95 which has the MMS feature). The explicit context is user

device N95, which can be found in the UserContext in the domain context and the

implicit context is MMS, which needs to be derived - described in section 5.5.

Σ′ = 〈{UserContext, DeviceContext, FeatureContext} ; {hasDevice, hasFeature}〉
Φ′ =

{
UserContext hasDevice→ DeviceContext, DeviceContext hasFeature→ FeatureContext

}

Intersection operator. The overall security of a process is the weakest security of

all constituent services. This can be achieved by applying the Intersection operator

with ∪+
LCD for context specifications attached to the three services. If we assume

137

the security of Billing Service, Banking Service and Pay Confirmation Service as 1100,

1111 and 1001 respectively,

The overall security of the process is [1100 ∪+
LCD1111 ∪+

LCD 1001] = [1000].

Union operator. If the costs of Billing Service, Banking Service and Pay Confir-

mation Service are given in the context specifications SCP1.Cost, SCP2.Cost and

SCP3.Cost attached to each service, then the process cost can be calculated by ap-

plying the Union operator with ∪+
ACC for context specifications. If SCP1.Cost=0.1,

SCP2.Cost=0.2 and SCP3.Cost=0.1, then the cost of the process is [0.1 ∪+
ACC 0.2

∪+
ACC 0.1] = [0.4].

Structural composition. The security context of the Banking Service is the struc-

tural composition of Integrity context, Authentication context, Confidentiality con-

text and Non-repudiation context as in section 4.2.4.

Security "�" { Integrity, Authentication, Confidentiality, Non-repudiation }

Sequential composition. Composing context specifications attached to Billing Ser-

vice, Banking Service can be helpful in dynamically composing a Pay Confirmation

Service, which does not violate the required process cost defined by the Broker.

Context derivation. We assume that the Pay Confirmation Service invokes a Mobile

Service or Email Service based on the device context of the user (if the user device

supports the MMS feature). That is, based on a user device (e.g., N95), the device

context (MMS) needs to be derived from the device ontology.

Consistency checking. The derived context from the device ontology (e.g., MMS

feature) needs to be consistent with the context model specification used at the

Broker, otherwise manipulation operators such as Renaming need to be applied.

Consistency checking is necessary at the semantic client (or broker), where the

service process is composed, deployed and executed.

138

5.7 Chapter summary

The context model ontology itself is not enough for context-aware Web service

applications and it is necessary to have context manipulation, context composi-

tion and context reasoning for context specifications, because context specifica-

tions need to be statically or dynamically adapted for dynamic requirements by

the software architects. This chapter makes precise the notion of context model

specifications and their semantics. We defined the service context profile, which

is an instance level context specification for a Web service. The context manipu-

lation operators are introduced for context specifications having service-level and

process-level perspectives. The dynamic service composition needs service-level

and process-level context compositions in a contextualized service process. We de-

tailed the context reasoning attached to contextualized service processes. Context

manipulation, composition and reasoning about context specifications support dy-

namic requirements validation monitoring described in chapter 6 and 7.

139

Chapter 6

Context constraints

Contents
6.1 Introduction . 140

6.2 Context constraints modeling . 143

6.2.1 Context model utilisation for constraints 143

6.2.2 Class model for context constraints modeling 144

6.2.3 Context constraints (CC) . 145

6.3 Context constraints generation . 149

6.3.1 Tool support . 149

6.3.2 ECVC generation process (ECVCGProcess) 151

6.3.3 ECVC generation algorithm (ECVCGAlgorithm) 152

6.3.4 ICVCs generation . 154

6.4 Case study - Context constraints generation 154

6.4.1 Tool support . 154

6.4.2 Case study . 155

6.5 Chapter summary . 160

6.1 Introduction

We modeled dynamic service context in a context model ontology in chapter 4.

We now generate context constraints in terms of dynamic service context to rep-

resent dynamic requirements attached to composition and execution of services

at process run-time. A requirement relevant to one dynamic aspect or combina-

tion of dynamic aspects is called a dynamic requirement. Dynamic requirements

are attached to service process run-time. We assume dynamic requirements are

140

captured from SLAs (Service-Level Agreements). A service-level agreement is a

formal definition of an agreement that exists between a service provider and a cus-

tomer [Verma 2004]. A service process has services combined from heterogenous

domains. A dynamic service process is always assumed to be a dynamically com-

posed service process in which services are combined at process run-time. The

context (defined environment) imposes constraints on the subsystem’s behavior

[Cheung 1996, Graf 1991]. The authors in [Cheung 1996, Graf 1991] define context

constraints as restrictions imposed by the environment on subsystem behavior. In

this thesis, context constraints (CC) are specified as assertions, which are restric-

tions imposed by the dynamic service context for dynamic requirements.

The context constraints generation from dynamic requirements is illustrated

in figure 6.1. WSDL defines an interface of a constituent service. The context con-

User

Broker

Provider

SLA SLA

Context Constraints
Generation

Dynamic
service context

Context
constraints

SCP/TC

Dynamic Requirements
Elicititation

Dynamic Requirements

Context Model
Ontology

WSDL

Figure 6.1: Dynamic requirements to context constraints

straints generation process has two inputs; dynamic requirements and dynamic

service context. Dynamic service contexts are specified in service context pro-

141

files (SCP), which are specified by the providers or transient context specifications

(TC). The derived context and monitored context are specified in TCs. The op-

erator calculus and context reasoning techniques described in chapter 5 can be

used to derive context aspects, which can be specified in TCs. SCP and TC are

instance-level specifications of the context model ontology. We assume, service-

level agreements (SLAs) are defined between user and broker, and between broker

and provider. Dynamic requirements are captured from SLAs at the broker by

the dynamic requirement elicitation process. The dynamic requirement elicitation

process is assumed to be an automated process, which reads SLAs and outputs

dynamic requirements. Context constraints generation process outputs context

constraints (CC).

Constraint representation modules can define constraints within ontologies,

such as in [Aggarwal 2004, Boukadi 2008]. However, defining dynamic require-

ments as context constraints within an ontology has major drawbacks as out-

lined in section 2.4.1. Context reasoning is more costly than constraints validation

against context specifications, which are small in sizes. In our context constraint

generation process, the context constraints are separated from the context model

ontology, while preserving the required ontology supported capabilities. Conse-

quently, context constraints need to be modeled preserving the useful features

of the context model ontology, a generation process is needed to generate con-

text constraints, the generation process needs to be defined in an algorithm and a

constraints implementation language is needed.

We explore context constraints having the objective of dynamic service con-

text validation at Web service process run-time. We describe context constraints

modeling in section 6.2. We describe context model utilisation and constraints

modeling using a class model in figure 6.3. In section 6.3, we detail context con-

straints generation including a generation process and an algorithm. The tool

support for constraint generation is also described in this section. In section 6.4,

142

we use a real world case study scenario to illustrate the applicability of context

constraints. Finally, we conclude the chapter in section 6.5, also presenting future

work.

6.2 Context constraints modeling

In this section, we describe context model utilisation and a class model for context

constraints modeling. Context constraints are generated from dynamic require-

ments. The authors in [Verma 2004] define what the customer can expect from the

provider, the obligations, and functional and quality of service properties in SLAs.

Our usage of SLAs is more specific. We assume dynamic requirements are cap-

tured from SLAs in terms of dynamic service context to define context constraints,

see figure 6.1.

6.2.1 Context model utilisation for constraints

We describe dynamic service context and the relation of dynamic service con-

text to client (for example, client specification) and provider (for example, service

specification) in figure 6.2.

Validation &
Monitoring

Context Contraints

Dynamic Requirements

Context Constraints
Generation

Service

platform

domain

Functional
maximum

QoS
maximum

Client

platform

domain

Functional
minimum

QoS
minimum

SLA

Figure 6.2: Context model utilisation for constraints generation

The context model ontology in chapter 4 provides conceptualized dynamic as-

143

pects, which can be used to define dynamically changing requirements in service

processes. Consequently, the context model specifications, their applications in the

form of service context profiles and operators on context specifications (in chapter

5) need to be supported at run-time through an integration with a service process

execution. Context specifications can be attached to client and service provider

sides. Service context profiles on the server-side define the provider specifications

about services. The service context profiles can be frequently updated. The client-

side specifications define the minimum requirements, whereas the provider-side

specifications define the maximum range of capabilities. The server and client-

side specifications are attached to service-level agreements (SLAs). Dynamic re-

quirements can be captured from SLAs. Dynamically, the client requirements

(minimum expectations) need to be validated against profile and transient con-

text, which are instance-level specifications of context model ontology in chapter

4. The corresponding constraints are generated, which we detail in this chapter.

6.2.2 Class model for context constraints modeling

The context model utilisation overview in figure 6.2 is detailed towards context

constraints modeling. The main concern is describing major constituents and

their relationships attached to context constraints. A class model for Web service

context constraints modeling is illustrated in figure 6.3.

Dynamic requirements attached to dynamic service context are the main con-

cerns for constraints modeling. For example, requirements defined in SLAs (server

and client-side specifications define service-level agreements (SLA)) in figure 6.2,

such as response time of a service needs to be less than 100 milliseconds, cost of

a service needs to be less than 0.2 USD, etc. Each service has a service context

profile, for example, provider-side service specifications in figure 6.2. A ser-

vice context profile characterises dynamic service contexts, which are formalised

in a context model ontology in chapter 4. Context constraints (CCs) are associ-

144

Service

1

1

ServiceContextProfile

SLA

1

0..*

«uses»

ContextModel

Dynamic requirement «uses»

«uses»

TransientContext

1

0..*

«uses»

«uses»Constraint

«uses»
ECVC

ICVC

DirectConstraint

MatchingConstraint

1

1..*

«uses»

Figure 6.3: A class model for context constraints modeling

ated with dynamic service contexts, which can be transient contexts or contexts

extracted from SCPs. A context constraint can be an explicit context validation

constraint (ECVC) or implicit context validation constraint (ICVC). The explicit

context validation constraints are further categorised into direct validation con-

straints and context matching constraints. We define and detail these constraints

in section 6.2.3.

6.2.3 Context constraints (CC)

Context constraints define dynamic requirements attached to service process exe-

cution time. Context categories can have implicit and explicit relationships, which

can be modelled in a service context model, chapter 4. A context category, which

is availabe in a SCP is called an explicit context category. A context category which

is implicitly connected to an explicit context category is called an implicit context

category. The explicit context can be validated using context specifications, but

implicit context validation needs context reasoning, such as device context and

145

device feature context in figure 1.1. We define two types of context constraints to

validate explicit and implicit contexts using different validation techniques.

• Explicit context validation constraints (ECVC)

• Implicit context validation constraints (ICVC)

ECVCs are defined to validate the explicit context in context specifications (e.g.,

SCP, TC). ICVCs are defined to validate the implicit context attached to context

specifications (e.g., TC). However, most of the dynamic requirements are attached

to explicit context.

Explicit Context validation constraints (ECVC)

The explicit context validation constraints work as assertions, which provide true

or false results at validation. A ECVC can be a direct validation constraint or a

context matching constraint. In a Web service process execution, an ECVC can

be defined as direct context instances validation against a pre-defined constraint

value (defined in SLAs) or context instances matching in two services. In both

cases, the constraint returns true or false. They are assertions (boolean expres-

sions).

Direct validation constraints. Direct validation constraints validate context in-

stances against pre-defined constraints agreed by service-level agreements (SLAs).

If a ECVC is of the form predicate, context, expression;

(Predicate, Context, φ)

then the ECVC is called a direct validation constraint. Here, the expression φ is

a pre-defined constraint value or a context instance. The predicate can be equal,

less, greater, same, lessOrEqual, greaterOrEqual, or notEqual as in section 6.3.1.

The pre-defined constraint values are defined in SLAs. For example, we define

a service cost based constraint for the illustration purpose. The cost of a service

can be in different currencies and different values. If cost of a service in GBP then

it should be less than or equal to 0.2, or if cost of a service in Euro then it should

146

be less than or equal to 0.3, or if cost of a service in USD then it should be less

than or equal to 0.4. The direct validation constraint can be defined as follows.

Functions: FCurrency(Service,CostContext) returns currency type of cost context,

FCost(x) returns cost of service x. Then the cost context constraint for a Web

service,

∀ x : Service.[

(equal, FCurrency(x, CostContext), ”GBP”) ⇒ (lessOrEqual, FCost(x), 0.2)

∨
(equal, FCurrency(x, CostContext), ”Euro”) ⇒ (lessOrEqual, FCost(x), 0.3)

∨
(equal, FCurrency(x, CostContext), ”USD”) ⇒ (lessOrEqual, FCost(x), 0.4)]

This constraint becomes true or false depending on the cost context of the

constituent services. That is, these constraints work as assertions at validation.

Context matching constraints. These constraints match context instances of two

services.

If a ECVC is of the form equal, context, context;

(equal, Service[i].Context[j], Service[i+1].Context[j])

then the ECVC is called a context matching constraint. Here, j and i define context

category and service identification, respectively.

Context matching constraints match context instances of one context category

but belong to two services. For example, an output context of one service may

be needed to match with an input context of another service. Currency context

of the output parameter of service xi needs to be matched with that of the input

parameter k of service xi+1.

Functions: FCurrencyContext(z) returns the currency context of parameter z, FOut-

put(x) returns the output parameter of service x, FInput(xk
i) returns the input pa-

rameter k of service xi.

The Input and Output context matching constraint,

147

∀ xi , xi+1 : Service.

[equal, FCurrencyContext(FOutput(xi)), FCurrencyContext(FInput(xk
i+1))]

This constraint matches context instances and outputs true or false at valida-

tion. When a constraint fails at validation, a failure report needs to be generated.

Implicit Context Validation Constraints (ICVC)

The context model ontology formalises both explicit and implicit relationships

between context categories. The implicit contexts can be derived based on these

relationships. In some situations, these implicit contexts attached to some require-

ments need to be validated at process runtime. These we define as implicit context

validation constraints.

ICVCs are bundled as reasoning services. For example, if an ICVC needs to

validate an implicit context from an explicit context, then a reasoning service,

which can derive implicit context instances, is needed. An ICVC can be bun-

dled with more than one reasoning service. For example, an ICVC is bundled

with a device feature reasoning service and a device connection reasoning ser-

vice, appendix C. The device feature reasoning service is used to validate any

given feature (e.g. MMS) in a given device (e.g. Mobile device NX). The device

connection reasoning service is used to validate any given feature (e.g. MMS)

in a given connection (Mobile connection). A context category can have implicit

relationships with other context categories and these implicit relationships need

to be implemented in reasoning services. That is an ICVC attached to a context

category is bundled with a set of reasoning services attached to implicit relation-

ships. We assume the required reasoning services are maintained at the broker.

The reasoning services can be developed as assertions (e.g., as in section 6.4.2). In

this work, we develop a collection of reasoning services to illustrate the needs of

context reasoning for real world case study scenarios, section 6.4.2.

148

6.3 Context constraints generation

The main focus of this section is defining a process for context constraints gen-

eration and proposing a language for defining context constraints. The context

constraints need to be defined in terms of dynamic service context aspects, which

are defined in the context model ontology so that they can be validated with

ontology-based context specifications and transient contexts within a service pro-

cess. A process (ECVCGProcess) and an algorithm (ECVCGAlgorithm) are pro-

posed to describe ECVC generation. ICVC generation is described using reasoning

services.

6.3.1 Tool support

An expressive constraint specification language is needed with low validation and

analysis cost, particularly a large constraint set demands formal analysis for con-

sistency checking to resolve contradicting constraints. The complexity of a spec-

ification language must not become an obstacle for constraints specification and

validation of processes against constraints [Ly 2008]. The core technologies used

in Web service frameworks, such as Web Service Description Language (WSDL),

Universal Description Discovery and Integration (UDDI), Business Process Execu-

tion Language (BPEL) [Jordan 2007], and Simple Object Access Protocol (SOAP)

are XML-based, hence XML-based constraints can bring consistency for service-

based applications. We use the Message Automation Workbench 1 as the ECVC

generation tool to generate CLiX-based (Constraint Language in XML) context

validation constraints 2 [Ahmed 2009]. OWL is the W3C standard for developing

ontologies and OWL-API is used to implement reasoning services, which validate

implicit context.

1http://www.messageautomation.com/
2http://clixml.sourceforge.net/

149

Constraint language in XML (CLiX)

XML (Extensible Markup Language) is used to structure, store and transport in-

formation [Bray 2008]. CLiX (Constraint Language in XML) is an XML-based con-

straint language with a high expressive power. CLiX is implementable, validatable

and compatible with other Web service technologies [Jungo 2007, Nentwich 2002].

CLiX combines XML, XPath and first order logic. CLiX has language elements

such as quantifiers (forall, exists), operators (and, or, not, iff, implies) and predi-

cates (equal,less, greater, same, lessOrEqual, greaterOrEqual, notEqual) [Jungo 2007,

Nentwich 2005, Dui 2003]. We implement ECVCs using these quantifiers, opera-

tors and predicates in sections 6.3.3 and 6.4.2. For example, the cost of a service

needs to be less than or equal to 0.2 GBP can be defined in CLiX as follows,

<?xml version="1.0" encoding="UTF-8"?>

<rules xsi:schemaLocation="http://www.clixml.org/clix/1.0 clix.xsd"

version="1.1" xmlns="http://www.clixml.org/clix/1.0"

xmlns:macro="http://www.clixml.org/clix/1.0/Macro"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<rule id="rule-1">

<forall var="service" in="/Context/Service">

<and>

<equal op1="$service/Cost/@currency" op2="GBP"/>

<lessOrEqual op1="$service/Cost" op2="0.2"/>

</and>

</forall>

</rule>

</rules>

The currency context of cost context is defined as ”/Cost/@currency” and the cost

context of a service is defined as ”service/Cost”.

Message Automation Workbench

The Message Automation Workbench can be used to define complex CLiX con-

straints. The Message Automation Workbench supports for creating, editing, and

150

validating constraints for data defined in XML. This workbench has features, such

as a graphical rule editor, an XPath editor with a recoding mode to automate rule

writing, a rule set editor to pick and mix rules, etc.

6.3.2 ECVC generation process (ECVCGProcess)

The ECVCGProcess in figure 6.4 describes ECVCs generation for dynamic re-

quirements. ECVCs can be attached to more than one context category. In this

Context Constraints
Generation

Dynamic
service context

Context
constraints

SCP/TCDynamic Requirements

Context Model
Ontology

Service Cost < 0.2 Euro

<owl:ObjectProperty rdf:about="#hasCurrencyContext">
<rdfs:range rdf:resource="#CurrencyContext"/>
<rdfs:domain rdf:resource="#CostContext"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasCostContext">
<rdfs:range rdf:resource="#CostContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<Service>
<CostContext>0.2</CostContext>
<CurrencyContext>Euro</CurrencyContext>

</Service>

<forall var="service" in="/Context/Service">
<and>
<equal op1="$service/CurrencyContext" op2='Euro'/>
<lessOrEqual op1="$service/CostContext" op2='0.2'/>
</and>
</forall>

< CLiXML >

< Message Automation
Workbench : Generation Tool >

Figure 6.4: Explicit Context validation constraints generation process (ECVCGProcess)

constraint generation, dynamic service contexts and dynamic requirements de-

fined in SLAs are inputs. Dynamic service contexts are captured from an SCP

or transient contexts (includes derived context), which are attached to the context

model ontology. The constraint generation process generates and outputs context

constraints in CLiX. We formalised the ECVC generation process in an algorithm,

see Algorithm 6.1. We use the Message Automation Workbench as the ECVC

generation tool.

151

6.3.3 ECVC generation algorithm (ECVCGAlgorithm)

We define an algorithm to describe the ECVC generation process, algorithm 6.1.

Algorithm 6.1 : Explicit context validation constraints generation algorithm (ECVCGAlgorithm)

Input : Process(P),ContextOntology(url)
Output : ExplicitContextValidationConstraint(ECVC)

1: CMO← getCMO(url)
2: SLA[]← getSLA(P)
3: SCP[]← getSCP(P, CMO)
4: DR[]← elicit-DR(SLA[])
5: for (each DR) do
6: scope← getScope(DR)
7: if (scope = SL) then
8: context[]← getContext(DR, SCP[])
9: predicate[]← getPredicate(DR)

10: constraintValue[]← getConstraintValue(DR)
11: ECVC← createContextConstraint(predicate[], context[], constraintValue[])
12: else if (scope = PL) then
13: context← getContext(DR, SCP[])
14: predicate← getPredicate(DR)
15: constraintValue← getConstraintValue(DR)
16: ECVC← createContextConstraint(predicate, context, constraintValue)
17: end if
18: end for

We treat service-level constraints and process-level constraints separately in

the algorithm. The abbreviations used in the algorithm are SLA: service-level

agreement, DR: dynamic requirement, P: service process, url: web link to the

context model ontology, CMO: context model ontology, SL: service-level, PL:

process-level, and SCP: service context profile. The method getCMO() returns an

instance of context model ontology, getSLA() returns SLAs attached to a process,

elicit-DR() returns DRs attached to SLAs. getScope() returns scope of a require-

ment, getSCP() returns SCPs of a process, getContext() returns contexts attached

to a requirement, getPredicate() returns predicates attached to a requirement, get-

ConstraintValue() returns constraint values defined in a requirement. The create-

ContextConstraint() returns validatable context constraints, which can be direct

constraints generated from createDirectConstraint() and matching constraints gen-

erated from createMatchingConstraint(). The methods createDirectConstraint() and

createMatchingConstraint() are built-in methods within createContextConstraint().

152

The behavior of createDirectConstraint() can be illustrated as pair-wise combinations,

< ⊗ >

< predicate , Context, φ >

< predicate , Context , φ >

< ⊗ >

The expression φ is a pre-defined constraint value or a context instance, and the

⊗ is an operator such as AND, OR and NOT as in section 6.3.1. The predicates,

which are used in the constraint language are detailed in section 6.3.1.

The behavior of createMatchingConstraint() can be illustrated as,

for all Context(i)

for all Context(j)

< equal, Instance(Context(i)), Instance(Context(j))>

The "equal" is a predicate defined in CLiX, section 6.3.1. Context(i) returns a

contextual concept (called context) defined in the context model ontology. In-

stance(Context) returns an instance of the context. A working example for these

two methods is illustrated in figure 6.5.

Service Level (Direct constraints): createDirectConstraint()
 predicate constraint

context
value predicate Context(value) instance

The cost of a service need to be less than or equal to 0.3 Euro
Input lessOrEqual Cost 0.3 equal Currency Euro

Output <and>
 <equal op1="$service/Cost/@currency" op2='Euro'/>
 <lessOrEqual op1="$service/Cost" op2='0.3'/>
</and>

Service Level (Matching constraints) : createMatchingConstraint()
 Context(i) Instance(i) Context(i+1) Instance(i+1)

The output context of service(k) is matched with an input context of service(k+1)
Input Currency USD Currency Euro

Output <forall var=”x” in=”service/Output/Context(i)”>
 <forall var=”y” in=“service/Input/Context(i+1)”>
 <equal op1=”$x/@currency” op2=”$y/@currency”>
 </forall>
</forall>

Process Level (Direct constraints) : createDirectConstraint()
 predicate constraint

context
value predicate Context(value) instance

The process response time need to be less than 1000 milliseconds
Input less ResposeTime 1000 equal Measures ms
Output <and>

 <equal op1="$process/ Measures" op2='ms'/>
 <less op1="$process/ResponseTime" op2='1000'/>
</and>

Figure 6.5: ECVC generation examples

153

The most important factor affecting the performance of an algorithm is nor-

mally the size of the input [Shaffer 1998]. For a given input size n (number of

dynamic requirements), the time T of the algorithm is a function of n, written

as T(n). For each requirement, this algorithm executes once. We can define ex-

ecution time, T(n) = kn where k is a real number and its value depends on the

constraint type. The time complexity of the algorithm is of order n, O(n), which

is acceptable.

6.3.4 ICVCs generation

In this thesis, we assume ICVCs use reasoning services, which can be dynami-

cally invoked within a context-aware service process at run-time when required.

The ontology web language (OWL) is used to conceptualise context aspects in a

context model ontology, chapter 4. The OWL-API alone with Web services tech-

nologies (section 6.3.1) are used to implement reasoning services. ICVCs do not

use the message automation workbench or CLiX, because those technologies are

not strong enough for implicit context validation.

6.4 Case study - Context constraints generation

In this section, we use case study scenarios to exemplify the ECVC generation

process and describe the ICVC implementation as context reasoning services.

6.4.1 Tool support

We implement the context model ontology using the protege 4.0.2 ontology editor.

We use OWL formalisations and the OWL API to implement reasoning services in

the NetBeans IDE 6.9.1 environment. Context validation constraints are generated

using CLiX syntax, section 6.3.1. We use the Message Automation Workbench

as the generation tool, section 6.3.1. At this stage, we manually generate context

154

constraints using above languages and tools.

6.4.2 Case study

We consider a scenario where a broker (semantic client) has requirements such as,

• Example 1: constituent services of a process need to satisfy service cost

requirements

• Example 2: context matching for input and output parameters of constituent

services

• Example 3: the service process dynamically decides sending results as a

mobile message (MMS message) or as an email. In the case of a mobile

message, it is necessary to check whether the user’s device supports the

MMS feature (context in outwards perspective in chapter 4)

These requirements need to be validated and monitored in a service process in-

stance at run-time. Consequently, the required CVCs need to be generated and

the reasoning services need to be implemented.

CLiX rule definition

We implement ECVCs as CLiX rules. We define CLiX rules in the following struc-

ture, including constraint failure report definition and constraint definition.

1 <rule id = " r1 ">

2 < f a i l u r e repor t d e f i n i t i o n >

3 < c o n s t r a i n t d e f i n i t i o n >

4 </rule >

Direct validation constraint

Example 1. Service cost requirement validation. The cost of a service can be de-

fined in a SCP as in section 5.2. The dynamic service context aspects, for example

155

cost context, are defined in a context model ontology as in section 4.3. A con-

text constraint needs to be generated for a service cost requirement in terms of

dynamic service context.

∀ x : Service.

[(equal, FCurrency(x, Cost), ”GBP”) ⇒ (lessOrEqual, FCost(x), 0.2)

∨
(equal, FCurrency(x, Cost), ”Euro”) ⇒ (lessOrEqual, FCost(x), 0.3)]

The inputs and outputs of the constraint generation process can be described as

follows. The input is a dynamic requirement captured from an SLA that defines a

service cost requirement. The output is a CLiX-based constraint, which is defined

in terms of dynamic service context.

Input:

<Service>
<Cost>

<Currency type="GBP">
<Predicate> lessThanOrEqual </Predicate>
<ConstraintValue> 0.2 </ConstraintValue>

</Currency>
</Cost>
<Cost>

<Currency type="Euro">
<Predicate> lessThanOrEqual </Predicate>
<ConstraintValue> 0.3 </ConstraintValue>

</Currency>
</Cost>

</Service>

Output: (CLiX-based constraint) The direct validation constraint is generated as,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <ru l e s x s i : schemaLocation =" ht tp :// www.clixml.org / c l i x /1 . 0 c l i x . x s d "

3 vers ion ="1 . 1 " xmlns =" ht tp :// www.clixml.org / c l i x /1 . 0 "

4 xmlns : macro=" ht tp :// www.clixml.org / c l i x /1 . 0 /Macro "

5 xmlns : x s i =" ht tp ://www.w3.org/2001/XMLSchema−i n s t ance ">

6

7 <rule id =" rule−1">

8

9 <report >%@=$se rv i c e /Cost%

10 %@=$se rv i c e /Cost/@currency%

156

11 </report >

12

13 < f o r a l l var =" se rv i c e " in ="/Context/Serv ice ">

14 <or>

15 <and>

16 <equal op1=" $se rv i c e /Cost/@currency " op2=" 'GBP ' "/>

17 <lessOrEqual op1=" $se rv i c e /Cost " op2="0 . 2 "/>

18 </and>

19 <and>

20 <equal op1=" $se rv i c e /Cost/@currency " op2=" ' Euro ' "/>

21 <lessOrEqual op1=" $se rv i c e " op2="0 . 3 "/>

22 </and>

23 </or>

24 </ f o r a l l >

25 </rule >

26

27 </rules >

Context matching constraint

Example 2. Currency context matching of the output parameter of Si with an

input parameter of Si+1.

∀ xi, xi+1 : Service.

[equal, FCurrencyContext(FOutput(xi)), FCurrencyContext(FInput(xk
i+1))]

The inputs and outputs of the constraints generation process can be described as

follows.
Input:

<Service>
<ID id=S(i)>

<Output>
<Context>Currency</Context>
<Instance>USD</Instance>

</Output>
</ID>
<ID id=S(i+1)>

<Input>
<Context>Currency</Context>
<Instance>GBP</Instance>

</Input>
</ID>

</Service>

157

Output: (CLiX-based constraint) The context matching constraint is generated as,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <ru l e s x s i : schemaLocation =" ht tp :// www.clixml.org / c l i x /1 . 0 c l i x . x s d "

3 vers ion ="1 . 1 " xmlns =" ht tp :// www.clixml.org / c l i x /1 . 0 "

4 xmlns : macro=" ht tp :// www.clixml.org / c l i x /1 . 0 /Macro "

5 xmlns : x s i =" ht tp ://www.w3.org/2001/XMLSchema−i n s t ance ">

6

7 <rule id ="MatchingRule−1">

8

9 <report >

10 <Invoke >

11 <CurrencyConversion >

12 <From> @=$x/@currency </From>

13 <To> @=$y/@currency </To>

14 </CurrencyConversion >

15 </Invoke >

16 </report >

17

18 < f o r a l l var ="x " in ="/Context/Serv ice /Output ">

19 < f o r a l l var ="y " in ="/Context/Serv ice /Input ">

20 <equal op1="$x/@currency " op2="$y/@currency "/>

21 </ f o r a l l >

22 </ f o r a l l >

23

24 </rule >

25

26 </rules >

Implicit context validation constraints

Implicit context validation constraints are implemented as a collection of context

reasoning services and can be available through a reasoning service registry. In

this work, each context reasoning service performs reasoning in a controlled envi-

ronment. For example, a reasoning service reasons for a given feature of a given

device, using a given ontology.

Example 3. A service process at a broker needs to send a process response as a

158

MMS message to a user. A user has agreed with a broker (SLA) to use a N95

mobile device for his communication. Then, an ICVC to validate whether the user

device supports the feature MMS is needed at the broker. The device context needs

to be determined to derive such an implicit relation. We assume such reasoning

services are implemented and registered in a reasoning service registry. The re-

quired reasoning service need to be discovered from reasoning service registry at

the broker.

Input (request): A service for reasoning and validate a device feature.

Output (response): End point of a reasoning service for the request.

A code excerpt of a reasoning service available in the reasoning service registry

for the above example can be illustrated as follows,

1 // Create the manager tha t we wi l l use to load o n t o l o g i e s .

2 OWLOntologyManager manager = OWLManager.createOWLOntologyManager () ;

3 // load an ontology

4 F i l e f i l e = new F i l e (" Uri−Ontology ") ;

5 OWLOntology ontology = manager.loadOntologyFromOntologyDocument (f i l e) ;

6

7 Se t c l a s s e s = on to logy .ge tC la s ses InS igna ture () ;

8 // s e l e c t device c l a s s defined in dClass [e . g . dClass = " MobileDevice "]

9 f o r (I t e r a t o r i t i n s = c l a s s e s . i t e r a t o r () ; i t i n s .hasNex t () ;) {

10 c = (OWLClass) i t i n s . n e x t () ;

11 i f (c.getNNF () . t o S t r i n g () . c o n t a i n s (dClass)) {

12 Set <OWLIndividual> ind iv idua l s = c . g e t I n d i v i du a l s (ontology) ;

13 // s e l e c t device in s t ance defined in dInstance [e . g . dInstance = "N95 "]

14 f o r (I t e r a t o r i t 2 = i n d i v i d u a l s . i t e r a t o r () ; i t 2 .ha sNex t () ;) {

15 ins = (OWLNamedIndividual) i t 2 . n e x t () ;

16 i f (i n s . t o S t r i n g () . c o n t a i n s (dInstance)) {

17 Set <OWLObjectPropertyExpression > props =

18 ins .ge tObjec tProper tyVa lues (ontology) . keySe t () ;

19 // s e l e c t required ro l e defined in dRole [e . g . dRole = " h a s F a c i l i t i e s "]

20 f o r (I t e r a t o r i t 3 = p r o p s . i t e r a t o r () ; i t 3 .ha sNex t () ;) {

21 Oprop = (OWLObjectProperty) i t 3 . n e x t () ;

22 i f (Oprop.toStr ing () . c o n t a i n s (" h a s F a c i l i t i e s ")) {

23 Se t <OWLIndividual> ins2 =

159

24 ins .ge tObjec tProper tyVa lues (Oprop , ontology) ;

25 //check fo r required fea tu re defined in dFeature

26 //[e . g . dFeature = "MMS"]

27 fo r (I t e r a t o r i t 4 = i n s 2 . i t e r a t o r () ; i t 4 .ha sNex t () ;) {

28 i f (i t 4 . n e x t () . t o S t r i n g () . c o n t a i n s (dFeature)) {

29 r e t = " t rue " ;

30 } e l s e {

31 r e t = " f a l s e " ;

32 }

33 }// fo r Feature

34 }// i f o b j e c t property

35 }// fo r o b j e c t property

36 }// i f indiv idual

37 }// fo r s e l e c t indiv idual

38 }// i f MobileDevice

39 }// fo r s e l e c t c l a s s

This code excerpt illustrates reasoning a given feature (e.g., MMS) of a given de-

vice (e.g., N95) from the context model ontology (e.g., Uri−Ontology). If the de-

vice has the MMS feature, then this reasoning service returns true. This reasoning

service is implemented as an assertion to validate an implicit context.

6.5 Chapter summary

Dynamic requirements need to be defined in terms of dynamic service context

so that they can be dynamically instrumented and validated within a service

process at process run-time. We define dynamic requirements as context con-

straints. Our concern is to separate out context constraints from the context model

ontology to provide flexibility and acceptable performance for instrumentation

and validation monitoring. The two types of constraints, explicit context vali-

dation constraints (ECVCs) and implicit context validation constraints (ICVCs)

preserve the required features of the context model ontology, such as shared

conceptualization, context reasoning, etc. We propose a process and an algo-

rithm for ECVCs generation, and a language for defining ECVCs. The constraint

160

generation process (ECVCGProcess) is defined in a ECVC generation algorithm

(ECVCGAlgorithm). As a proof of concept for the proposed process, algorithm

and language, we use the Message Automation Workbench to implement CLiX-

based constraints. CLiX is an XML-based constraint language, which is expressive,

implementable, validatable and compatible with other Web service technologies

[Jungo 2007, Nentwich 2002]. We implement ICVCs as reasoning services using

the OWL-API and propose a reasoning service registry as a possible solution to

select reasoning services.

161

Chapter 7

Instrumentation and validation
monitoring

Contents
7.1 Introduction . 162

7.1.1 Overview . 162
7.1.2 Overall architecture description 164

7.2 Context constraint configurator generation for ECVCs 167
7.2.1 Generating constraint sets 169
7.2.2 Selecting constraints (Constraint selector) 172
7.2.3 Configuring constraints (Configurator) 174

7.3 Process instrumentation and validation monitoring 175
7.3.1 Tool support . 175
7.3.2 Instrumentation and validation monitoring 176
7.3.3 Instrumentation and validation service (IVS) 177
7.3.4 Data collectors . 179
7.3.5 Discussion . 181

7.4 Case study . 182
7.5 Chapter summary . 187

7.1 Introduction

7.1.1 Overview

In this chapter, we present how a deployed Web service process is dynamically in-

strumented with context constraints (CCs) to perform constraints validation mon-

itoring at process run-time. Dynamic validation monitoring is defined as validation

162

monitoring at process run-time. Dynamic instrumentation is defined as instrumenta-

tion at process run-time

Service-based systems and requirements can frequently change at run-time

[Baresi 2010b], for example, service applications can bind to different services ac-

cording to the context in which they are executed and providers can modify or

improve their services. These aspects can hamper the correctness and quality

levels of service applications. The pre-deployment validations are inadequate for

service-oriented applications [Baresi 2005, Zhao 2007, Baresi 2010b, Baresi 2011] as

discussed in section 3.2.4. There are challenges to realise SOA to its full potential,

such as to ensure that the behavior of Web services is consistent with requirements

[Wang 2009c, Baresi 2011]. In [Moser 2008b, Moser 2008a], the authors propose a

tool for monitoring and dynamically adapting BPEL processes. Their monitoring

focuses on computing quality of service (QoS) data for various service selection

strategies to support dynamic service adaptation. However, these approaches do

not sufficiently address dynamic instrumentation with requirements for validation

monitoring at process run-time.

Dynamic requirements for a service process instance need to be monitored at

process runtime to identify violations or do further processing. For example, - Per-

formance, reliability and connectivity based requirements or settings frequently

change at process runtime. - Cost of a service can be in different currencies and

currency rates can change frequently. - The same process instance can be used

for different clients but with different sets of dynamic requirements (DRs). - An

execution time of a constituent service can determine the selection of the next con-

stituent service for a service process at process run-time, etc. An architecture and

techniques are necessary for dynamic requirements instrumentation and valida-

tion monitoring at process run-time. Business process flow defines the execution

sequence of services, which run across heterogeneous systems. On the other hand,

the constraint flow defines the validation sequence of dynamic requirements at-

163

tached to a service process. At the moment, service process execution engines

do not provide any other types of execution attached to a service process, such

as dynamic requirements validation. In this work, we propose a collaboration of

two independent engines for service process execution and dynamic requirements

validation, see figure 7.1.

In this chapter, we detail the overall architecture for context constraints instru-

mentation and validation monitoring in section 7.1.2. In section 7.2, we describe

the configurator generation attached to context constraints. Then, we detail the

process instrumentation and validation monitoring in section 7.3. The use of data

collectors for validation monitoring is also detailed. Finally, we describe a case

study scenario in section 7.4, to illustrate the applicability of the proposed ap-

proaches and techniques. The chapter is summarised at the end.

7.1.2 Overall architecture description

This section presents the overall architecture description for the management of

context constraints to facilitate dynamic instrumentation and validation monitor-

ing of context constraints attached to Web service processes. At the moment,

the most widely used Web service process definition language is BPEL (Business

Process Execution Language)[Alves 2006], which is an OASIS standard. How-

ever, BPEL provides limited support for dynamic instrumentation. The main sup-

ported mechanism is via assigning endpoints at run-time using dynamic partner

link constructs. The endpoints of member services need to be statically defined

at design-time and the service requester has to know the exact endpoint address

of a partner service. This does not conform to the basic principles of service

orientation [Erradi 2005]. The concept of dynamic instrumentation is not new.

The dynamic binding is applied for middleware technologies using WSFL (Web

Service Flow Language) [Karastoyanova 2005]. However, the corresponding sup-

port in Web service processes, in particular in BPEL, is not sufficiently addressed

164

[Karastoyanova 2005, Mosincat 2009].

The core idea behind the proposed approach is somewhat near to the dy-

namic execution of monitoring rules proposed in [Baresi 2005] and a proxy-based

approach for dynamic execution of services proposed in [Canfora 2008], but dif-

ferent in realization. We propose the overall architecture in figure 7.1 to address

the challenges described in section 7.1.1. The IVS (Instrumentation and validation

BPEL

Constituent
 Service

Pre
Validation

Post
Validation

Service
Providers

Data Collector
Providers

BPEL Engine

IVS

Validator
 Engine

Op(ECVC)

Op(ICVC)

Configurator

ICVC Profile Instance level
context

specifications
(SCP/TC)

Context
Model

Ontology

Reasoning
 Service

Figure 7.1: Dynamic instrumentation and validation monitoring architecture

service) is a process that is made available as a service, which uses a validator

engine to validate ECVC and the context model ontology to validate ICVC using

reasoning services. The BPEL engine is used to execute BPEL application pro-

cesses including IVS.

The IVS uses input from the constraints generation process. A configurator gen-

eration from context constraints can be illustrated as in figure 7.2.

Definition (Constraint set) Csetvp =
{

CCvp
1 , ..., CCvp

n
}

, where CC1 to CCn are con-

text constraints and vp is a validation point of a constraint set. Context con-

straints and constraint sets need to be generated and attached as pre-conditions

165

Configuring
Constraints
(Algo. 7.3)

Selecting
Constraints
(Algo. 7.2)

C Selector

Organizing
Constraints
(Algo. 7.1)

C Sets

Constraints
Generation
[Chapter 6]

Configurator

Figure 7.2: Context constraints to configurators

or post-conditions of services, which we call validation points. For example, vp1=

ServiceX-pre, vp2= ServiceX-post, etc.

Definition (Constraint selector) Cselector = {Cset1, ..., Csetn}, where Cset1 to Csetn

are constraint sets. A number of different constraint sets need to be selected for a

validation point by a software architect depending on requirements. For example,

due to performance considerations, not all constraints might be monitored at all

times.

Definition (Configurator) Con f igurator = {CSelector, {Cset1, ..., Csetn} , Con f igIn f o},
where CSelector is a constraint selector and Cset1 to Csetn are the constraint sets

that refers to the selector. Con f igIn f o is information required to configure the

validation engine. A configurator provides information about constraint sets, a

selector and Con f igIn f o to the validator engine. Moreover, configurators support

to configure the validator engine with different configuration settings at different

validation points, such as schema validation ON and OFF at different validation

points [Nentwich 2005].

Our proposed approach can dynamically manage context constraints indepen-

dently from the service process execution. In other words, service process exe-

cution and context constraints validation are two independent parallel processes.

We described constraint generation in detail in chapter 6. The instrumentation

and validation service (IVS) is used to implement the instrumentation function-

ality for an instrumented application process. IVS has two operations Op(ECVC)

and Op(ICVC) to support explicit context validation constraints (ECVCs) and im-

166

plicit context validation constraints (ICVCs). The IVS has a configurator, an ICVC

profile, and instance level context specifications, such as SCP, TC and monitored

context (chapter 5 and 6) as inputs, which enable instrumentation and validation

of ECVCs and ICVCs. We describe the configurator in detail in section 7.2. The

ICVC profile contains information about which reasoning function needs to be

invoked, for example, the end point information and soap message information

of a reasoning service.

We focus on dynamically instrumenting context constraints to a deployed ser-

vice process. Context constraints need to be managed based on dynamic re-

quirements to dynamically link them to a service process instance at validation

points. The validation points of context constraints are determined based on the

dynamic requirements. The proposed configurator, which is near to the idea in

[Spertus 2010], can be dynamically generated as described in figure 7.4. The con-

straint sets and selectors can be modified at process run-time to add or remove re-

quirements for validation. The configurators are passed to IVSs (Instrumentation

and Validation Service) as inputs at process run-time, which we detail in section

7.3. This configurator-based approach can be applied for ECVCs. The ICVCs are

instrumented to a service process using an operation called Op(ICVC) of IVC. The

Op(ICVC) enables dynamically invoking ICVCs, which are provided as reasoning

services. Most of the dynamic requirements can be defined as ECVCs, which are

XML-based constraints.

7.2 Context constraint configurator generation for ECVCs

Most of the context constraints are based on explicit context categories in context

specifications. Configurators can be used to combine ECVC sets and selectors at

process runtime. Constraints, constraint sets, constraint selectors, constraint con-

figurators and their relationships can be illustrated as in figure 7.3. A constraint

167

constraints

Constraint sets

Constraint
selectors

Constraint
configurators

Figure 7.3: Constraint sets, selectors and configurators

set contains ECVCs. A constraint selector contains constraint sets in validation

order assigned by an architect. A configurator contains a selector, constraint sets

and configuration information for the validation engine.

The proposed configurator generation is a three step process, which is illus-

trated in figure 7.4. This can be considered as a platform independent software

Generating Constraints
(ECVC – Chapter 6)

Constraints

Constraint Sets

Constraint Selector

Configurator

Organizing Constraints
(Algorithm 7.2)

Selecting Constraints
(Algorithm 7.3)

Configuring Constraints
(Algorithm 7.4)

Figure 7.4: Configurator generation process

168

component for dynamic instrumentation and validation monitoring of context

constraints.

The ECVCs are generated at the semantic client (or broker), see Chapter 6.

Firstly, constraint sets are generated from ECVCs based on a criteria decided by a

software architect, such as based on major context categories, validation points of

services or combination of both. For example, gather quality of service constraints

attached to one service and one validation point in one set. One service can

have two validation points for its pre and post conditions. Secondly, a constraint

selector is generated to select different constraint sets attached to one validation

point of a service process. Thirdly, we generate configurators. Two configurators

are needed for each service in a deployed service process, to support pre-condition

validation and post-condition validation. A configurator has a constraint selector,

constraint sets and configuration information for the validator engine.

7.2.1 Generating constraint sets

Dynamic requirements in a service process need to be validated before invok-

ing constituent services and after invoking constituent services at process run-

time. That is, the constituent services in a service process need pre-condition

validation before invoking services and post-condition validation after invoking

services at process run-time. Dynamic requirements need to be defined and at-

tached to pre-conditions or post-conditions of services, which we call validation

points of constituent services. Each constituent service can have more than one

pre-conditions and (or) post-conditions attached to dynamic requirements, for ex-

ample, requirements related to financial aspects of services, requirements related

to security aspects of services, requirements related to syntax aspects of services,

requirements related to domain aspects of services, etc. Therefore, constraints

need to be arranged in constraint sets for each service in a process instance. If

there are pre and post-conditions available for a constituent service, then there

169

should be at least two constraint sets available. Moreover, dynamic requirements

can be changed at process run-time so that constraints in constraint sets need to

be updated accordingly at process run-time.

Constraints are categorized as logical constraints, if-then constraints and con-

trol constraints focusing on service selection in [Karakoc 2009]. Logical constraints

are any logical expression on numerical or string values (e.g. a user can define

a constraint that the total cost of a complete travel plan should not be more than

2500 Euro), if-then constraints define the structure of a business rule (e.g. if Ho-

tel.star ≤ 4 then Hotel.cost ≤ 100 Euro), and control constraints are the type of

constraints that are directly specified on services (e.g. if a Web service interface

WT1 belongs to a Web service W1, then the Web service interface WT2 must be-

long to the same/different Web service - special constructs, such as same/different

are used in control constraints). In [Kim 2004], constraints are classified in detail

to simplify complex constraints found in business process specification schemas.

However our focus is on categorising constraints relevant to the constraint valida-

tion points of a process instance. Which constraint to validate at which validation

point of a process instance needs to determine constraint sets, that is determined

based on the dynamic requirement at the semantic client (or broker). For example,

the cost of a service needs to be less than 0.2 USD, which needs to be applied as a

pre-condition for all constituent services.

Constraint sets combine multiple constraints for validation monitoring. We

propose an algorithm to formalise the constraint set generation process, Algo-

rithm 7.2. This constraint sets generation is based on context constraints and their

validation points. The input of the algorithm is context constraints attached to

a process instance and output is constraint sets attached to pre-conditions and

post-conditions of constituent services of the process instance. That is, it does

separation of context constraints into pre-condition sets and post-condition sets of

constituent services.

170

Algorithm 7.2 Constraint sets generation
Input : CC[]
Output : Cset[]

1: for (each CC) do
2: scope← getScope(CC)
3: if (scope = SL) then
4: SID← getSID(CC)
5: CON ← getCondition(SID,CC)
6: Cset← CreateAmendConstraintSet(SID,CON)
7: {
8: if (CsetCON

SID = NULL) then
9: initialise (CsetCON

SID)
10: CsetCON

SID = CsetCON
SID ∧ CC

11: else
12: CsetCON

SID = CsetCON
SID ∧ CC

13: end if
14: }
15: else if (scope = PL) then
16: VP← getVP(CC)
17: Cset← CreateAmendConstraintSet(VP)
18: {
19: if (CsetVP = NULL) then
20: initialise (CsetVP)
21: CsetVP = CsetVP ∧ CC
22: else
23: CsetVP = CsetVP ∧ CC
24: end if
25: }
26: end if
27: end for

We use the terms CC for ECVCs, SID for service identification, VP for con-

straint validation point, CON for pre or post-conditions, SL for service-level, PL

for process-level, and Cset for constraint set. Each context constraint has valida-

tion point information about the constituent service that it is attached to either

as a pre-condition or post-condition. The method getScope(CC) returns the

scope (SL or PL) of the constraint, getSID(CC) returns the service identifica-

tion of the constraint, getVP(CC) returns the validation point of the constraint,

getCondition() returns the pre or post-condition status of a context constraint

relevant to a service and CreateAmendConstraintSet() adds a new constraint

either to create a new constraint set or amend an available constraint set. The

method initialise() is used to initialise a constraint set and set the validation

point. The priorities of constraints within a constraint set are not considered in

171

this work. This algorithm will not proceed if there are no context constraints. This

algorithm executes on a per constraint basis and n times for n context constraints.

Therefore, the time complexity of the algorithm is of order n, O(n).

We implement constraint sets in XML, so that we can change them dynami-

cally and they are compatible with any platform. A constraint set only has a set

of links to constraints, so that new constraints can easily be included and unnec-

essary constraints can easily be identified and removed from a constraint set. The

software architect is responsible for identifying and removing constraints based

on requirements. A constraint set can have only necessary constraints.

7.2.2 Selecting constraints (Constraint selector)

A constraint selector contains information about which constraint sets to vali-

date at which validation point. This is similar to the idea of a rule selector in

[Lunteren 2004]. A Web service application needs to have the flexibility to dy-

namically change the instrumentation of requirements. Consequently, context

constraints need to be selected at process run-time based on dynamic require-

ments. Our concern of constraint selection is selecting sets of constraints based

on their validation points focusing constraints validation monitoring at process

run-time.

We described constraint set generation in section 7.2.1. Context constraints

can have service-level scope and process-level scope, therefore we define them as

service-level constraints and process-level constraints - local constraints and global

constraints in [Rosenberg 2010]. Service-level constraints can be pre-condition fo-

cused constraints or post-condition focused constraints. A service can have more

than one pre-condition focused or post-condition focused constraint sets. Some

constraint sets may not need to be validated in some circumstances, such as high

security may be not needed all the time. We generate constraint selectors for each

pre and post-condition relevant to constituent services and process-level valida-

172

tion points in a deployed service process. We define the process of constraint

selectors generation in algorithm 7.3. The input of the algorithm is constraint

sets attached to a process instance and the output is a set of selectors attached to

various validation points of the process instance.

Algorithm 7.3 Constraint selector generation
Input : Cset[]
Output : Cselector[]

1: initialise {Cselector}
2: for (each Cset) do
3: scope← getScope(Cset)
4: if (scope = SL) then
5: SID← getConstituentService(Cset)
6: CON← getConditionStatus(Cset)
7: Cselector← createAmendSelector(Cset,SID,CON)
8: {
9: if (CselectorCON

SID = NULL) then
10: edit Cselector to CselectorCON

SID
11: CselectorCON

SID = CselectorCON
SID ∧ Cset

12: else
13: CselectorCON

SID = CselectorCON
SID ∧ Cset

14: end if
15: }
16: else if (scope = PL) then
17: VP← getVP(Cset)
18: Cselector← createAmendSelector(VP)
19: {
20: if (CselectorVP = NULL) then
21: edit Cselector to CselectorVP

22: CselectorVP = CselectorVP ∧ Cset
23: else
24: CselectorVP = CselectorVP ∧ Cset
25: end if
26: }
27: end if
28: end for

The getConstituentService(Cset) method returns a constituent service

id related to the Cset. The getConditionStatus(Cset) method returns a pre-

condition or post-condition status of a Cset. The methods createAmendSelect-

or(Cset,SID,CON), and createAmendSelector(VP) either creates or amends

a constraint selector. The operator ∧ is used to add constraint sets to a Cselector.

The algorithm of constraint selector generation will not proceed if there are no

constraint sets. This algorithm executes once for each constraint set and n times

for n constraint sets, therefore, the time complexity of the algorithm is of order n,

173

O(n).

The constraint selector has information about which constraint to be selected

for validation. The constraint selector is independent from the Web service process

instance and enables dynamic constraint selection at process run-time. We define

constraint selectors in XML as before.

7.2.3 Configuring constraints (Configurator)

A configurator contains information about which constraint selector is used at

which validation point, information about the constituent constraint sets attached

to each selector and configuration information (Con f igIn f o) as information to

the validator engine, see section 7.1.2. It is necessary for a configurator to com-

bine a selector, constraint sets and configuration information so that dynamically

selected constraints can be validated using a validator at a validation point. The

configurator needs to be dynamically determined based on dynamic requirements

at service process run-time. A service process can be executed on heterogeneous

platforms. Therefore, the implementation of a configurator needs to be platform

independent. The configurator generation process for each constraint selector is

defined in algorithm 7.4. The input of this algorithm is a constraint selector and

Algorithm 7.4 The configurator generation
Input : CSelector

Output : Con f igurator

1: if (CSelector!= NULL) then

2: Con f igIn f o← getConfigInfo(CSelector)

3: initiate Con f igurator with Con f igIn f o

4: Cset[]← readConstraintSets(CSelector)

5: Con f igurator← addSelector(Con f igurator, CSelector)

6: Con f igurator← addConstraintSet(Con f igurator, Cset[])
7: end if

the output is a configurator consisting of a reference to the selector, constraint

sets selected by the selector and configuration information. We assume our con-

figurator has a default template, which needs to be initialised with configura-

174

tion information (Con f igIn f o). The method getConfigInfo(CSelector) returns

Con f igIn f o required for the validator engine to validate constraints selected by

the given CSelector. The method readConstraintSets(CSelector) reads a se-

lector and outputs an array of constraint sets. The method addSelector(Con f i-

gurator,CSelector) adds the selector to the configurator and addConstraintSe-

t(Con f igurator, Cset[]) adds each constraint set to the configurator.

7.3 Process instrumentation and validation monitoring

Instrumentation is the most widely used monitoring mechanism [Wang 2009c].

The authors in [Wang 2009c] introduce an online monitoring approach for Web

service requirements, where monitoring code is embedded inside the target code.

Process instrumentation with monitoring rules before deployment is proposed

through source code weaving in [Baresi 2004, Baresi 2010b], in which a change in

a monitoring code needs re-deploying the whole process. An aspect-oriented ex-

tension for monitoring a BPEL process according to certain QoS criteria to replace

existing partner services is proposed in [Moser 2008a]. The Kieker framework

monitors control flows of applications and response times of method executions

[Hoorn 2009, Ehlers 2011]. However, more work is still necesary to address dy-

namic instrumentation of context constraints to a deployed service process in-

stance for validation monitoring of dynamic requirements at process run-time.

The dynamic instrumentation and validation monitoring of ECVCs and ICVCs is

the concern.

7.3.1 Tool support

We use WS-BPEL (Web Service Business Process Execution Language) [Alves 2006]

to define Web service processes, the xlinkit validator engine for constraints val-

idation [Nentwich 2002], and Java Web service technology for data collectors,

175

reasoning services implementation using OWL API1 and their instrumentation.

WS-BPEL [Alves 2006] is the de-facto standard for service process modeling. WS-

BPEL provides limited support for run-time binding via assigning endpoints at

run-time using dynamic partner link constructs. A dynamic partner link needs

a re-assigning service of the same interface. For simplicity, sometimes we use

the term BPEL for WS-BPEL. The core of the xlinkit validator functionality is

quite simple. The xlinkit is given a set of XML resources and a set of rules in

CLiX that relate the content of those XML resources for validation. The rules ex-

press consistency constraints across the XML resource elements [Nentwich 2002,

Dui 2003, Nentwich 2005]. The CLiXML constraints, constraint sets, constraint

selectors and constraint configurators can be implemented using the Message Au-

tomation Workbench, see chapter 6.

7.3.2 Instrumentation and validation monitoring

The context constraints instrumentation and validation monitoring architecture

in figure 7.1 facilitates dynamic instrumentation of context constraints using the

IVS(Instrumentation and Validation Service). In this architecture, for ECVCs, the

configurators are dynamically bound to explicit context validation constraints and

passed to the IVS for run-time validation. The configurators (e.g., config.xml) and

dynamic service context (e.g., context instances) are provided as inputs for the

IVS. The IVS passes these configurator and dynamic service contexts to a valida-

tion engine for constraint validation and outputs validation results accordingly.

A service process is executed in a process engine, for example, a BPEL engine,

and constraints are validated in a validator engine, for example, the xlinkit val-

idator engine2. The validation results are recorded for monitoring at the semantic

client (or broker). For ICVCs, a ICVC profile, which has end-points of reasoning

services is passed to the IVS for deriving implicit context or validating implicit

1http://owlapi.sourceforge.net/index.html
2http://www.messageautomation.com/

176

context based on explicit context using context model ontology reasoning. The

validation reports are recorded in a logging repository, which supports the vali-

dation monitoring process.

7.3.3 Instrumentation and validation service (IVS)

The IVS is used to provide the instrumentation for a service process with con-

text constraints (CC). The IVC is bound to the pre and post conditions of con-

stituent services. Our IVS has two operations, OperationValidation and

OperationReasoningInvoke. OperationValidation is used for the instru-

mentation of ECVCs and OperationReasoningInvoke is used for the instru-

mentation of ICVCs for validation monitoring. The dynamic binding of the IVS

for the pre and post conditions is decided based on validation requirements of

constraints.

Process instrumentation with ECVCs (OperationValidation)

Here we describe our techniques for instrumenting a deployed service process

with ECVCs using the OperationValidation of an IVS. Each constituent ser-

vice can be attached to a pre and post IVS as shown in figure 7.1. An abstract view

of a constraints instrumented service process is illustrated in figure 7.5. Constraint

S1

S2 S3

S4

S5

Figure 7.5: An abstract view of a constraints instrumented process

177

sets are described in constraint tables, selected by a constraint selector.

OperationValidation has two inputs, such as the configurator, which is

the bridge between service process and constraints as described in section 7.2.3

and the dynamic service context. The configurator is dynamically attached to

constraints and constraint selectors, facilitating dynamic binding of ECVCs. The

constraints selector enables dynamic selection of ECVCs for validation at pro-

cess run-time. OperationValidation of the IVS is responsible for validat-

ing ECVCs as shown in Appendix C. The interface definition of the operation

OperationValidation is,

1 Inputs :

2 Dynamic se rv i c e context

3 Configurator

4

5 Task :

6 1 . I n i t i a l i s e the va l ida to r engine

7 2 . Read c o n s t r a i n t s

8 3 . Read dynamic se rv i c e context

9 4 . Val idate c o n s t r a i n t s aga ins t dynamic se rv i c e context

10

11 Output :

12 Boolean [TRUE/FALSE]

This approach enriches dynamic instrumentation of requirements with a de-

ployed process instance. It is a flexible approach for instrumentation and vali-

dation monitoring of dynamic requirements within a service process at process

run-time.

Process instrumentation with ICVCs (OperationReasoningInvoke)

OperationReasoningInvoke is used for instrumenting and invoking reason-

ing services. We implemented this operation as shown in Appendix C. The in-

terface definition of the operation OperationReasoningInvoke for reasoning

178

about a specific property is,

1 Inputs :

2 Parameter Name

3 Parameter Value

4 Property

5 Uri_Ontology

6

7 Tasks :

8 1 . Read a ICVC p r o f i l e r e l evan t to the Parameter Name and Property

9 2 . S e l e c t a r e l a t ed reasoning se rv i c e from the ICVC p r o f i l e

10 3 . Create a SOAP message inc luding the reasoning fea tu re and Uri_Ontology.

11 4 . Invoke the reasoning se rv i c e operat ion , which i s defined in the ICVC p r o f i l e

12

13 Output :

14 Boolean [TRUE/FALSE]

We implemented this operation in a pre-defined setting. In this setting, each pa-

rameter name (e.g. MobileDevice, Connection) and each property (e.g. Message,

Data) has a specific profile (e.g. Mobile device and Message has one profile, Con-

nection and Data has one profile). The required reasoning service information

is defined in a profile, such as the endpoint, service name, port name and soap

message details. In this approach, various profiles enable instrumenting various

reasoning services through the operation OperationReasoningInvoke of the

IVS. The operation OperationReasoningInvoke of IVS works as an adapter to

connect reasoning services. This is a complete service-based approach to dynam-

ically invoke ICVCs.

7.3.4 Data collectors

Some context constraints need the support of data collectors for their validation.

In our dynamic instrumentation and validation approach, context instances can

be generated and derived at process run-time, which we call transient context

179

instances (TCI). For example, new context instances can be derived at context

reasoning-time, run-time context instances (such as response time, availability)

can only be measured at process run-time, etc. These TCIs can be necessary com-

ponents for ECVCs and ICVCs, section 6.1. In this approach, we use data collec-

tors to facilitate TCIs for ECVCs and ICVCs. In our approach, the data collector

directives (meters) are provided for metering in a service process. Data collectors

(for metering) are defined and provided as services as shown in Appendix C.

An abstract service process is instrumented with data collector directives, for

example, meters to record the time when a service starts execution and when a

service outputs a response, and data collectors as shown in figure 7.6. If a service

BPEL

Data Collector
Directive

Data Collector
Directive

Service A Service
 Providers

DataCollector

Data Collector
Provider

Figure 7.6: Data collector directives and data collectors

fails at process run-time, a new service can be dynamically combined. However,

the data collector directives will not change and they record information relevant

to the new service, and data collectors can be used to collect recorded data. The

data collector directives and data collectors can be typed by context category, for

example, data collector directives and a data collector for the response time con-

text.

However, the instrumentation of data collectors has a limitation, which is

180

that data collector directives and data collectors are not instrumented dynami-

cally and only instrumented with an abstract service process before deployment.

The authors in [Baresi 2005] propose attaching monitoring rules with a service

process before deployment. The run-time instrumentation of data collector direc-

tives and data collectors is necessary for service-based applications [Baresi 2010a,

Baresi 2011].

7.3.5 Discussion

Software monitoring involves obtaining information relating to the state, behav-

ior, and environment of a software system at run-time, so as to deal with potential

deviations of system behavior from requirements at the earliest possible time.

Monitoring is usually carried out in parallel with the system’s execution, without

interrupting its operation [Wang 2009c]. The main concern of our monitoring pro-

cess is collect and monitor context instances and constraint validations at process

run-time. We propose a data collector directives based approach to collect tran-

sient context instances as shown in section 7.3.4, and a logging-based approach,

which generates records about successes and failures of constraint validations to

support validation monitoring.

In the proposed approach, the constraint sets, constraint selectors and config-

urators are XML-based. The priorities of constraint sets within selectors are not

considered in this approach, which is a possible extension. For simplicity, ECVCs,

configurators and selectors are held in file folders at the semantic client (or bro-

ker). Databases can also be used for a constraint repository as in [Medjahed 2007].

This monitoring process ensures real time context instances, reports on constraint

violations and ensures backward compatibility. We equiped IVSs with logs gen-

eration to support constraints validation monitoring. These logs can be used for

administrative purposes. However, developing a complete monitoring framework

is out of our scope in this thesis.

181

7.4 Case study

In this section, we describe an implementation of a case study scenario to illustrate

the definitions introduced in section 7.2, and the process instrumentation and

validation monitoring introduced in section 7.3. The tools described in section

7.3.1 are used for the implementation. The complete implementation of the case

study is described in Appendix C.

Case study. We consider a simple business process, which has a Payment servi-

ce and a Payment confirmation service. The Payment confirmation

service can be a Mobile service or an Email service. We assume that

there is more than one service available for a single task and the required services

can be combined based on requirements at process run-time. The requirements

for a Payment service are that the cost of the service needs to be less than 0.3

Euro, the connectivity strength of the service needs to be greater than 2 Mbps

and the response time of the service needs to be less than 200 ms. At process

run-time, these requirements or settings can change (for example, currency rates

can change, connectivity strength changes over time, etc.) and need to be moni-

tored. The payment confirmation service can be a Mobile service or an Email

service, decided based on the response time of the Payment service (if re-

sponse time is less than 100 ms, then an Email service is composed, if not,

a Mobile service is composed). In this scenario, a mobile message is a MMS

message, so that it is necessary to check whether the user’s device supports MMS

messaging. If the user’s device does not support MMS messaging then an Email

service is used. The abstract view of the case study design can be viewed in

figure 7.7.

Constraint sets (Rule sets).

The ECVCs need to be generated and organised in constraint sets, and im-

plemented as rule sets. The rule sets are collections of rules, defined in an XML

182

PaymentService

MobileService EmailService

If

If

Cost < 0.3 EuroConnectivity > 2Mbps

ResponseTime < 200 ms

ResponseTime < 100 ms

Feature = MMS

Figure 7.7: Abstract view of payment confirmation case study design

template with the extension ruleset. The rule sets have advantages, such as com-

bining multiple rule files for validation without having to physically aggregate

them, composing big sets of rules by combining other rule sets in a hierarchical

manner, etc. We implement constraints as rules in CLiXML syntax.

We implement the cost constraint in costContext.clix, connectivity constraint

in connectivityContext.clix, and response time constraint in responseTimeCon-

text.clix. The cost and connectivity of the Payment service are pre-validation

constraints and the response time of the Payment service is a post-validation

constraint.

We implement a constraint set for pre-conditions attached to the Payment service

using the Message Automation Workbench as PreCon-PaymentService.ruleset,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <RuleSet

3 id ="PreCon−PaymentService " >

4

5 <RuleF i le hre f =" c o s t C o n t e x t . c l i x "/>

6 <RuleF i le hre f =" c o n n e c t i v i t y C o n t e x t . c l i x "/>

7

8 </RuleSet >

183

We implement a constraint set for post-conditions attached to the Payment service

using the Message Automation Workbench as PostCon-PaymentService.ruleset,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <RuleSet

3 id ="PostCon−PaymentService " >

4

5 <RuleF i le hre f =" responseTimeContext . c l ix "/>

6

7 </RuleSet >

Constraint selector (Rule selector).

We implement a constraint selector as a rule selector that contains information

about which rules to select at validation. The rule selector generation is indepen-

dent from the Web service process. The Payment service needs two selectors for

pre-condition and post-condition validations.

We implement a selector for pre-condition validation of the Payment service as

PreCon-PaymentService.mavselector using the Message Automation Workbench,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 < s e l e c t o r : S e l e c t o r >

3

4 < s e l e c t o r : RuleSet id ="PreCon−PaymentService "/>

5

6 </ s e l e c t o r : S e l e c t o r >

We implement a selector for post-condition validation of Payment service as

PostCon-PaymentService.mavselector using the Message Automation Workbench,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 < s e l e c t o r : S e l e c t o r >

3

4 < s e l e c t o r : RuleSet id ="PostCon−PaymentService "/>

5

6 </ s e l e c t o r : S e l e c t o r >

Configurator.

We implement a configurator to comply with the Message Automation API.

The configurator is implemented in a configuration file, which is an XML template

184

that contains information about how the Message Automation API will react when

validating context constraints. The rule validation can be set ON or OFF. The rule

selectors and rule sets are attached to a configuration file. In this case study, we

implement two configuration files for the Payment service for its pre-condition

and post-condition validations.

We implement a configurator for pre-conditions validation attached to the Payment

service using the Message Automation Workbench as PreCon-PaymentService.

mavconfig,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <config >

3 <rules >

4 <ruleVal idat ion >ON</ruleVal idat ion >

5 < s e l e c t o r >PreCon−PaymentService.mavselector </ s e l e c t o r >

6 <ruleSet >PreCon−PaymentServ ice . ru lese t </ruleSet >

7 </rules >

8 </config >

We implement a configurator for post-conditions validation attached to the Payment

service using the Message Automation Workbench as PostCon-PaymentService.

mavconfig,

1 <?xml vers ion ="1 . 0 " encoding ="UTF−8"?>

2 <config >

3 <rules >

4 <ruleVal idat ion >on</ruleVal idat ion >

5 < s e l e c t o r >PostCon−PaymentService.mavselector </ s e l e c t o r >

6 <ruleSet >PostCon−PaymentServ ice . ru lese t </ruleSet >

7 </rules >

8 </config >

Data collector.

The data collectors collect transient context to enrich the context space of the

service process at process run-time. We implement data collectors as services,

which collect data based on data collector directives. In this case study, data collec-

tor directives are attached before and after the invocation of Payment service

to collect service response time. Data collector invokes after the Payment service

185

but before executing the post-conditions of the Payment service. The data col-

lector provides the response time in ms to the context space of the service process

as,

1 <Context >

2 <RuntimeContext >

3 <ResponseTime> 120 </ResponseTime>

4 </RuntimeContext >

5 </Context >

The complete implementation of the data collector service is shown in Ap-

pendix C.

IVS for ICVCs.

In this case study, we need dynamic instrumentation of a context reasoning

service to reason about whether the user device supports MMS messaging. We

describe a reasoning service, which is an implicit context validation constraint

in chapter 6 that needs to be dynamically invoked through an IVS attached as a

pre-condition to the Mobile service. The reasoning service is invoked through

the operationReasoningInvoke of the IVS. The complete implementation is

shown in Appendix C.

IVS for ECVCs.

In this case study, two configuration files are needed for pre-condition and

post-condition validation of the Payment service. The Payment service is

attached to one IVS for pre-condition validation and post-condition validation

having different inputs. One IVS with different inputs can be used for all ECVC

validations. The OperationValidation of IVS is used for ECVC validation.

The implementation is shown in Appendix C.

186

7.5 Chapter summary

Dynamic instrumentation of requirements to a deployed service process for their

run-time validation monitoring is still not appropriately addressed in the litera-

ture. In this chapter, we proposed a service-based approach for context constraint

instrumentation and validation monitoring at process run-time. We identified con-

text constraints as ECVCs and ICVCs and used the IVS to dynamically instrument

them with a deployed process instance. We illustrated an architecture to dynam-

ically instrument ECVCs and ICVCs using the IVS. The ECVCs are organised in

constraint sets, selectors, and configurators. We introduced algorithms to define

the generation process of constraint sets, selectors and configurators. A configu-

rator is attached to a selector and constraint sets and the IVS is used for validation

monitoring of dynamic requirements. This approach is a flexible approach for

instrumentation and validation monitoring of dynamic requirements within a ser-

vice process at process run-time. We implemented ICVCs as reasoning services

and managed dynamic instrumentation of ICVCs in a pre-defined setting. This is

a complete service-based approach to dynamically invoke context reasoning ser-

vices. We instrument data collector directives and data collectors in the abstract

process-level, but do not address dynamic instrumentation of them in this thesis.

Finally, we described a case study scenario to illustrate the applicability and im-

plementation of all these introduced concepts. The complete implementation is

illustrated in Appendix C.

187

Chapter 8

Evaluation

Contents
8.1 Introduction . 189

8.1.1 Aims . 189

8.1.2 Evaluation strategy . 190

8.2 Context model ontology . 191

8.2.1 Overview . 191

8.2.2 Case study based evaluation 191

8.2.3 Discussion : Case study based evaluation 195

8.2.4 Analysis of expert opinions : Questions and answers . . . 196

8.2.5 Analysis of expert opinions : Results and discussion . . . 198

8.2.6 Summary and Discussion 205

8.3 Context manipulation and composition 206

8.3.1 Overview . 206

8.3.2 Validity : Case study based empirical evaluation 206

8.3.3 Discussion . 209

8.4 Context constraints generation . 209

8.4.1 Overview . 209

8.4.2 Performance : Analytical evaluation 210

8.4.3 Discussion . 211

8.5 Constraints instrumentation and validation monitoring 211

8.5.1 Overview . 211

8.5.2 Performance : Analytical evaluation 212

8.5.3 Performance : Experimental evaluation 215

8.5.4 Tool support and discussion 223

8.6 Threats to validity . 224

8.6.1 Empirical methods . 224

8.6.2 Analytic methods . 224

188

8.1 Introduction

8.1.1 Aims

We illustrate the overview of evaluation aspects and strategies used to evaluate

our contributions in figure 8.1.

Chapter 3 : Context constraints management framework

Chapter 4 : Dynamic service context modeling
[Validity , Completeness]

Chapter 5 : Context manipulation and reasoning
[Validity]

Chapter 6 : Context constraints for dynamic
requirements
[Performance]

Chapter 7 : Context constraints instrumentation
and validation monitoring

[Performance]

Chapter 8 : Evaluation

Case study based empirical
evaluation

Questionnaire based expert opinions
analysis

Case study based experimental
evaluation

Analytical models for performance
analysis

Validity

Completeness

Validity
Performance

Figure 8.1: Evaluation overview

We evaluated our contributions focusing on the following aspects.

• Validity - Context categories defined in the context model ontology represent

the needs of dynamic requirements (requirements at process run-time) man-

agement, and the context manipulation operators and context compositions

process context for dynamic requirements.

• Completeness - All of the required dynamic requirements need to be cov-

ered by the context aspects in the proposed context model ontology. This

189

complements the validity requirements.

• Performance - The performance is measured based on process execution-

time, which includes dynamic instrumentation of context constraints and

their validation.

8.1.2 Evaluation strategy

In this section, we describe the evaluation strategies used to evaluate our contri-

butions. Empirical studies and experiments can be used to confirm or reject the

effectiveness of some methods, techniques, or tools [Easterbrook 2008]. An em-

pirical method is a set of organising principles around which empirical data is

collected and analyzed [Easterbrook 2008]. We used both quantitative and quali-

tative research methods and analysis throughout our evaluation. The overall eval-

uation strategy adopted in our work involves following research methods, which

we selected based on our analysis and experiences in the literature.

• Case studies

• Expert opinions analysis

• Analytical models

• Controlled experiments

We explored and applied these research methods in the following sections to eval-

uate our contributions in this thesis. In section 8.2, we detail a confirmatory case

study analysis and questionnaire-based expert opinions analysis to evaluate the

proposed context aspects and context model for validity and completeness. In

section 8.3, we detail a case study based evaluation to evaluate the validity of

context manipulation operators and context compositions. We analytically assess

the time complexity of the context constraint generation process by defining an

analytical model in section 8.4. Finally in section 8.5, we evaluate the experi-

mental aspects such as the constraints instrumentation and validation monitoring

for performance using both analytical models and controlled experiments using a

prototype.

190

8.2 Context model ontology

8.2.1 Overview

In this section, we describe a detailed evaluation of the proposed context model

ontology (CMO). Firstly, we evaluated the validity of context aspects using con-

text aspects in confirmatory case study scenarios from the content-oriented do-

main and emerging convenience services domain, section 8.2.2. The completeness

of CMO is evaluated by comparing context aspects in confirmatory case study

scenarios and the proposed context model, section 8.2.2. Secondly, we evaluated

the validity of context aspects and completeness of CMO using an expert opinion

analysis. We conducted a survey to collect expert opinions in the industry, which

we describe in Appendix D. Eighteen experts were selected from different coun-

tries, covering different cultures with different expertise on software development,

quality assurance, project management, consultancy, and computing research. The

experts range from software engineers to software architects in the development

track, quality assurance engineers to quality assurance leads in the quality as-

surance track, junior project managers to delivery managers in the management

track, junior consultants to senior consultants in the consultancy track, and junior

research engineers to senior research scientists in the research track covering most

of the roles in the software industry. The experts were sourced from a cross section

of small to large in size software companies and research labs.

8.2.2 Case study based evaluation

Exploratory case studies are used as initial investigations of some phenomena

to derive new hypotheses and build theories, and confirmatory case studies are

used to test them [Easterbrook 2008]. In our research, a confirmatory case study

scenario based method has been used with test cases to assess the proposed con-

text model ontology with regard to its validity and completeness. We considered

191

validity and completeness as technical aspects. We used exploratory case study

scenarios from a classical business domain at the development phase of the con-

text model. The use of scenarios from multiple complementary domains for the

evaluation of context categories increases the accuracy of them. The selection of

case study domains is a crucial step. The experts in e-learning application do-

main and convenience services domain participated in developing scenarios. We

followed empirical evaluation on confirmatory case study scenarios from content

oriented domain and convenience services domain, which are two complemen-

tary domains, particularly looking into context categories in them. This evalua-

tion was done manually by analysing each scenario in detail and capturing their

requirements at service process run-time. However, the case study based research

has much less control over the variables than that of experiment-based research

[Rowley 2002]. Here, analysis of case study scenarios has two defined objectives

that is to evaluate validity and completeness of context categories.

Validity perspective of context categories

Analysis of application scenarios from two complementary domains for the valid-

ity perspective of context categories in the context model ontology is the concern.

We analysed two scenarios from the content oriented domain and the emerging

convenience services domain for dynamic requirements at application run-time.

We checked whether context categories represent the needs of dynamic require-

ments at process run-time to test the hypothesis that context categories can represent

the needs of dynamic requirements management.

A scenario from the content-oriented service-based application domain :

Service-based applications are widely used in the content-oriented application

domain. We explored an e-learning courseware generation sample scenario and

analysed it for the use of context categories in defining dynamic requirements.

A courseware is generated for a mobile device with a low speed GPRS connection on a

192

train.

In this scenario, a user may need a courseware in a language of his choice, a mo-

bile device may need feature-based requirements, a GPRS connection may need

feature-based requirements, the measures and standards of the courseware con-

tent may have inconsistencies, a low GPRS connection may influence reliability

and/or security aspects of constituent services, etc. In this scenario, we assume

Web services are context-aware (service context profiles are attached to services)

and they are dynamically composed and deployed to satisfy the client’s request.

The identification of requirements at process run-time and analysis of context cat-

egories on them relevant to this scenario is illustrated in figure 8.2.

Requirements at process runtime Context categories needed at
service process runtime

Language of choice Linguistic context, Syntax context

Measures and standards of the courseware
content need to be consistent

Measures and standards context,
Effect context

Mobile device might have feature-based
requirements

Device context, Effect context

GPRS connection may have feature-based
requirements

Connection context, Effect context

A low GPRS connection may influence on
reliability and/or security aspects of
constituent services

Connection context, reliability
context, security context, Effect
context, Protocol context

Trustworthiness of constituent services
and/or contents may be needed.

Trust context, Effect context

How well constituent services and/or
contents align with governmental
regulations may be needed.

Regulatory context, Effect context,
Protocol context

Figure 8.2: Context aspects in an e-learning courseware generation scenario

A scenario from convenience services application domain :

There is a trend towards convenience services based application developments,

such as http://www.moneysupermarket.com/. We explored a multilingual con-

venience services sample scenario from the convenience services application do-

193

main and analysed it for the use of context categories in defining dynamic require-

ments. A user wants to get a suitable broadband provider and also all information in a

language of his choice. Here, we assume that the convenience service process archi-

tecture combines required services and outputs information regarding broadband

services available based on user requirements. We assume the constituent services

are context-aware services. This sample scenario outputs a broadband service in-

formation available in a user selected area in a user requested language. The

trustworthiness, measures and standards, and governmental regulations attached

to constituent services are also assumed as requirements. The identification of

dynamic requirements and analysis of context categories on them relevant to this

scenario is illustrated in figure 8.3.

Requirements at process runtime Context categories appeared at
service process runtime

Language of choice Linguistic context, Syntax context
Location Location context
Trustworthiness of constituent services
and content is needed.

Trust context, Effect context

How well constituent services and content
align with governmental/organisational
regulations?

Regulatory context, Effect context,
Protocol context

Measures and standards need to be
consistent with local values of them

Measures and Standards context,
Syntax context

Figure 8.3: Context aspects in a multilingual convenience services scenario

Completeness perspective of context categories

Analysis of application scenarios from two complementary domains for the com-

pleteness perspective of context categories compared to the proposed context

model ontology is the concern. We observed whether all required dynamic re-

quirements can be covered by context categories in the context model to test the

hypothesis that context categories can cover all required dynamic requirements. This

complements the validity, which we evaluated in section 8.2.2. The completeness

194

is generally a relative property of a data model [Böhlen 1995]. As in the valid-

ity perspective in section 8.2.2, we explored the e-learning courseware generation

scenario in figure 8.2 and the multilingual convenience services scenario in fig-

ure 8.3, and compared their dynamic requirements with the context aspects in

the proposed context model in chapter 4 to evaluate its completeness. That is, to

check that all dynamic requirements in the scenarios can be defined in context

categories. The results show that dynamic requirements can be defined in context

categories and context categories can be attached to functional context, quality of

service context, domain context and platform context of the context model. Dy-

namic requirements in the scenarios of the two complementary domains can be

defined in context categories in the proposed context model. Based on the analy-

sis, we can conclude that the proposed context model is complete.

8.2.3 Discussion : Case study based evaluation

We used a case study-based empirical evaluation to analyse empirical validity and

completeness of context categories of the proposed context model ontology. In a

case study-based design and evaluation, case studies have to be selected carefully

and the lack of rigor is a more general weakness of case study-based research

[Yin 2009]. We used exploratory case studies from a classical business domain for

the development phase of the context model and used confirmatory case stud-

ies from two complementary domains (content oriented domain and convenience

services domain) for the evaluation of context aspects. The case studies were de-

signed and analysed with the support of domain experts to mitigate potential

weaknesses in the case study based design and evaluation approaches.

We analysed the confirmatory case study scenarios to check context categories

attached to dynamic requirements in each scenario. We observed that the context

categories can represent the needs of dynamic requirements, which we call the va-

lidity of context aspects. We compared the context categories attached to dynamic

195

requirements in the confirmatory case study scenarios with the proposed context

model in chapter 4 to evaluate the completeness of context aspects in the context

model. Based on the results we observed that the context aspects in the proposed

context model are valid, and the proposed context model is complete. In order to

further clarify validity and completeness of context aspects in the proposed con-

text model, we used a questionnaire-based experts analysis method.

8.2.4 Analysis of expert opinions : Questions and answers

Nine out of ten social surveys use a questionnaire of some kind [Moser 1986].

A key element in the achievement of reliable and valid information in survey re-

search is the construction of well-written manageable questionnaires [Nardi 2003].

We used domain experts, and questions and answers based qualitative analysis

methods to clarify the validity and completeness of our context model. We anal-

ysed expert opinions regarding dynamic requirements relevant to composition

and execution phases of service-based applications. Experts were selected based

on their expert knowledge and experiences on various software application do-

mains.

Questionnaire design and analysis

An important consideration throughout questionnaire construction is the impact

of own bias [Kitchenham 2002]. In order to avoid bias in this questionnaire con-

struction, we followed some techniques [Kitchenham 2002],

• developed natural questions so that wording does not influence the way the

respondent thinks about the problem.

• developed enough questions from each section to adequately cover the topic.

196

• arranged the order of questions so that the answer to one does not influence

the response to the next.

• provided exhaustive, unbiased and mutually exclusive response categories.

• made clear unbiased instructions.

We defined questionnaire focusing context categories, their validity and com-

pleteness aspects for dynamic requirements attached to composition and execu-

tion phases of Web service applications. We defined the validity scale as, (1) -

Strongly Agree, (2) - Agree, (3) - No Opinion, (4) - Disagree, and (5) - Strongly

Disagree.

We also have provided separate questions to evaluate the completeness of our

context model, such as questions Q1(b), Q2, Q3(b), Q4(b), Q5(b), and Q6(b). The

questionnaire was developed with the support of professionals experienced in

SOA application domain and domain experts. The questionnaire can be viewed

in Appendix D.

This survey is about dynamic requirements attached to dynamically composed

service applications, but it is difficult to find many experts in the industry, who

are working on advanced dynamically composed service applications. Therefore,

firstly we did a pilot survey to detect any difficulties that were not anticipated at

the survey proposal stage. In particular, to get a feeling about how people in the

industry would understand the questionnaire. We used five participants in the

software industry (Tech leads, Software architects, Project managers) for the pilot

survey. The pilot survey resulted in some changes to the questionnaire. In par-

ticular, we simplified the terminology used in the questionnaire. After the pilot

survey, we assumed the questionnaire to be stable and made the survey available

online. We used participants from the software companies distributed in various

locations, for example participants from Sri Lanka, Iran, Ireland, Canada, and

USA. The participants are from organisations, such as SAP research (FL-USA),

197

Ericsson (Ireland), Enovation solutions (Ireland), Lero (Ireland), SSE Group@DCU

(Ireland), Teksystems (Canada), Simon Fraser University (Canada), Pegah aftab

(Iran), ASER group @SBU (Iran), CDConsulting (Sri Lanka), Renaissance solutions

(Sri Lanka), hsenid (Sri Lanka), Mubasher (Sri Lanka), etc. The participants, who

are willing to be acknowledged are Maurice O’Connor, Bardia Mohabbati, Bala-

sundaram Shankarganesh, Pubudu Rathnayake, Hamidreza Sarabadani, Mingxue

Wang, Amir Mahjorian, Veronica Gacitua, Mark Melia, Pooyan Jamshidi, Vipul

Kuruppu, Mahshid Marbouti, Reza Teimourzadegan, and Soodeh Farokhi. We

assumed this variation, that is participants from various locations, in various cul-

tures, and expertises in various domains of software developments can result in

an un-biased practical result.

8.2.5 Analysis of expert opinions : Results and discussion

Our survey starts with an introduction page, which describes our definition of

dynamic service context and fundamental information required through out the

survey. Two types of questions (open and closed questions) were presented to find

the validity and completeness of dynamic service context definition and context

categories. The survey was made available online and sent to ninety experts. From

the participants, eighteen have completed the survey. We analysed the results to

evaluate the validity and completeness of dynamic service context definition and

context categories.

Validity - definition of dynamic service context and context categories

The validity of context categories was surveyed through the expert opinions using

closed questions. The expert opinions were collected, analysed and illustrated

to check the validity of the definition of dynamic service context and context

categories.

198

Validity of the definition of dynamic service context was analysed from the

answers given in Q6(a) and illustrated in figure 8.4.

Figure 8.4: Validity - definition of dynamic service context

The results show that most of the participants agree with the definition of dy-

namic service context and its content. That is, we can clarify that our definition of

dynamic service context is valid.

From Q1(a), we surveyed the expert opinions with regard to quality of service

context categories. The survey results have been illustrated in figure 8.5 to check

the validity of QoS context categories, that is context categories can be require-

ments in a service process at process run-time.

Figure 8.5: Quality of service context categories and their validity

Moreover, each quality of service context category along with expert opinions

199

were analysed and illustrated in figure 8.6. We can observe that most of the

participants are either strongly agree or agree with the claim.

Figure 8.6: Quality of service context categories and expert opinions analysis
In line with the observations, we can conclude the validity of quality of service

context categories, that is QoS context categories can be requirements in a service

process at process run-time.

From Q3(a), we surveyed the experts opinions with regard to domain context

categories. The survey results have been illustrated in figure 8.7 to observe the

validity of domain context categories.

Figure 8.7: Domain context categories and their validity

Each domain context category along with expert opinions were analysed and il-

lustrated in figure 8.8. We can observe that most of the participants are either

strongly agree or agree with the claim.

In line with the observations, we can conclude the validity of domain context cat-

200

Figure 8.8: Domain context categories and expert opinions analysis

egories, that is domain context categories can be requirements in a service process

at process run-time.

From Q4(a), we surveyed the expert opinions with regard to platform context

categories. The survey results have been illustrated in figure 8.9 to observe the

validity of platform context categories. In here, experts have mixed opinions about

operating system context.

Figure 8.9: Platform context categories and their validity

The each platform context category along with expert opinions were analysed

and illustrated in figure 8.10. We can observe most of the participants are either

strongly agree or agree with the claim.

In line with the observations, we can conclude the validity of platform context

categories, that is platform context categories can be requirements in a service

process at process run-time.

201

Figure 8.10: Platform context categories and expert opinions analysis

From Q5(a), we surveyed the expert opinions with regard to functional context

categories. The survey results have been illustrated in figure 8.11 to observe the

validity of functional context categories.

Figure 8.11: Functional context categories and their validity

The each functional context category along with expert opinions were analysed

and illustrated in figure 8.12. We can observe most of the participants are either

strongly agree or agree with the claim.

In line with the observations, we can conclude the validity of functional context

categories, that is functional context categories can be requirements in a service

process at process run-time.

202

Figure 8.12: Functional context categories and expert opinions analysis

Completeness - definition of dynamic service context and context taxonomy

The concern is survey open questions to evaluate the completeness of context

categories and the definition of dynamic service context.

The completeness of QoS context. We raised Q1(b) specifically focusing on com-

pleteness of aspects defined in Q1(a). Most of the participants agree about the

comprehensiveness of defined context categories. However, some participants

proposed some features, which we find not sufficiently related to the definition

of dynamic service context since dynamic service context addresses requirements

attached to composition and execution of services at process run-time. For exam-

ple, maintainability, scalability and granularity are not process run-time related

aspects.

The completeness of QoS context compared to ISO/IEC 9126. We raised Q2 to

check whether the context categorised defined in Q1 cover the scope of dynamic

service context attached to ISO/IEC 9126 software quality standard. Most of the

participants agree that the QoS context is complete in comparison to ISO/IEC 9126

software quality standard in the scope of dynamic service context. The results are

illustrated in figure 8.13.

203

Figure 8.13: Completeness of QoS context vs. ISO/IEC 9126

The completeness of domain context. We raised Q3(b) specifically focusing on

completeness of aspects defined in Q3(a). Most of the participants agree with the

claim that the defined aspects are complete. One participant mentioned that leg-

islative requirements could be integrated. However, in our context taxonomy the

legislative requirements attached to services can be defined in regulatory compli-

ance context attached to QoS context.

The completeness of platform context. We raised Q4(b) specifically focusing

completeness of aspects defined in Q4(a). Most of the participants agree that these

aspects are complete, but one participant says device/hardware is not considered

in Web service technology stack. However, according to our understanding, smart

services are tightly integrated with devices and hardware therefore device/hard-

ware context are necessary.

The completeness of functional context. We raised Q5(b) specifically focusing

completeness of aspects defined in Q5(a). Most of the participants’ opinion is

that the defined aspects are complete. One participant, however says that the co-

requisites property (two services need to communicate with another service at the

same time) is missing. However, in our categorisation, this kind of property can

be defined in protocol context.

204

The completeness of dynamic service context definition. We asked Q6(a) as the

last question after providing them with a clear description about the quality model

of ISO/IEC 9126, all the context categories, and our definition for dynamic service

context. We gathered their views and illustrated them in figure 8.14.

Figure 8.14: Completeness - definition of dynamic service context

This illustration clearly shows that most of the people in the industry agree with

the definition. In Q6(a), we asked from participants whether our definition of

dynamic service context is informative enough. Most of the participants agree

with our definition, and they think it is informative enough. This clarifies that our

definition is complete.

8.2.6 Summary and Discussion

The dynamic service context definition and context categories in CMO were eval-

uated for validity and completeness aspects. Firstly, we evaluated the context cat-

egories for validity using case study scenarios from two complementary domains,

which are content-oriented domain and convenience services domain. Then, these

two scenarios were explored to evaluate the completeness of context categories

compared to the proposed CMO. According to the results, we can conclude that

205

our context categories are valid and the context model is complete. Secondly,

we evaluated the dynamic service context definition and context categories in

CMO using expert opinions via a survey. The experts were selected from different

countries of different cultures, but working in the software industry. The survey

results clarified the validity and completeness aspects of dynamic service context

definition and context categories defined in the context model ontology. In fig-

ure 8.9, experts have mixed opinions about operating system context; however in

emerging service applications, various devices support various operating systems,

such as ubiquitous service applications, smart devices, etc. Moreover, additional

aspects suggested by experts, such as legislative requirements can easily be inte-

grated by software architects, if they find them necessary for different applications

using operators proposed in chapter 5, such as the refinement operator.

8.3 Context manipulation and composition

8.3.1 Overview

The context manipulation operators and context compositions can process context

for dynamic requirements. These operators and compositions can be evaluated

using examples from case study scenarios. That is to check whether manipulation

operators and compositions are valid in processing dynamic changes on context

specifications, derived context and monitored context for dynamic requirements;

while preserving semantics of the context model.

8.3.2 Validity : Case study based empirical evaluation

We illustrate the validity of manipulation operators and compositions using illus-

trative common examples attached to case study scenarios. We detail examples,

their context aspects, and the use of valid operators and compositions. This com-

plements case study examples used in chapters 4, 5, 6 and 7.

206

Manipulation operators

The context manipulation operators operate on various context aspects attached

to context specifications, derived context and monitored context.

• Renaming. A SCP, which is a context specification of a service uses Executi-

onTimeContext instead of ResponseTimeContext, which is in the con-

text ontology. The operator Renaming can be used to map this specification

element to the ontology element.

• Restriction. We considered a situation where a service process needs to be

restricted on security context of constituent services. The operator Restric-

tion can be used to restrict the SCPs of services for the security context.

• Refinement. We considered a situation where the service process dynami-

cally decides the output service. For example, the output service could be

a Fax service, Email service or Mobile service. The device context and mo-

bile connection context of a user is needed to select a Mobile service. For

example, if the output message is of type MMS, the user device and mobile

connection need to support MMS messaging. The operator Refinement can

be used to consistently extend the context specification of the process with

device context and connection context.

• Lowest Common Denominator (∪+
LCD). The security of a service process

or composite service can be an important aspect. The operator ∪+
LCD can

be used to determine the overall security of a service process by the weakest

security of individual services. The operator ∪+
LCD can be applied to security

context attached to context specifications of the service process or composite

service. If a service fails at process run-time, a new service will be replaced

and the operator ∪+
LCD can dynamically determine the security context of

the process.

207

• Least Common Subsumer (∪+
LCS). In a service process at run-time, a service

fails and a new service needs to be replaced (dynamic service composition).

For the language aspect, the language common to all constituent services is

needed at dynamic service composition. That is, the operator ∪+
LCS can be

applied to language context attached to context specifications.

• Logical OR (∪+
OR). This operator can be used on context specifications at-

tached to a service process, for e.g. the deployment environment needs a

secure internet connection or a connection bandwidth greater than 10Mbps.

• Accumulation (∪+
ACC). The response time of a service can only be measured

at service run-time. The response time of a process is the sum of response

times of individual services, which can be determined by this operator.

• Logical AND (∪+
AND). A service with cost < 0.3 USD and high in availability

is needed at dynamic service composition, then this operator can be used on

SCPs of possible services to determine the cost and availability.

• Mediation (∪+
MED). The output context of a service needs to be compatible

with the input context of the next service, at service composition. For e.g. if

a service has an output of currency type USD, then the next service needs to

have an input of the same currency type. This operator can be used for such

context mediation at dynamic service composition.

Context composition

The concern is to check the validity of the context composition for context model

specifications, monitored context and derived context.

• Structural composition. The security context of a service is the sum of

Integrity, Authentication, Non-repudiation and Confidentiality contexts of

the service.

208

• Sequential composition. This supports behavioral composition of services

in a service process, which requires sequential composition of context speci-

fications, monitored context, and derived context of the sequence of services.

For example, the security context of a process is the composition of security

contexts of the constituent services in the sequence.

8.3.3 Discussion

We used examples from case study scenarios to evaluate the validity of context

manipulation operators and context composition. This is a qualitative evaluation.

We illustrated the validity of manipulation operators and compositions using ex-

amples. The results indicated that our manipulation operators and compositions

on context specifications, monitored context and derived context are valid.

8.4 Context constraints generation

In our approach, dynamic requirements are generated as context constraints in

terms of conceptualized dynamic service context and context constraints are dy-

namically instrumented and validated at process run-time. The performance of

the dynamic instrumentation and validation is important, which we address in

section 8.5.In this section, we analyse the time complexity of the proposed context

constraint generation algorithm.

8.4.1 Overview

We evaluated the context constraints generation process for performance. The

concern was an analytical evaluation, so that an analytical model with variables

and parameters was defined.

209

8.4.2 Performance : Analytical evaluation

We defined an analytical model and analysed the performance of the CVCs gener-

ation algorithm. The symbols used to represent variables and performance mea-

surement parameters of the analytical model are defined in table 8.1.

Table 8.1: Algorithm 6.1- Performance evaluation variables and parameters

Variables
NR Number of requirements
NSCP Number of service context profiles
NContext Number of context categories
NOperator Number of context operators
NconstraintValue Number of constraint values

Performance measurement parameters
TCMO Time to fetch the context model ontology
Tscope Time to get the scope of a requirement
TconstraintValue Time to get the constraint value of a requirement
TOperator Time to get an operator of a requirement
TSCP Time to fetch a service context profile
TContext Time to fetch a context category
TS

dCVC Time to generate direct validation constraint of service-level
TmCVC Time to generate context matching constraint
TP

dCVC Time to generate direct validation constraint of process-level
Tλ Variable time taken to build a constraint logic and generate the CLiX syntax

As we have discussed in chapter 6, CVCs are of two types, direct validation

constraints and context matching constraints. The direct validation constraints

can be of service-level or process-level. The time needed for generating a direct

validation constraint of service-level is,

TS
dCVC = TCMO + Tscope + (TContext x NContext) + (TconstraintValue x NconstraintValue) +

(TOperator x NOperator) + Tλ

The time needed for generating a context matching constraint is,

TmCVC = TCMO + Tscope + (TSCP x NSCP) + (TContext x NContext) + (TOperator x

NOperator) + Tλ

The time needed for generating a process-level CVC is,

TP
dCVC = TCMO + Tscope + TContext + TconstraintValue + TOperator + Tλ

210

For each requirement, this algorithm executes once. That is, for n require-

ments this algorithm executes n times. We can define time complexity, T(n) = kn

where k is a real number, and its value depends on the constraint type. The time

complexity of the algorithm is of order n, O(n).

8.4.3 Discussion

We proposed a context constraints generation algorithm and evaluated the al-

gorithm analytically for performance. We observed that the performance of the

algorithm is of order n, O(n). We implemented context constraints generation

using the Message Automation Workbench 1, which facilitates creating first order

logic based, validation support context constraints in CLiX 2. The core technolo-

gies used in Web service frameworks, such as Web service description language

(WSDL), universal description discovery and integration (UDDI), business pro-

cess execution language (BPEL), and simple object access protocol (SOAP) are

XML-based, hence XML-based constraints bring consistency for service-based ap-

plications. The input and output models in our constraints generation process are

XML compatible. Therefore, a model transformation techniques can be used to

extend context constraints generation process.

8.5 Constraints instrumentation and validation monitoring

8.5.1 Overview

We used both analytical evaluation and experimental evaluation to evaluate the

constraints instrumentation and validation monitoring for performance. We used

an analytical evaluation to evaluate the algorithms of constraint set generation,

constraint selection, and configurator generation for performance. We imple-

1http://www.messageautomation.com/
2http://clixml.sourceforge.net/

211

mented a prototype to experimentally evaluate constraints instrumentation and

validation monitoring at process run-time for performance.

8.5.2 Performance : Analytical evaluation

We analytically evaluated the algorithms of constraint sets generation, constraints

selection, and configurators generation for performance. The variables and per-

formance measurement parameters of the analytical models have been defined

accordingly.

Evaluation : Constraint sets generation algorithm

The symbols used to represent variables and performance measurement parame-

ters of the analytical model have been defined in table 8.2.

Table 8.2: Algorithm 7.2 - Performance evaluation variables and parameters

Variables
NSL

CC Number of service-level context constraints
NPL

CC Number of process-level context constraints
NSL

Cset Number of service-level constraint sets
NPL

Cset Number of process-level constraint sets
Performance measurement parameters

TCset Time to create and initialise a constraint set
TAddCC Time to Add a CC to a constraint set
Tscope Time to get the scope of a CC
TSID Time to fetch a service ID attached to a CC
TCON Time to get the condition status of a CC
TVP Time to fetch the validation point of a CC
TIDCset Time to load a constraint set of given ID

The time needed to generate constraint sets from a given set of CCs at service-level

is,

TSL = (TCset x NSL
Cset) + (Tscope + TSID + TCON + TIDCset + TAddCC) x (NSL

CC)

The average time needed for service-level constraint sets generation is,

TAVG
SL = TSL / NSL

Cset

212

The time needed to generate constraint sets from a given set of CCs at process-

level is,

TPL = (TCset x NPL
Cset) + (Tscope + TVP + TIDCset + TAddCC) x (NPL

Cset)

The average time needed for process-level constraint sets generation is,

TAVG
PL = TPL / NPL

Cset

This algorithm will not proceed if there are no context constraints, and there

are no loops within the algorithm, therefore infinite loops are not possible. This

algorithm executes once for one context constraint and n times for n context con-

straints. Therefore, the time complexity of the algorithm is of order n, O(n).

Evaluation : Constraints selection algorithm

The symbols used to represent variables and performance measurement parame-

ters of the analytical model have been defined in table 8.3.

Table 8.3: Algorithm 7.3 - Performance evaluation variables and parameters

Variables
NSL

CSelector Number of service-level constraint selectors
NPL

CSelector Number of process-level constraint selectors
NSL

Cset Number of service-level constraint sets
NPL

Cset Number of process-level constraint sets
Performance measurement parameters

TCSelector Time to create and initialise a constraint selector
TAddCset Time to Add a Cset to a constraint selector based on priority
Tscope Time to get the scope of a constraint set
TSID Time to fetch a service ID attached to a constraint set
TCON Time to get the condition status of a constraint set
TVP Time to fetch the validation point of a constraint set
TIDCselector Time to load a constraint selector of given ID
TPrioCset Time to get the priority of a constraint set

The time needed to generate constraint selectors from a given set of constraint sets

at service-level is,

TSL = (TCSelector x NSL
CSelector) + (Tscope + TSID + TCON + TIDCselector + TPrioCset +

TAddCset) x (NSL
CSelector)

213

The average time needed for service-level constraint selectors generation is,

TAVG
SL = TSL / NSL

CSelector

The time needed to generate constraint selectors from a given set of constraint sets

at process-level is,

TPL = (TCSelector x NPL
CSelector) + (Tscope + TVP + TIDCselector + TPrioCset + TAddCset) x

(NPL
CSelector)

The average time needed for process-level constraint selectors generation is,

TAVG
PL = TPL / NPL

CSelector

The constraint selector generation algorithm will not proceed if there are no

constraint sets, and also there are no loops within the body of the algorithm,

therefore infinite loops are not possible. This algorithm executes once for one

constraint set and n times for n constraint sets. Therefore, the time complexity of

the algorithm is of order n, O(n).

Evaluation : configurator generation algorithm

The symbols used to represent variables and performance measurement parame-

ters of the analytical model have been defined in table 8.4.

Table 8.4: Algorithm 7.4 - Performance evaluation variables and parameters

Variables
NCon f igurator Number of service-level constraint selectors
NCset Number of constraint sets

Performance measurement parameters
TCon f igurator Time to create and initialise a configurator
TCSets Time to read constraint sets of a selector into an array
TAddSelector Time to add a selector to a configurator
TAddCset Time to Add a Cset to a configurator
TCHKCselector Time to check whether selector is null

The time needed to generate a configurator for a given collector is,

TCon f igurator = TCHKCselector + TCon f igurator + TCSets + TAddSelector + (TAddCset x NCset)

214

For a given process, there is more than one configurator. Therefore, the complete

configurator generation time for a service process is,

TP
Con f igGeneration = TCon f igurator x NCon f igurator

The configurator generation algorithm will not proceed, if there are no con-

straint selectors, and there is only one loop, which works for a number of con-

straint sets. If there are no constraint sets, then this loop will not proceed. There

is no possibility for infinite loops. This loop proceeds once for one constraint set

and n times for n constraint sets. Therefore, the time complexity of the algorithm

is of order n, O(n).

8.5.3 Performance : Experimental evaluation

We experimentally evaluated the performance of the proposed approach of con-

straints instrumentation and validation monitoring. The performance is evaluated

based on the process execution time including instrumentation and validation

monitoring. We looked at performance in execution time over various constraint

settings, for various invocations of instrumented service processes. We used three

services processes, which have 3, 5 and 7 constituent services to test our approach

for a practical result. We assume, Web service applications often have constituent

services around these numbers. We measured performance by implementing test

cases with different number of constraints, and testing for number of successful

instrumentation and validations.

Methods and experimental setup

We defined an experimental method based on case study scenarios. Case study

scenarios utilise various types of context from our context model. At the core of

our case study scenario, we have the user, the enterprise client (E-client), and ser-

vice providers. The E-client uses services provided by external service providers,

215

distributed around the world. We used free services provided by www.xmethods.net

to make the evaluation method more practical. However; these services do not

have the appropriate relevance compared to the constituent services in real world

applications. Our interest is not about the relevance of these constituent services,

but about their dynamic features, which we defined using the notion of context.

We defined service context profiles for each constituent service based on our con-

text model. Service context profiles cover all major context categories defined in

the context model to make the evaluation process more practical.

In order to perform the evaluation for performance, we compared process exe-

cution/validation time of constraints instrumented processes and un-instrumented

processes (base processes). The correctness of successful validations was moni-

tored using log files facilitated by our experimental setup.

Base process:

In the first phase, we defined 3 service processes with 3, 5 and 7 constituent

services and called them base processes. We defined a service context profile for

each constituent service. Constituent services were composed in a BPEL process

called a BPEL module. The BPEL module is then taken into a deployable and

testable application called a composite application. Then, we deployed the com-

posite application, created a test case, executed the test case 600 times, and col-

lected process execution times at each execution. All the constituent services were

invoked through the internet and the network traffic can influence on the process

execution time. In order to minimise the error resulting from the variation of net-

work traffic, we executed all process instances within a fixed time interval and

each process instance executed 600 times. We developed a service process, which

calculates the process execution time and logs each process execution time into

a text file. Service execution statuses, which are success and failure information

relevant to services invocation were recorded in a log file. In order to execute each

216

test case 600 times, we defined concurrent.properties of each test case as follows in

NetBeans IDE 6.5 environment.

concurrent.properties

calculatethroughput=false

#comparisontype’s possible values: identical|binary|equals

comparisontype=identical

concurrentthreads=10

description=testcase TestCase1

destination=http://localhost:${HttpDefaultPort}/RequestReplyService/RequestReplyPort

#featurestatus’s possible values: progress|done

featurestatus=done

inputfile=Input.xml

invokesperthread=60

outputfile=Output.xml

testtimeout=600

The test drivers use the concurrent.properties files as their configuration for

the testing process. Concurrent threads - each thread can invoke a test case inde-

pendently. In here, ten concurrent threads were created for this test case. Invokes

per thread - this defines the number of times each thread invokes the test case. Test

timeout (sec) - this defines how long each thread has to finish and if it does not fin-

ish in the allocated time, then an exception is thrown. The number of executions

of a test case is calculated as the number of concurrent threads times the number

of invocations per thread, that is (10 * 60 = 600). The computer platform, which we

used to run this prototype has a 32-bit Windows vista home premium operating

system, a Intel(R) Core(TM)2 Duo 2.00 GHz processor and 3.00 GB RAM.

Constraints instrumented process:

In the second phase, we defined the constraint instrumented service processes,

which has 3, 5 and 7 constituent services. Each service process is instrumented

217

with various types of context constraints. We defined context constraints, so that

they cover all the major context categories defined in the context model. Each

constituent service was instrumented with pre and post validation services, and

they were dynamically bound to different number of context constraints. Context

constraints validate service context profiles (SCPs) and transient context instances

(TCIs) relevant to constituent services and service processes. We defined test cases

and concurrent.properties files as in the base process. The process execution time

including constraint instrumentations and validations were collected. The vali-

dation logs were analysed for validations/violations of constraints and service

invocations/violations.

Experimental evaluation and results

Our experimental evaluation focuses on evaluating the constraints instrumenta-

tion and validation for performance. We implemented test cases of various con-

straint settings. In these test cases, we addressed context aspects relevant to both

pre-defined context and transient context. The pre-defined context are cost con-

text of a service, trust context of a service, etc. The transient context are response

time context of a service, availability context of a service, etc.

Service process of three constituent services (P1):

A service process with three constituent services was dynamically instrumented

with different numbers of constraints for constraints validation at process run-

time. The run-time instrumentation and validation time for test cases for the

number of executions have been illustrated in figure 8.15. We developed 9 test

cases (Series 1 to 9) relevant to various constraint settings. Series 1 is an uninstru-

mented process and series 2 to 9 are constraints instrumented processes, which

have 6, 12, 18, 24, 30, 36, 42, 48 constraints respectively.

We used T-test statistical analysis techniques to analyse variations of process

218

Figure 8.15: P1 with various constraint settings

execution times with and without constraint validations. The independent one-

sample T-test analysis has been illustrated in figure 8.16. tValue is the value of t

defined in one-sample T-test.

Figure 8.16: P1 T-test analysis

The degree of freedom is (sample size - 1). However, our interest is on the 95%

confidence interval of the difference.

Figure 8.17 illustrates the variation of average process execution time for differ-

ent constraint settings in test cases. We can observe that the increase in execution

times of instrumented processes (N=6, N=12, N=18, N=24, N=30, N=36, N=42,

N=48) is very small. The only significant increase is at N=0 to N=12, but it is less

than twice the mean value of the uninstrumented process.

219

Figure 8.17: P1 average execution time

Service process of five constituent services (P2):

A service process with five constituent services was dynamically instrumented

with different numbers of constraints for constraints validation at process run-

time. The run-time instrumentation and validation time for test cases for the

number of executions have been illustrated in figure 8.18. We developed 9 test

Service Process of 5 Utility Services

0

100

200

300

400

500

600

1 37 73 109 145 181 217 253 289 325 361 397 433 469 505

Number of Executions

Pr
oc

es
s

Ex
ec

ut
io

n
Ti

m
e

(M
ill

is
ec

on
ds

)

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9

Figure 8.18: P2 with various constraint settings

cases (Series 1 to 9) relevant to various constraint settings. Series 1 is an uninstru-

mented process and series 2 to 9 are constraints instrumented processes, which

have 10, 20, 30, 40, 50, 60, 70, 80 constraints respectively.

We used T-test statistical analysis techniques to analyse variations of process

execution times with and without constraint validations. The independent one-

220

sample T-test analysis has been illustrated in figure 8.19.

Figure 8.19: P2 T-test analysis

The degree of freedom is (sample size - 1). However, our interest is on the 95%

confidence interval of the difference.

Figure 8.20 illustrates the variation of average process execution time for differ-

ent constraint settings in test cases. We can observe that the increase in execution

Average Process Execution Time for Various Test Cases

N=80

N=70

N=60

N=50

N=40

N=30

N=20

N=10

N=0

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9
Series

A
ve

ra
ge

 P
ro

ce
ss

 E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
ds

)

Figure 8.20: P2 average execution time

times of instrumented processes (N=10, N=20, N=30, N=40, N=50, N=60, N=70,

N=80) is very small. The only significant increase is at N=0 to N=10, but it is less

than twice the mean value of the uninstrumented process.

Service process of seven constituent services (P3):

A service process with seven constituent services was dynamically instru-

mented with different numbers of constraints for constraints validation at process

221

run-time. The run-time instrumentation and validation time for test cases for the

number of executions have been illustrated in figure 8.21. We have 9 test cases (Se-

Service Process of 7 Services

0
100
200
300
400
500
600
700
800
900

1 39 77 115 153 191 229 267 305 343 381 419 457 495
Number of Executions

Pr
oc

es
s

Ex
ec

ut
io

n
Ti

m
e

(M
ill

is
ec

on
ds

) Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9

Figure 8.21: P3 with various constraint settings

ries 1 to 9) relevant to various constraint settings. Series 1 is an uninstrumented

process, and series 2 to 9 are constraints instrumented processes, which have 14,

28, 42, 56, 70, 84, 98, 112 constraints respectively.

We used T-test statistical analysis techniques to analyse variations of process

execution times with and without constraint validations. The independent one-

sample T-test analysis has been illustrated in figure 8.22. The degree of freedom

Figure 8.22: P3 T-test analysis

is (sample size - 1). However, our interest is on the 95% confidence interval of the

difference.

Figure 8.23 illustrates the variation of average process execution time for differ-

ent constraint settings in test cases. We can observe that the increase in execution

222

Average Process Execution Time for Various Test Cases

N=112

N=98

N=84

N=70

N=56

N=42

N=28

N=14

N=0

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9
Series

A
ve

ra
ge

 P
or

ce
ss

 E
xe

cu
tio

n
Ti

m
e

(M
ill

is
ec

on
ds

)
Figure 8.23: P3 average execution time

times of instrumented processes (N=14, N=28, N=42, N=56, N=70, N=84, N=98,

N=112) is very small. The only significant increase is at N=0 to N=14, but it is less

than twice the mean value of the uninstrumented process.

8.5.4 Tool support and discussion

Firstly, we analytically evaluated constraint sets generation, constraint selector

generation, and configurator generation algorithms for performance and observed

their execution time complexity is of order n. Secondly, we used the NetBeans

IDE 6.5 environment for implementing the experiment setup. We detailed all

the technical tools used for instrumentation and validation monitoring in chapter

7. We used SPSS 16.0, which is a statistical analysis tool to perform statistical

tests, such as the T-test. The T-test descriptive table displays the tValue, degree

of freedom, mean and confidence interval of the difference. We considered a

95% confidence interval for the T-test analysis. All the used services are external

services (service providers in the USA), which involve network traffic. However,

we tested all the invocations continuously in a fixed time interval to minimise

the error resulting from the variation of network traffic. The average process

execution times of test cases were illustrated. The results show that the execution

time overhead for constraint instrumentation and validation at process run-time is

less than twice the mean value of the un-instrumented process. We interpret this

as acceptable for most situations, because the number of constraints taken into

223

account is quite high and all these response times are still in a milliseconds range.

8.6 Threats to validity

8.6.1 Empirical methods

We used expert’s opinion analysis and case study analysis for evaluating core re-

search. We used expert’s opinion analysis for the evaluation of the context model

for validity and completeness. Though experts were selected based on a range

of criteria, there is always a possibility an expert not participating in this survey

could have added different opinions. There is also a possibility that expert’s opin-

ions can change over time with the technology evolution. However, the survey

does confirm a reasonable validity and completeness but also that differing opin-

ions need to be accounted for, as done by providing a customisable framework.

The case study analysis was used to evaluate the context model and operator cal-

culus. While we have aimed to cover a range of domains, technology is rapidly

evolving and new application domains could emerge. The use of the notion of

context for further dynamic aspects could be necessary. The operator calculus

may also need improvements accordingly in that case.

8.6.2 Analytic methods

We used analytical models to evaluate time complexity of the proposed algorithms

and the prototype-based experimental evaluation to estimate and categorise pro-

cess execution time for instrumentation and validation monitoring. Analytical

methods are not sufficient in some situations such as performance evaluation for

instrumentation and validation monitoring of context constraints. In particular, it

is hard to take into account the workload of constraints, the workload of services

and the TCP/IP (Transmission Control Protocol/Internet Protocol) connection-

based response times from constituent services. Furthermore, in the proposed

224

prototype-based experimental evaluation, we did not use services with the re-

quired relevance for case study scenarios because the required services with ap-

propriate relevance were not available for research purpose and only test config-

urations were used.

225

Chapter 9

Conclusions

Contents
9.1 Overview . 226

9.2 Summary of contributions . 227

9.3 Discussion and future work . 227

9.3.1 Discussion . 227

9.3.2 Future work . 230

9.1 Overview

In service-based application developments, architects initially focused on process

design-time aspects to validate and test applications at design-time. However, in

emerging service computing applications, dynamic requirements attached to ser-

vice composition and execution need to be addressed, for example, SLA monitor-

ing at process run-time. We particularly focused on this direction in this thesis. In

our approach, we defined dynamic service context and modeled dynamic service

context in a context model ontology. We proposed context constraints to define dy-

namic requirements. Finally, context constraints were instrumented with a service

process instance at run-time for dynamic requirements validation monitoring.

In section 9.2, we describe a summary of contributions attached to the objec-

tives, hypotheses, and practical implementations of our work. In section 9.3.1,

we discuss assumptions, contributions, and evaluation results. Finally, in section

226

9.3.2, we detail proposed future work including extensions of this work to other

domains.

9.2 Summary of contributions

This thesis contributes a dynamic service context model and its utilisation in Web

service applications at process run-time focusing on instrumentation and valida-

tion monitoring of their dynamic requirements. Consequently, the context manip-

ulation, composition, reasoning, context constraints generation, run-time instru-

mentation and validation monitoring based on the context model are introduced.

We can summarise our contributions as,

• Dynamic service context definition to define dynamic aspects attached to

composition and execution of Web services at process run-time.

• Conceptualize dynamic service context into a processable context model on-

tology.

• Operator-based context manipulation, context composition, and context rea-

soning.

• XML-based explicit context validation constraints and service-based implicit

context validation constraints, which define dynamic requirements for ser-

vice processes.

• An architecture and implementation for dynamic instrumentation and vali-

dation monitoring of context constraints.

9.3 Discussion and future work

9.3.1 Discussion

There is no common definition for context in information science. Context has

been defined in various service-based application domains having a process de-

sign perspective [Boukadi 2008, Medjahed 2007, Dey 2000]. These definitions do

227

not sufficiently address process run-time aspects. We identified defining dynamic

service context aspects and organising them in a general context space as a chal-

lenge. We defined dynamic service context with a focus on composition and

execution of services and processes at run-time. We evaluated the definition of

dynamic service context based on expert opinions, and results show that our def-

inition is valid and complete.

There are several context taxonomies in the literature, which are defined with a

process design time perspective, and a domain specific perspective [Medjahed 2007,

Wang 2004, Chen 2004]. We analysed previous context classifications and models,

standards such as [9126-1 2001], and scenarios from business application domains

for developing a general context taxonomy. Then, we modeled this taxonomy as

a context model ontology, which can enrich dynamic service applications with

features such as shared conceptualisation, context reasoning, etc. We evaluated

the context aspects in our context model ontology for validity and completeness.

This evaluation is a two phase evaluation. In the first phase, we used scenar-

ios from complementary service domains. In the second phase, we used expert

opinions analysis through a survey. The use of complementary service domains

further reinforces that this context model ontology can be used for other service

domains towards dynamic service applications. The context specifications and

transient context information need to be manipulated, composed and reasoned

about in dynamic service applications. We proposed an operator-based manip-

ulation and composition technique and evaluated the operators for correctness

using case study examples.

In this thesis, we assume dynamic requirements are captured from SLAs. The

client-side specifications define the minimum requirements, whereas the provider-

side specifications define the maximum range of capabilities. The context con-

straints are generated to define dynamic requirements. However, exploring SLAs

is out of our scope. An XML-based context constraints specification provides tech-

228

nological compatibility for service-based applications. We proposed a process for

the generation of XML-based context validation constraints and an algorithm to

define the generation process. The algorithm has been evaluated for performance

and it is of order n. We developed context reasoning constraints as reasoning

services. We assume a semantic client (or broker) maintains a registry of con-

text reasoning services. The proposed context constraints can be used in any

service-based application domain. The context constraints can be dynamically

instrumented with a service process and validated at process run-time.

We proposed a framework for the instrumentation and validation monitor-

ing of dynamic requirements at process run-time. We implemented a prototype

and case study scenarios to evaluate the dynamic instrumentation and validation

monitoring of context constraints. All the services used in scenarios are remotely

hosted services. We experimentally evaluated the instrumentation and validation

monitoring in a fixed time interval to minimise the effect caused by the network

traffic. We assumed the network traffic within that time interval is more or less the

same. We also used constraints from all the main context dimensions (functional,

QoS, domain, and platform). The data collector directives and data collectors

were also used for transient context. The results show that the performance of the

instrumentation and validation monitoring for successful validations is a practi-

cal value. The proposed dynamic instrumentation and validation monitoring of

context validation constraints is a general approach, and can be applied in any

service-based application for requirements (or policy) validations. However, the

proposed instrumentation and validation monitoring approach for context reason-

ing services is in a controlled environment. Our framework provides a validation

logging mechanism, which generates logs about successes and failures. The vali-

dation failures may need service re-composition at run-time, which is beyond our

scope.

229

9.3.2 Future work

We describe some directions for future work in this section as,

• Context annotation for WSDL

• Intelligent decision making for requirements elicitation and improved auto-

mated generation of constraints

• Constraints validation failure handling needs service replace and re-composition

Context annotation for WSDL. Semantic annotation for WSDL (SAWSDL) is a

W3C specification for building semantics on top of WSDL [Farrell 2007]. In this

work, we defined a service context profile (SCP), which has context information at-

tached to a service. This SCP can be improved using model references and schema

mappings, so that WSDL description can be attached with the context model on-

tology. The authors in [Ibáñez 2010] describe how an RDF vocabulary is used to

annotate functional and non-functional properties of basic activities of XML-based

BPEL processes. A lightweight ontology for semantic Web services is proposed in

[Kopecky 2008] called WSMO-Lite, which fills in SAWSDL annotations with con-

crete semantic constructs. The work described in [Kopecky 2008, Ibáñez 2010] can

be a possible starting point for context annotated WSDL.

Intelligent decision making for requirements elicitation and improved auto-

mated generation of constraints. Intelligent decision making techniques for dy-

namic requirements elicitation and automatically generating relevant context con-

straints at process run-time can be useful research for dynamic service applica-

tions. For example, multi-tenant process governance at run-time [Wang 2010]. In

the proposed ECVC generation, input models and output models are XML-based

models. Therefore, model transformation tools, such as ATL 1, QVT2, etc. can be

used to implement the ECVC generation algorithm, so that ECVCs can be gener-

ated at process run-time. This is a model transformation solution for ECVC gen-

1http://www.eclipse.org/atl/
2http://www.omg.org/spec/QVT/

230

eration, and that helps to generate new ECVCs for validation monitoring at run-

time. This generation process can be integrated with intelligent decision making

techniques for dynamic requirements elicitation. Some of the dynamic aspects of

a service process can implicitly affect other dynamic aspects. These implicit com-

plexities can be resolved using reasoning techniques on conceptualized dynamic

aspects. The proposed context reasoning can reduce the complexity of some as-

pects, such as deriving implicit context from the explicit context in Web service

applications. In this work, we have implemented ICVCs as resoning services, but

this kind of an approach can only be used in a pre-defined environment with a set

of constraints. An approach and techniques for automatically generating ICVCs

and dynamically integrating them with a deployed service process at run-time are

needed. These approaches and techniques need to be integrated with intelligent

decision making techniques to elicitate relevant dynamic requirements.

Constraints validation failure handling needs service replace and re-composition.

The context constraints validation failure (violation) may need service replace and

re-composition at process run-time. This type of replace and re-composition can

reinforce the capabilities of dynamic service composition. Our proposed frame-

work provides a logging mechanism. Dynamically monitoring logging details and

applying self-healing techniques [Baresi 2004, Wang 2009b, Wang 2009a] can be a

possible approach to strengthen the service replace and re-composition capability

at run-time.

231

Bibliography

[9126-1 2001] ISO/IEC 9126-1. Software engineering, Product quality, Part 1: Quality model,
2001. http://www.iso.org/iso/iso-catalogue/catalogue-tc/.

[Agarwal 2008] V. Agarwal, G. Chafle, S. Mittal and B. Srivastava. Understanding Ap-
proaches for Web Service Composition and Execution. In Proceedings of the 1st Banga-
lore Annual Compute Conference, COMPUTE ’08. ACM, 2008.

[Aggarwal 2004] R. Aggarwal, K. Verma, J. Miller and W. Milnor. Constraint Driven Web
Service Composition in METEOR-S. In Proceedings of the IEEE International Con-
ference on Services Computing. IEEE Computer Society, 2004.

[Ahmed 2009] Z. Ahmed. Dynamic monitoring and constraint validation framework for
autonomic web services. Master’s thesis, Dublin City University, Ireland, 2009.

[Alrifai 2009] M. Alrifai and T. Risse. Combining Global Optimization with Local Selection
for Efficient QoS-Aware Service Composition. In Proceedings of the 18th International
Conference on World Wide Web. ACM, 2009.

[Alves 2006] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha,
Sterling, D. König, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri and A. Yiu.
Web Services Business Process Execution Language Version 2.0. OASIS Committee,
May 2006.

[Ardagna 2011] D. Ardagna, L. Baresi, S. Comai, M. Comuzzi and B. Pernici. A Service-
Based Framework for Flexible Business Processes. Journal of IEEE Software, vol. 28,
pages 61–67, 2011.

[Atif 2002] Y. Atif. Building Trust in E-Commerce. Journal of IEEE Internet Computing,
vol. 6, pages 18–24, 2002. IEEE Computer Society.

[Aulbach 2008] S. Aulbach, T. Grust, D. Jacobs, A. Kemper and J. Rittinger. Multi-tenant
Databases for Software as a Service: Schema-Mapping Techniques. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data. ACM,
2008.

[Avizienis 2004] A. Avizienis, J.C. Laprie, B. Randell and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. Journal of IEEE Transactions on
Dependable and Secure Computing, vol. 1, pages 11–33, 2004.

[Baader 2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider.
The Description Logic Handbook - Theory, Implementation and Applications. Cambridge
University Press, 2003.

[Baader 2007] F. Baader, I. Horrocks and U. Sattler. Description Logics. In F.V Harme-
len, V. Lifschitz and B. Porter, editors, Handbook of Knowledge Representation,
volume 1, pages 135–179. Elsevier, 2007.

232

[Bandara 2004] A. Bandara, T.R. Payne, D. Roure and G. Clemo. An Ontological Frame-
work for Semantic Description of Devices. In International Semantic Web Conference
(ISWC), 2004.

[Bandara 2009] K.Y. Bandara, M.X. Wang and Pahl C. Dynamic Integration of Context Model
Constraints in Web Service Processes. In International Conference on Software Engi-
neering. IASTED, 2009.

[Barbon 2006] F. Barbon, P. Traverso, M. Pistore and M. Trainotti. Run-Time Monitoring
of Instances and Classes of Web Service Compositions. In Proceedings of the IEEE
International Conference on Web Services. IEEE Computer Society, 2006.

[Baresi 2004] L. Baresi, C. Ghezzi and S. Guinea. Towards Self-Healing Service Compositions.
In Proceedings of the 1st Conference on the Principles of Software Engineering,
2004.

[Baresi 2005] L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS-BPEL Processes.
volume 3826 of Lecture Notes in Computer Science, pages 269–282. Springer, 2005.

[Baresi 2010a] L. Baresi and C. Ghezzi. The Disappearing Boundary Between Development-
time and Run-time. In Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10. ACM, 2010.

[Baresi 2010b] L. Baresi, S. Guinea, O. Nano and G. Spanoudakis. Comprehensive Monitor-
ing of BPEL Processes. Journal of IEEE Internet Computing, vol. 14, pages 50–57,
2010. IEEE Educational Activities Department.

[Baresi 2011] L. Baresi and S. Guinea. Self-Supervising BPEL Processes. Journal of IEEE
Transactions on Software Engineering, vol. 37, pages 247–263, 2011.

[Bastida 2008] L. Bastida. A Methodology for Dynamic Service Composition. In Proceedings
of the Seventh International Conference on Composition-Based Software Systems.
IEEE, 2008.

[Battle 2005] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
D. Martin, S. Mcllraith, D. McGuinness, J. Su and S. Tabet. Semantic Web Services
Framework (SWSF) Overview, 2005. http://www.w3.org/Submission/SWSF/.

[Bettini 2010] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan and D. Riboni. A Survey of Context Modelling and Reasoning Techniques.
Journal of Pervasive and Mobile Computing, vol. 6, pages 161–180, 2010. Elsevier.

[Bianculli 2008] D. Bianculli, C. Ghezzi, P. Spoletini, L. Baresi and S. Guinea. A Guided
Tour through SAVVY-WS: A Methodology for Specifying and Validating Web Service
Compositions. In E. Börger and A. Cisternino, editors, Advances in Software Engi-
neering, pages 131–160. Springer, 2008.

[Bikakis 2008] A. Bikakis, T. Patkos, G. Antoniou and D. Plexousakis. A Survey of
Semantics-based Approaches for Context Reasoning in Ambient Intelligence. In Proceed-
ings of the Artificial Intelligence Methods for Ambient Intelligence at the European
Conference on Ambient Intelligence. Springer, 2008.

[Böhlen 1995] M.H. Böhlen, C. S. Jensen and R.T. Snodgrass. Evaluating the Completeness
of TSQL2. In Proceedings of the International Workshop on Temporal Databases:
Recent Advances in Temporal Databases, pages 153–172. Springer, 1995.

[Boley 2010] H. Boley, A. Paschke, S. Tabet, B. Grosof, N. Bassiliades, G. Gover-
natori, D. Hirtle and O. Shafiq. Schema Specification of RuleML 1.0, 2010.
http://ruleml.org/1.0/.

233

[Boukadi 2008] K. Boukadi, C. Ghedira, S. Chaari, L. Vincent and E. Bataineh. How to Em-
ploy Context, Web Service, and Community in Enterprise Collaboration. In Proceedings
of the 8th International Conference on New Technologies in Distributed Systems.
ACM, 2008.

[Boukadi 2009] K. Boukadi, C. Ghedira, Z. Maamar, D. Benslimane and L. Vincent.
Context-aware Data and IT Services Collaboration in e-Business. In Transactions on
Large-Scale Data- and Knowledge-Centered Systems I, pages 91–115. Springer,
2009.

[Bray 2008] T. Bray, J. Paoli, E. Maler and F. Yergeau. Extensible Markup Language (XML),
2008. http://www.w3.org/TR/2008/REC-xml-20081126/.

[Brickley 2004] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema, 2004. http://www.w3.org/TR/rdf-schema/.

[Cacciagrano 2006] D. Cacciagrano, F. Corradini, R. Culmone and L. Vito. Dynamic
Constraint-Based Invocation of Web Services. In M. Bravetti, M. Núñez and G. Za-
vattaro, editors, Web Services and Formal Methods, volume 4184 of Lecture Notes
in Computer Science, pages 138–147. Springer, 2006.

[Cakmakci 2002] O. Cakmakci, J. Coutaz, K.V. Laerhoven and H.W. Gellersen. Context
Awareness in Systems with Limited Resources. In Proceedings of the 3rd Workshop
on Artificial Intelligence in Mobile Systems (AIMS), ECAI 2002, 2002.

[Cámara 2008] J. Cámara, C. Canal and G. Salaün. Multiple Concern Adaptation for Run-
time Composition in Context-Aware Systems. Journal of Electronic Notes in Theoreti-
cal Computer Science, vol. 215, pages 111–130, 2008. Elsevier.

[Canfora 2005] G. Canfora, M. Di Penta, R. Esposito and M. L. Villani. An Approach for
QoS-aware Service Composition Based on Genetic Algorithms. In Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, GECCO ’05. ACM,
2005.

[Canfora 2008] G. Canfora, M. Di Penta, R. Esposito and M. L. Villani. A Framework for
QoS-aware Binding and Re-binding of Composite Web Services. The Journal of Systems
and Software, vol. 81, pages 1754–1769, 2008. Elsevier.

[Cardoso 2004] J. Cardoso, J. Miller, A. Sheth and J. Arnold. Quality of Service for Workflows
and Web Service Processes. Journal of Web Semantics, vol. 1, pages 281–308, 2004.
Elsevier.

[Channa 2005] N. Channa, S. Li, A.W. Shaikh and X. Fu. Constraint Satisfaction in Dynamic
Web Service Composition. In Proceedings of the 16th International Workshop on
Database and Expert Systems Applications, 2005.

[Chen 2003] H. Chen, T. Finin and A. Joshi. An Ontology for Context-Aware Pervasive Com-
puting Environments. Journal of The Knowledge Engineering Review, vol. 18, pages
197–207, 2003. Cambridge University Press.

[Chen 2004] H. Chen, F. Perich, T. Finin and A. Joshi. SOUPA: Standard Ontology for Ubiq-
uitous and Pervasive Applications. In Proceedings of the International Conference on
Mobile and Ubiquitous Systems: Networking and Services, 2004.

[Chen 2006] I.Y.L. Chen, S.J.H. Yang and J. Zhang. Ubiquitous Provision of Context Aware
Web Services. In Proceedings of the IEEE International Conference on Services
Computing, pages 60 –68. IEEE, 2006.

234

[Cheung 1996] S.C. Cheung and J. Kramer. Context Constraints for Compositional Reachabil-
ity Analysis. Journal of ACM Transactions on Software Engineering and Method-
ology, vol. 5, pages 334–377, 1996. ACM.

[Chrysoulas 2007] C. Chrysoulas, G. Koumoutsos, S. Denazis, K. Thramboulidis and
O. Koufopavlou. Dynamic Service Deployment Using an Ontology Based Description
of Devices and Services. In Proceedings of the 3rd International Conference on Net-
working and Services. IEEE Computer Society, 2007.

[Chung 2009] L. Chung, L. Prado and C. Julio. On Non-Functional Requirements in Software
Engineering. In Alexander T. Borgida, Vinay K. Chaudhri, Paolo Giorgini and
Eric S. Yu, editors, Conceptual Modeling: Foundations and Applications, pages
363–379. Springer, 2009.

[Cohen 1992] W. W. Cohen, A. Borgida and H. Hirsh. Computing Least Common Subsumers
in Description Logics. In Proceedings of the 10th National Conference on Artificial
Intelligence. AAAI Press, 1992.

[Coutaz 2005] J. Coutaz, J.L. Crowley, S. Dobson and D. Garlan. Context is Key. Journal of
Communications of the ACM, vol. 48, pages 49–53, 2005. ACM.

[Daconta 2003] M.C. Daconta, L.J. Obrst and K.T. Smith. The Semantic Web: A Guide to the
Future of XML, Web Services, and Knowledge Management. Wiley, 2003.

[Dey 2000] A.K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, 2000.

[Doulkeridis 2006] C. Doulkeridis, N. Loutas and M. Vazirgiannis. A System Architec-
ture for Context Aware Service Discovery. Journal of Electronic Notes in Theoretical
Computer Science, pages 101–116, 2006. Elsevier.

[Dui 2003] D. Dui, W. Emmerich, C. Nentwich and B. Thal. Consistency Checking of Fi-
nancial Derivatives Transactions. In Proceedings of the Revised Papers from the
International Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World, NODe ’02, pages 166–183.
Springer, 2003.

[Dustdar 2008] S. Dustdar and M.P. Papazoglou. Services and Service Composition - An In-
troduction. Journal of Information Technology, vol. 50, pages 86–92, 2008. Palgrave
Macmillan.

[Easterbrook 2008] S. Easterbrook, J. Singer, M. A. Storey and D. Damian. Selecting Em-
pirical Methods for Software Engineering Research. In Guide to Advanced Empirical
Software Engineering, pages 285–311. SpringerLink, 2008.

[Ehlers 2011] J. Ehlers and W. Hasselbring. A self-adaptive monitoring framework for
component-based software systems. In Proceedings of the 5th European conference
on Software architecture. Springer-Verlag, 2011.

[Erradi 2005] A. Erradi and P. Maheshwari. QoS-Aware Middleware for Reliable Web Ser-
vices Interactions. In Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service on e-Technology, e-Commerce and e-
Service. IEEE Computer Society, 2005.

[Euzenat 2008] J. Euzenat, J. Pierson and F. Ramparany. Dynamic Context Management
for Pervasive Applications. Journal of The Knowledge Engineering Review, vol. 23,
pages 21–49, 2008. Cambridge University Press.

235

[Farrar 2003] S. Farrar and T. Langendoen. A Linguistic Ontology for the Semantic Web.
Journal of GLOT International, vol. 7, pages 97–100, 2003. GOLT.

[Farrar 2010] S. Farrar and D. T. Langendoen. An OWL-DL Implementation of Gold- An
Ontology for the Semantic Web. Journal of Linguistic Modeling of Information and
Markup Languages, vol. 40, pages 45–66, 2010. Springer.

[Farrell 2007] J. Farrell and H. Lausen. Semantic Annotations for WSDL and XML Schema,
2007. http://www.w3.org/TR/sawsdl/.

[Fitzgerald 2006] B. Fitzgerald and M. Olsson. The Software and Services Challenge. Soft-
ware, Grids, Security and Dependability of the 7th Framework Programme, 2006.

[Foster 2006] H. Foster. A Rigourous Approach to Engineering Web Service Compositions. PhD
thesis, Imperial College London, 2006.

[Frølund 1998a] S. Frølund and J. Koistinen. QML: A Language for
Quality of Service Specification. HP Laboratories Technical Re-
port, 1998. Hewlett-Packard Laboratories. Available from:
http://www.hpl.hp.com/techreports/98/HPL-98-10.pdf.

[Frølund 1998b] S. Frølund and J. Koistinen. Quality of services specification in distributed
object systems design. In Proceedings of the 4th USENIX Conference on Object-
Oriented Technologies and Systems, volume 4. USENIX Association, 1998.

[Fujii 2009] K. Fujii and T. Suda. Semantics-based Context-aware Dynamic Service Composi-
tion. Journal of ACM Transactions on Autonomous and Adaptive Systems, vol. 4,
pages 1–31, 2009. ACM.

[Goslar 2004] K. Goslar and A. Schill. Modeling Contextual Information Using Active Data
Structures. In Proceedings of the EDBT Workshops, volume 3268 of Lecture Notes
in Computer Science. Springer, 2004.

[Graf 1991] S. Graf and B. Steffen. Compositional Minimization of Finite State Systems. In
Proceedings of the 2nd International Workshop on Computer Aided Verification.
Springer, 1991.

[Grosof 2003] B. N. Grosof, I. Horrocks, R. Volz and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proceedings of the 12th Inter-
national Conference on World Wide Web. ACM, 2003.

[Gu 2004] T. Gu, X.H. Wang, H.K. Pung and D.Q. Zhang. An Ontology-based Context Model
in Intelligent Environments. In Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference, pages 270–275, 2004.

[Guermouche 2008] N. Guermouche, O. Perrin and C. Ringeissen. Timed Specification For
Web Services Compatibility Analysis. Journal of Electronic Notes in Theoretical Com-
puter Science, vol. 200, pages 155–170, 2008.

[Haarslev 2001] V. Haarslev and R. Möller. RACER System Description. In Proceedings of
the 1st International Joint Conference on Automated Reasoning, The International
Joint Conference on Automated Reasoning (IJCAR ’01), pages 701–706. Springer,
2001.

[Harry 2004] C. Harry and Anupam J. The SOUPA Ontology for Pervasive Computing. In
The Volume on Ontologies for Agent Systems, pages 233–258. Birkhauser Publish-
ing Ltd., April 2004.

236

http://www.hpl.hp.com/techreports/98/HPL-98-10.pdf

[Hasselbring 2006] W. Hasselbring and R. Reussner. Toward Trustworthy Software Systems.
Journal of IEEE Computer, vol. 39, pages 91–92, 2006. IEEE.

[Henricksen 2002] K. Henricksen, J. Indulska and A. Rakotonirainy. Modeling Context
Information in Pervasive Computing Systems. In Proceedings of the 1st International
Conference on Pervasive Computing. Springer, 2002.

[Heravizadeh 2008] M. Heravizadeh, J. Mendling and M. Rosemann. Dimensions of Busi-
ness Process Quality. In Proceedings of the 6th International Conference on Business
Process Management Workshop, pages 80–91. Springer, 2008.

[Hervás 2010] R. Hervás, J. Bravo and J. Fontecha. A Context Model based on Ontological
Languages: a Proposal for Information Visualization. Journal of Universal Computer
Science, vol. 16, pages 1539–1555, 2010. Springer.

[Hong 2008] M. Hong and D. Cho. Ontology Context Model for Context Aware Learning
Service in Ubiquitous Learning Environments. International Journal of Computers,
pages 193–200, 2008. NAUN.

[Hoorn 2009] A.V. Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey and
D. Kieselhorst. Continuous Monitoring of Software Services: Design and Application of
the Kieker Framework. http://www.informatik.uni-kiel.de - Technical Report, 2009.

[Horridge 2004] M. Horridge, H. Knublauch, A. Rector, R. Stevens and C. Wroe. A Practi-
cal guide to building OWL ontologies using the Protege-OWL plugin and CO-ODE tools
edition 1.0. World, 2004. The University Of Manchester.

[Horrocks 2003] I. Horrocks and F. Patel-Schneider. Reducing OWL Entailment to Descrip-
tion Logic Satisfiability. The Semantic Web - ISWC 2003, Lecture Notes in Computer
Science, vol. 2870, pages 17–29, 2003. Springer.

[Horrocks 2004a] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, 2004. W3C.

[Horrocks 2004b] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, 2004.
http://www.w3.org/Submission/SWRL/.

[Ibáñez 2010] M. J. Ibáñez, G. Vulcu, J. Ezpeleta and S. Bhiri. Semantically Enabled Busi-
ness Process Discovery. In Proceedings of the 2010 ACM Symposium on Applied
Computing. ACM, 2010.

[Jordan 2007] D. Jordan and J. Evdemon. Web Services Business Process Execution Language,
2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[Jungo 2007] D. Jungo. An Open Source CLiXML Schema Validator, 2007.
http://clixml.sourceforge.net/.

[Kaiya 2005] H. Kaiya and M. Motoshi Saeki. Ontology Based Requirements Analysis:
Lightweight Semantic Processing Approach. In Proceedings of the 5th International
Conference on Quality Software. IEEE Computer Society, 2005.

[Kallel 2009] S. Kallel, A. Charfi, T. Dinkelaker, M. Mezini and M. Jmaiel. Specifying
and Monitoring Temporal Properties in Web Services Compositions. In Proceedings of
the Seventh IEEE European Conference on Web Services. IEEE Computer Society,
2009.

237

[Kapitsaki 2009] G. Kapitsaki, D. Kateros, G. Prezerakos and I. Venierris. Model-driven
Development of Composite Context-aware Web Applications. Journal of Information
and Software Technology, vol. 51, pages 1244–1260, 2009. Butterworth-Heinemann.

[Karakoc 2009] E. Karakoc and P. Senkul. Composing Semantic Web services under Con-
straints. Journal of Expert Systems with Applications, vol. 36, pages 11021–11029,
2009. Pergamon Press, Inc.

[Karastoyanova 2005] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann and
A. Buchmann. Extending BPEL for Run Time Adaptability. Proceedings of the IEEE
International Enterprise Distributed Object Computing Conference, pages 15–26,
2005. IEEE Computer Society.

[Karvounarakis 2002] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis and
M. Scholl. RQL: A Declarative Query Language for RDF. In Proceedings of the 11th
International Conference on World Wide Web, pages 592–603. ACM Press, 2002.

[Kazhamiakin 2006] Raman Kazhamiakin, P. Pandya and M. Pistore. Representation, Ver-
ification, and Computation of Timed Properties in Web. In Proceedings of the IEEE
International Conference on Web Services. IEEE Computer Society, 2006.

[Keller 2006] U. Keller and H. Lausen. Functional Description of Web Services, 2006.
http://www.wsmo.org/TR/d28/d28.1/v0.1/.

[Khedr 2004] M. Khedr and A. Karmouch. Negotiating Context Information in Context-aware
Systems. Journal of IEEE Intelligent Systems, vol. 19, pages 21–29, 2004. IEEE.

[Kim 2004] J.W. Kim and H.D. Kim. Semantic Constraint Specification and Verification of
ebXML Business Process Specifications. Journal of Expert Systems with Applications,
vol. 27, pages 571 – 584, 2004. Elsevier.

[Kitchenham 2002] B. Kitchenham and S. L. Pfleeger. Principles of Survey Research Part
4: Questionnaire Evaluation. SIGSOFT Software Engineering Notes, vol. 27, pages
20–23, 2002. ACM.

[Kona 2009] S. Kona, A. Bansal, L. Simon, A. Mallya, G. Gupta and T.D. Hite. USDL: A
Service-Semantics Description Language for Automatic Service Discovery and Composi-
tion. International Journal of Web Services Research, pages 20–48, 2009.

[Kopecky 2008] J. Kopecky and T. Vitvar. WSMO-Lite: Lowering the Semantic Web Ser-
vices Barrier with Modular and Light-Weight Annotations. In Proceedings of the IEEE
International Conference on Semantic Computing, 2008.

[Kozen 1990] D. Kozen and J. Tiuryn. Logics of Programs. In Handbook of Theoretical
Computer Science, volume B: Formal Models and Sematics, pages 789–840. 1990.

[Küsters 2000] R. Küsters. Non-standard inferences in description logics. Springer-Verlag,
2000.

[Lausen 2005] H. Lausen, A. Polleres and D. Roman. Web Service Modeling Ontology
(WSMO), 2005. http://www.w3.org/Submission/WSMO/.

[Lee 2007] K. C. Lee, J. Kim, J. Lee and K. M. Lee. Implementation of Ontology based Context
Aware Framework for Ubiquitous Environments. In proceedings of the International
Conference on Multimedia and Ubiquitous Engineering, pages 278–282, 2007.

[Leitner 2010] P. Leitner, A. Michlmayr, F. Rosenberg and S. Dustdar. Monitoring, Predic-
tion and Prevention of SLA Violations in Composite Services. In Proceedings of the
IEEE International Conference on Web Services, 2010.

238

[Li 2009] W. Li and L. Ping. Trust Model to Enhance Security and Interoperability of Cloud
Environment. In Proceedings of the 1st International Conference on Cloud Com-
puting, CloudCom ’09. Springer-Verlag, 2009.

[Lunteren 2004] J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey and C. Larsson. XML
Accelerator Engine. In Processing of the 1st International Workshop on High Per-
formance XML. ACM, 2004.

[Ly 2008] L.T. Ly, K. Goser, S. Rinderle-Ma and P. Dadam. Compliance of Semantic Con-
straints - A Requirements Analysis for Process Management Systems. In Proceedings of
the 1st International Workshop on Governance, Risk and Compliance - Applica-
tions in Information Systems, 2008.

[Maamar 2006] Z. Maamar, D. Benslimane and N.C. Narendra. What Can Context do for
Web Services? Journal of Communications of the ACM, vol. 49, pages 98–103, 2006.
ACM.

[Mahbub 2005] K. Mahbub and G. Spanoudakis. Run-time Monitoring of Requirements for
Systems Composed of Web-Services: Initial Implementation and Evaluation Experience.
In Proceedings of the IEEE International Conference on Web Services. IEEE Com-
puter Society, 2005.

[Martin 2004] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcll-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srini-
vasan and K. Sycara. OWL-S:Semantic Markup for Web Services, 2004.
http://www.w3.org/Submission/OWL-S/.

[Martin 2006] D. Martin. Putting Web Services in Context. Journal of Electronic Notes in
Theoretical Computer Science, vol. 146, pages 3–16, 2006. Elsevier.

[McGuinness 2004] D.L. McGuinness and F. Harmelen. OWL Web Ontology Language
Overview, 2004. http://www.w3.org/TR/owl-features/.

[Medjahed 2005] B. Medjahed and A. Bouguettaya. A Dynamic Foundation Architecture for
Semantic Web Services. Journal of Distributed and Parallel Databases, vol. 17, pages
179–206, 2005. Kluwer Academic Publishers.

[Medjahed 2007] B. Medjahed and Y. Atif. Context-based Matching for Web Service Com-
position. Journal of Distributed and Parallel Databases, vol. 21, pages 5–37, 2007.
Kluwer Academic Publishers.

[Milanovic 2004] N. Milanovic and M. Malek. Current Solutions for Web Service Composi-
tion. Jounal of IEEE Internet Computing, vol. 8, pages 51–59, 2004. IEEE.

[Moser 1986] S.C. Moser and G. Kalton. Survey Methods in Social Investigation. Gower
Publishing Company, 2 édition, 1986.

[Moser 2008a] O. Moser, F. Rosenberg and S. Dustdar. Non-intrusive Monitoring and Service
Adaptation for WS-BPEL. In Proceeding of the 17th International Conference on
World Wide Web, WWW ’08. ACM, 2008.

[Moser 2008b] O. Moser, F. Rosenberg and S. Dustdar. VieDAME - Flexible and Robust BPEL
Processes through Monitoring and Adaptation. In Proceedings of the Companion of
the 30th International Conference on Software Engineering, ICSE Companion ’08.
ACM, 2008.

[Mosincat 2009] A. Mosincat and W. Binder. Enhancing BPEL Processes with Self-tuning
Behavior. In Proceedings of the IEEE International Conference on Service-Oriented
Computing and Applications (SOCA-2009), 2009.

239

[Mostéfaoui 2003] S.K. Mostéfaoui and B. Hirsbrunner. Towards a Context-Based Service
Composition Framework. In Proceedings of the 1st International Conference on Web
Services, pages 42–45, 2003.

[Motik 2005] B. Motik, U. Sattler and R. Studer. Query Answering for OWL-DL with Rules.
Journal of Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 3, pages 41–60, 2005. Elsevier.

[Mrissa 2006a] M. Mrissa, C. Ghedira, D. Benslimane and Z. Maamar. Context and Seman-
tic Composition of Web Services. Lecture Notes in Computer Science, pages 266–275.
Springer, 2006.

[Mrissa 2006b] M. Mrissa, C. Ghedira, D. Benslimane and Z. Maamar. A Context Model for
Semantic Mediation in Web Services Composition. In Proceedings of the 25th Interna-
tional Conference on Conceptual Modeling, pages 12–25. Springer, 2006.

[Mrissa 2007] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg and
S. Dustdar. A Context-based Mediation Approach to Compose Semantic Web Services.
Journal of ACM Transactions on Internet Technology (TOIT), vol. 8, 2007. ACM.

[Mrissa 2008] M. Mrissa, P. Thiran, C. Ghedira, D. Benslimane and Z. Maamar. Using
Context to Enable Semantic Mediation in Web Service Communities. In Proceedings of
the 2008 International Workshop on Context Enabled Source and Service Selection,
Integration and Adaptation. ACM, 2008.

[Nardi 2003] P.M. Nardi. Doing Survey Research - A Guide to Quantitative Methods. Pearson
Education, Inc, 2003.

[Nentwich 2002] C. Nentwich, L. Capra, W. Emmerich and A. Finkelstein. xlinkit: A
Consistency Checking and Smart Link Generation Service. Journal of ACM Transactions
on Internet Technology, vol. 2, pages 151–185, 2002. ACM.

[Nentwich 2005] C. Nentwich. CLiX - A Validation Rule Language for XML. In Proceedings
of the W3C Workshop on Rule Languages for Interoperability. W3C, 2005.

[Ngo 2004] H.Q. Ngo, A. Shehzad, K.A. Pham, M. Riaz, S. Liaquat and S.Y. Lee. Develop-
ing Context-Aware Ubiquitous Computing Systems with a Unified Middleware Frame-
work. In Proceedings of Embedded and Ubiquitous Computing (EUC 2004).
Springer, 2004.

[OCL 2010] OCL. Object Constraint Language (OCL), 2010.
http://www.omg.org/spec/OCL/.

[O’Connor 2005a] M. O’Connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso and
M. Musen. Supporting Rule System Interoperability on the Semantic Web with SWRL. In
Proceedings of the Semantic Web Ű The International Semantic Web Conference
2005, volume 3729 of Lecture Notes in Computer Science, pages 974–986. Springer,
2005.

[O’Connor 2005b] M. O’Connor, H. Knublauch, S. Tu and M. Musen. Writing Rules for the
Semantic Web Using SWRL and Jess. In Proceedings of the 8th International Protege
Conference, Protege with Rules Workshop (2005), 2005.

[ODM 2009] ODM. Ontology Definition Metamodel (ODM), 2009.
http://www.omg.org/spec/ODM/1.0/.

[O’Sullivan 2002] J. O’Sullivan, D. Edmond and A. Hofstede. What’s in a Service? Journal
of Distributed and Parallel Databases, vol. 12, pages 117–133, 2002. Springer.

240

[O’Sullivan 2006] J. O’Sullivan. Towards a precise understanding of service properties. PhD
thesis, Queensland University of Technology, 2006.

[Pahl 2007] C. Pahl, S. Giesecke and W. Hasselbring. An Ontology-Based Approach for Mod-
elling Architectural Styles. In F. Oquendo, editor, Software Architecture, volume
4758 of Lecture Notes in Computer Science, pages 60–75. Springer, 2007.

[Pahl 2008] C. Pahl, Bandara K.Y. and Wang M.X. Case Study. CASCAR Project Deliver-
able, vol. D1, 2008. http://www.computing.dcu.ie/ cpahl/project-CASCAR.htm.

[Pahl 2009] C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based Modelling of Archi-
tectural Styles. Journal of Information and Software Technology, vol. 51, pages
1739–1749, 2009. Elsevier.

[Pahl 2010] C. Pahl, K. Y. Bandara and M. X. Wang. Context Constraint Integration and
Validation. In Q. Z. Sheng, J. Yu and S. Dustdar, editors, Enabling Context-Aware
Web Services: Methods, Architectures, and Technologies, pages 81–105. Chapman
& Hall/CRC, 1st édition, 2010.

[Pahl 2011] C. Pahl, V. Gacitua-Decar, M.X. Wang and K.Y. Bandara. Ontology-Based Com-
position and Matching for Dynamic Service Coordination. In Proceedings of the CAiSE
2011 International Workshops. Springer, 2011.

[Park 2005] S. Park, L. Liu, C. Pu, M. Srivatsa and J. Zhang. Resilient Trust Management
for Web Service Integration. In Proceedings of the IEEE International Conference on
Web Services, ICWS ’05. IEEE Computer Society, 2005.

[Pessoa 2007] R.M. Pessoa, C.Z. Calvi, J.G.P. Filho, C.R.G. de Farias and R. Neisse. Se-
mantic Context Reasoning using Ontology based Models. In Proceedings of the 13th
Open European Summer School and IFIP TC6.6 Conference on Dependable and
Adaptable Networks and Services, pages 44–51. Springer, 2007.

[Priestley 2003] M. Priestley. Practical Object-oriented Design with UML. McGraw Hill
Higher Education, 2003.

[Raimondi 2008] F. Raimondi, J. Skene and W. Emmerich. Efficient Online Monitoring of
Web Service SLAs. In Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of software engineering. ACM, 2008.

[Rajasekaran 2004] P. Rajasekaran, J. Miller, K. Verma and A. Sheth. Enhancing Web Ser-
vices Description and Discovery to Facilitate Composition. In Proceedings of the 1st
International Workshop on Semantic Web Services and Web Process Composition,
pages 34–47, 2004.

[Ranganathan 2002] A. Ranganathan, R.H. Campbell, A. Ravi and A. Mahajan. ConChat:
A Context-Aware Chat Program. Journal of IEEE Pervasive Computing, vol. 1, pages
51–57, 2002. IEEE Educational Activities Department.

[Rao 2004] J. Rao and X. Su. A Survey of Automated Web Service Composition Methods. In
Proceedings of the 1st International Workshop on Semantic Web Services and Web
Process Composition, pages 43–54, 2004.

[Rosemann 2006] M. Rosemann and J. C. Recker. Context-aware Process Design: Exploring
the Extrinsic Drivers for Process Flexibility. In Proceedings of the 7th Workshop on
Business Process Modeling, Development, and Support (BPMDS’06), 2006.

[Rosemann 2008] M. Rosemann, J. C. Recker and C. Flender. Contextualisation of Business
Processes. Journal of Business Process Integration and Management, vol. 3, pages
47–60, 2008. Inderscience Enterprises Ltd.

241

[Rosenberg 2010] F. Rosenberg, M.B. Müller, P. Leitner, A. Michlmayr, A. Bouguettaya
and S. Dustdar. Metaheuristic Optimization of Large-Scale QoS-aware Service Composi-
tions. In Proceedings of the IEEE International Conference on Services Computing
(SCC), 2010.

[Rowley 2002] J. Rowley. Using Case Studies in Research. Journal of Management Research
News, vol. 25, pages 16–27, 2002. Emerald.

[Roy 2010] N. Roy, T. Gu and S.K. Das. Supporting Pervasive Computing Applications with
Active Context Fusion and Semantic Context Delivery. Journal of Pervasive and Mobile
Computing, vol. 6, pages 21–42, 2010. Elsevier.

[Sattanathan 2006] S. Sattanathan, N. C. Narendra and Z. Maamar. Ontologies for Specify-
ing and Reconciling Contexts of Web Services. Journal of Electronic Notes in Theoret-
ical Computer Science, 2006. Elsevier.

[Seaborne 2004] A. Seaborne. RDQL - A Query Language for RDF, 2004.
http://www.w3.org/Submission/RDQL/.

[Serrano 2007] M. Serrano, J. Serrat and J. Strassner. Ontology Based Reasoning for Sup-
porting Context Aware Services on Autonomic Networks. In Proceedings of the IEEE
International Conference on Communication, 2007.

[Shaffer 1998] C.A. Shaffer. A Practical Introduction to Data Structures and Algorithm Analy-
sis. Prentice Hall, java édition, 1998.

[Shanahan 1999] M. Shanahan. The Event Calculus Explained. In Artificial Intelligence
Today, pages 409–430. 1999.

[Sheshagiri 2004] M. Sheshagiri, N. Sadeh and F. Gandon. Using Semantic Web Services for
Context Aware Mobile Applications. Proceedings of the MobiSys 2004 Workshop on
Context-Awareness, 2004.

[Sintek 2002] M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation
Language for the Semantic Web. In Proceedings of the 1st International Semantic
Web Conference on The Semantic Web, ISWC 2002, pages 364–378. Springer, 2002.

[Sirin 2007] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur and Y. Katz. Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, vol. 5, pages 51 – 53, 2007. Elsevier.

[Slonneger 1994] K. Slonneger and B.L. Kurtz. Formal Syntax and Semantics of Program-
ming Languages: A Laboratory Based Approach. Addison Wesley Longman, Reading,
Massachusetts, 1st edition édition, 1994.

[SoaML 2009] SoaML. Service oriented architecture Modeling Language (SoaML), 2009.
http://www.omg.org/spec/SoaML/.

[Soylu 2009a] A. Soylu, P.D. Causmaecker and P. Desmet. Context and Adaptivity in
Context-Aware Pervasive Computing Environments. In Proceedings of the 2009 Sym-
posia and Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE
Computer Society, 2009.

[Soylu 2009b] A. Soylu, P.D. Causmaecker, P. Desmet and K.U. Leuven. Context and Adap-
tivity in Pervasive Computing Environments: Links with Software Engineering and On-
tological Engineering. Journal of Software, vol. 4, 2009. ACADEMY Publisher.

242

[Spanoudakis 2007] G. Spanoudakis. Dynamic Trust Assessment of Software Services. In
Proceedings of the 2nd International Workshop on Service Oriented Software En-
gineering: in Conjunction with the 6th ESEC/FSE Joint Meeting, IW-SOSWE ’07,
pages 36–40. ACM, 2007.

[Spanoudakis 2009] G. Spanoudakis and S. LoPresti. Web Service Trust: Towards a Dy-
namic Assessment Framework. In Proceedings of the International Conference on
Availability, Reliability and Security. IEEE Computer Society, 2009.

[Spertus 2010] M.P. Spertus, C.D. Metcalf and G. Wolfman. Pre-Computed Dynamic Instru-
mentation, US Patent 7,805,717 B1, 2010.

[Srivastava 2003] B. Srivastava and J. Koehler. Web Service Composition - Current Solutions
and Open Problems. In Proceedings of the ICAPS Workshop on Planning for Web
Services, 2003.

[Strang 2004] T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. In Proceed-
ings of the International Workshop on Advanced Context Modelling, Reasoning
and Management - The Sixth International Conference on Ubiquitous Computing,
2004.

[Strembeck 2004] M. Strembeck and G. Neumann. An Integrated Approach to Engineer and
Enforce Context Constraints in RBAC Environments. Journal of ACM Transactions on
Information and System Security, vol. 7, pages 392–427, 2004. ACM.

[Tsarkov 2007] D. Tsarkov and I. Horrocks. FaCT++ Website, 2007.
http://owl.man.ac.uk/factplusplus/.

[Urbieta 2008] A. Urbieta, E. Azketa, I. Gomez, J. Parra and N. Arana. Analysis of Effects
and Preconditions-based Service Representation in Ubiquitous Computing Environments.
Proceedings of the International Conference on Semantic Computing, pages 378–
385, 2008. IEEE Computer Society.

[USDL 2011] USDL. Unified Service Description Language (USDL), 2011.
http://www.w3.org/2005/Incubator/usdl/.

[Vergara 2009] J.E. Vergara, A. Guerrero, V.A. Villagrá and J. Berrocal. Ontology-based
Network Management: Study Cases and Lessons Learned. Journal of Network and
Systems Management, vol. 17, September 2009. Plenum Press.

[Verma 2004] D.C. Verma. Service Level Agreements on IP Networks. Proceedings of the
IEEE, vol. 92, pages 1382 – 1388, 2004. IEEE.

[Vladimir 2011] S. Vladimir and M. Miroslaw. Addressing Dependability throughout the SOA
Life Cycle. Journal IEEE Transactions on Services Computing, vol. 4, pages 85–95,
2011.

[Wang 2004] X.H. Wang, D. Q. Zhang, T. Gu and H.K. Pung. Ontology Based Context
Modeling and Reasoning using OWL. In Proceedings of the 2nd Annual Conference
on Pervasive Computing and Communications Workshops. IEEE, 2004.

[Wang 2009a] M.X. Wang, K.Y. Bandara and C. Pahl. Constraint Integration and Violation
Handling for BPEL Processes. In Proceedings of the 2009 Fourth International Con-
ference on Internet and Web Applications and Services. IEEE Computer Society,
2009.

[Wang 2009b] M.X. Wang, K.Y. Bandara and C. Pahl. Integrated Constraint Violation Han-
dling for Dynamic Service Composition. In Proceedings of the 2009 IEEE International
Conference on Services Computing, SCC ’09. IEEE Computer Society, 2009.

243

[Wang 2009c] Q. Wang, J. Shao, F. Deng, Y. Liu, M. Li, J. Han and H. Mei. An Online
Monitoring Approach for Web Service Requirements. Journal of IEEE Transactions on
Services Computing, vol. 2, pages 338–351, 2009. IEEE.

[Wang 2010] M. Wang, K.Y. Bandara and C. Pahl. Process as a Service Distributed Multi-
tenant Policy-Based Process Runtime Governance. In Proceedings of the 2010 IEEE
International Conference on Services Computing. IEEE, 2010.

[Yahyaoui 2010] H. Yahyaoui. Trust Assessment for Web Services Collaboration. In Proceed-
ings of the 2010 IEEE International Conference on Web Services, pages 315–320.
IEEE Computer Society, 2010.

[Ye 2007] J. Ye, L. Coyle, S. Dobson and P. Nixon. Ontology-based Models in Pervasive
Computing Systems. The Knowledge Engineering Review, vol. 22, pages 315–347,
2007. Cambridge University Press.

[Yin 2009] R.K. Yin. Case Study Research Design and Methods. volume 5. SAGE Inc., 4th
edition édition, 2009.

[Yu 2007] T. Yu, Y. Zhang and K.J. Lin. Efficient Algorithms for Web Services Selection with
End-to-End QoS Constraints. Journal of ACM Transactions on the Web (TWEB),
vol. 1, 2007. ACM.

[Zeng 2004] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam and
H. Chang. QoS-aware Middleware for Web Services Composition. Journal of IEEE
Transactions on Software Engineering, vol. 30, pages 311–327, 2004. IEEE.

[Zhao 2007] H. Zhao and H. Tong. A Dynamic Service Composition Model Based on Con-
straints. Proceedings of the International Conference on Grid and Cloud Comput-
ing, pages 659–662, 2007. IEEE Computer Society.

244

Appendix A

OWL-based implementation of
the context model ontology

We implemented the main constituents of the OWL-based context model ontology

using the Protege 4.0.2 editor. Firstly, we present Protege screen shots of the main

constituents of our context model ontology implementation from section A.1 to

section A.5. Secondly, we illustrate the OWL implementation of main constituents

of our context model ontology in section A.6. Thirdly, in section A.7, we describe

the analysis of scenarios used from the classical business domain for the develop-

ment of context model ontology.

A.1 Functional context

Figure A.1: Functional context

245

Figure A.2: Syntax context

Figure A.3: Effect context

246

Figure A.4: Protocol context

247

A.2 Quality of service context

Figure A.5: Quality of service context

Figure A.6: Business context

248

Figure A.7: Runtime context

Figure A.8: Security context

249

Figure A.9: Trust context

A.3 Domain context

Figure A.10: Domain context

250

A.4 Platform context

Figure A.11: Platform context

A.5 Context derivation - SWRL/OWL rule

Figure A.12: SWRL rule for security context derivation

A rule for the security context of a Web service can be implemented as in

figure A.12. This rule was reasoned about using the Pellet reasoner. The resulting

derived context can be seen highlighted in yellow colour.

251

A.6 OWL-based implementation of context model ontology

The sections A.1 to A.5 describe the Protege screen shots of the implementation

aspects. In this section, we present the OWL implementation of the major con-

stituents of the context model ontology and context information integration for a

HSBC banking service.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY ServiceContextOntology "http://www.semanticweb.org/
ontologies/2010/3/28/ServiceContextOntology.owl#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/3/28/ServiceContextOntology.owl#"
xml:base="http://www.semanticweb.org/ontologies/2010/3/28/ServiceContextOntology.owl"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ServiceContextOntology="http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#">

<owl:Ontology rdf:about=""/>

<!--
///
//
// Object Properties
//
///
-->

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasAuthenticationContext -->

<owl:ObjectProperty rdf:about="#hasAuthenticationContext">
<rdfs:range rdf:resource="#AuthenticationContext"/>
<rdfs:domain rdf:resource="#SecurityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasConfidentialityContext -->

252

<owl:ObjectProperty rdf:about="#hasConfidentialityContext">
<rdfs:range rdf:resource="#ConfidentialityContext"/>
<rdfs:domain rdf:resource="#SecurityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasContext -->

<owl:ObjectProperty rdf:about="#hasContext">
<rdfs:range rdf:resource="#Context"/>
<rdfs:domain rdf:resource="#InputContext"/>
<rdfs:domain rdf:resource="#OutputContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasCostContext -->

<owl:ObjectProperty rdf:about="#hasCostContext">
<rdfs:range rdf:resource="#CostContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasCurrencyContext -->

<owl:ObjectProperty rdf:about="#hasCurrencyContext">
<rdfs:domain rdf:resource="#CostContext"/>
<rdfs:range rdf:resource="#CurrencyContext"/>
<rdfs:domain rdf:resource="#InputContext"/>
<rdfs:domain rdf:resource="#OutputContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasInputContext -->

<owl:ObjectProperty rdf:about="#hasInputContext">
<rdfs:range rdf:resource="#InputContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasIntegrityContext -->

<owl:ObjectProperty rdf:about="#hasIntegrityContext">
<rdfs:range rdf:resource="#IntegrityContext"/>
<rdfs:domain rdf:resource="#SecurityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

253

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasNon-RepudiationContext -->

<owl:ObjectProperty rdf:about="#hasNon-RepudiationContext">
<rdfs:range rdf:resource="#NonRepudiationContext"/>
<rdfs:domain rdf:resource="#SecurityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasOutputContext -->

<owl:ObjectProperty rdf:about="#hasOutputContext">
<rdfs:range rdf:resource="#OutputContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasPart -->

<owl:ObjectProperty rdf:about="#hasPart">
<rdfs:range rdf:resource="#AuthenticationContext"/>
<rdfs:range rdf:resource="#ConfidentialityContext"/>
<rdfs:range rdf:resource="#IntegrityContext"/>
<rdfs:range rdf:resource="#NonRepudiationContext"/>
<rdfs:domain rdf:resource="#SecurityContext"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasPerformanceContext -->

<owl:ObjectProperty rdf:about="#hasPerformanceContext">
<rdfs:range rdf:resource="#PerformanceContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasPostConditionContext -->

<owl:ObjectProperty rdf:about="#hasPostConditionContext"/>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasPreConditionContext -->

<owl:ObjectProperty rdf:about="#hasPreConditionContext"/>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasProtocolContext -->

<owl:ObjectProperty rdf:about="#hasProtocolContext">
<rdfs:range rdf:resource="#ProtocolContext"/>

254

<rdfs:domain rdf:resource="#Service"/>
</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasReputiationContext -->

<owl:ObjectProperty rdf:about="#hasReputiationContext">
<rdfs:range rdf:resource="#ReputationContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasSecurity -->

<owl:ObjectProperty rdf:about="#hasSecurity">
<rdfs:range rdf:resource="#SecurityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasTrustContext -->

<owl:ObjectProperty rdf:about="#hasTrustContext">
<rdfs:domain rdf:resource="#Service"/>
<rdfs:range rdf:resource="#TrustContext"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#isPartOf -->

<owl:ObjectProperty rdf:about="#isPartOf">
<rdfs:domain rdf:resource="#AuthenticationContext"/>
<rdfs:domain rdf:resource="#ConfidentialityContext"/>
<rdfs:domain rdf:resource="#IntegrityContext"/>
<rdfs:domain rdf:resource="#NonRepudiationContext"/>
<rdfs:range rdf:resource="#SecurityContext"/>
<owl:inverseOf rdf:resource="#hasPart"/>

</owl:ObjectProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#needConnectivityContext -->

<owl:ObjectProperty rdf:about="#needConnectivityContext">
<rdfs:range rdf:resource="#ConnectivityContext"/>
<rdfs:domain rdf:resource="#Service"/>

</owl:ObjectProperty>

<!--
///
//
// Data properties
//
///

255

-->

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasConnectivityStrength -->

<owl:DatatypeProperty rdf:about="#hasConnectivityStrength">
<rdfs:domain rdf:resource="#ConnectivityContext"/>

</owl:DatatypeProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasData -->

<owl:DatatypeProperty rdf:about="#hasData">
<rdfs:domain rdf:resource="#InputContext"/>
<rdfs:domain rdf:resource="#OutputContext"/>

</owl:DatatypeProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasDefinition -->

<owl:DatatypeProperty rdf:about="#hasDefinition">
<rdfs:domain rdf:resource="#ProtocolContext"/>

</owl:DatatypeProperty>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#hasResponseTime -->

<owl:DatatypeProperty rdf:about="#hasResponseTime">
<rdfs:domain rdf:resource="#PerformanceContext"/>

</owl:DatatypeProperty>

<!--
//
//
// Classes
//
//
-->

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#AuthenticationContext -->

<owl:Class rdf:about="#AuthenticationContext">
<rdfs:subClassOf rdf:resource="#SecurityContext"/>
<owl:disjointWith rdf:resource="#ConfidentialityContext"/>
<owl:disjointWith rdf:resource="#IntegrityContext"/>
<owl:disjointWith rdf:resource="#NonRepudiationContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#AvailabilityContext -->

<owl:Class rdf:about="#AvailabilityContext">

256

<rdfs:subClassOf rdf:resource="#RuntimeContext"/>
</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#BusinessContext -->

<owl:Class rdf:about="#BusinessContext">
<rdfs:subClassOf rdf:resource="#QoSContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ConfidentialityContext -->

<owl:Class rdf:about="#ConfidentialityContext">
<rdfs:subClassOf rdf:resource="#SecurityContext"/>
<owl:disjointWith rdf:resource="#IntegrityContext"/>
<owl:disjointWith rdf:resource="#NonRepudiationContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ConnectivityContext -->

<owl:Class rdf:about="#ConnectivityContext">
<rdfs:subClassOf rdf:resource="#PlatformContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#Context -->

<owl:Class rdf:about="#Context"/>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#CostContext -->

<owl:Class rdf:about="#CostContext">
<rdfs:subClassOf rdf:resource="#BusinessContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#CurrencyContext -->

<owl:Class rdf:about="#CurrencyContext">
<rdfs:subClassOf rdf:resource="#MeasuresContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#DeviceContext -->

<owl:Class rdf:about="#DeviceContext">
<rdfs:subClassOf rdf:resource="#PlatformContext"/>

257

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#DomainContext -->

<owl:Class rdf:about="#DomainContext">
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#EffectContext -->

<owl:Class rdf:about="#EffectContext">
<rdfs:subClassOf rdf:resource="#FunctionalContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#FunctionalContext -->

<owl:Class rdf:about="#FunctionalContext">
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#InputContext -->

<owl:Class rdf:about="#InputContext">
<rdfs:subClassOf rdf:resource="#SyntaxContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#IntegrityContext -->

<owl:Class rdf:about="#IntegrityContext">
<rdfs:subClassOf rdf:resource="#SecurityContext"/>
<owl:disjointWith rdf:resource="#NonRepudiationContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#LinguisticsContext -->

<owl:Class rdf:about="#LinguisticsContext">
<rdfs:subClassOf rdf:resource="#DomainContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#MeasuresContext -->

<owl:Class rdf:about="#MeasuresContext">
<rdfs:subClassOf rdf:resource="#DomainContext"/>

258

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#NonRepudiationContext -->

<owl:Class rdf:about="#NonRepudiationContext">
<rdfs:subClassOf rdf:resource="#SecurityContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#OutputContext -->

<owl:Class rdf:about="#OutputContext">
<rdfs:subClassOf rdf:resource="#SyntaxContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#PerformanceContext -->

<owl:Class rdf:about="#PerformanceContext">
<rdfs:subClassOf rdf:resource="#RuntimeContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#PlatformContext -->

<owl:Class rdf:about="#PlatformContext">
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#PostConditionContext -->

<owl:Class rdf:about="#PostConditionContext">
<rdfs:subClassOf rdf:resource="#EffectContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#PreConditionContext -->

<owl:Class rdf:about="#PreConditionContext">
<rdfs:subClassOf rdf:resource="#EffectContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ProtocolContext -->

<owl:Class rdf:about="#ProtocolContext">
<rdfs:subClassOf rdf:resource="#FunctionalContext"/>

</owl:Class>

259

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#QoSContext -->

<owl:Class rdf:about="#QoSContext">
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#RegulatoryContext -->

<owl:Class rdf:about="#RegulatoryContext">
<rdfs:subClassOf rdf:resource="#BusinessContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ReliabilityContext -->

<owl:Class rdf:about="#ReliabilityContext">
<rdfs:subClassOf rdf:resource="#RuntimeContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ReputationContext -->

<owl:Class rdf:about="#ReputationContext">
<rdfs:subClassOf rdf:resource="#BusinessContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#RuntimeContext -->

<owl:Class rdf:about="#RuntimeContext">
<rdfs:subClassOf rdf:resource="#QoSContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#SecurityContext -->

<owl:Class rdf:about="#SecurityContext">
<rdfs:subClassOf rdf:resource="#QoSContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#SemanticContext -->

<owl:Class rdf:about="#SemanticContext">
<rdfs:subClassOf rdf:resource="#DomainContext"/>

</owl:Class>

260

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#Service -->

<owl:Class rdf:about="#Service"/>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#StandardsContext -->

<owl:Class rdf:about="#StandardsContext">
<rdfs:subClassOf rdf:resource="#MeasuresContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#SyntaxContext -->

<owl:Class rdf:about="#SyntaxContext">
<rdfs:subClassOf rdf:resource="#FunctionalContext"/>

</owl:Class>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#TrustContext -->

<owl:Class rdf:about="#TrustContext">
<rdfs:subClassOf rdf:resource="#QoSContext"/>

</owl:Class>

<!-- http://www.w3.org/2002/07/owl#Thing -->

<owl:Class rdf:about="&owl;Thing"/>

<!--
///
//
// Individuals
//
///
-->

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#0.1 -->

<owl:Thing rdf:about="#0.1">
<rdf:type rdf:resource="#CostContext"/>
<hasCurrencyContext rdf:resource="#GBP"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#0.2 -->

261

<owl:Thing rdf:about="#0.2">
<rdf:type rdf:resource="#CostContext"/>
<hasCurrencyContext rdf:resource="#Euro"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#0.3 -->

<CostContext rdf:about="#0.3">
<rdf:type rdf:resource="&owl;Thing"/>
<hasCurrencyContext rdf:resource="#USD"/>

</CostContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#1 -->

<owl:Thing rdf:about="#1">
<rdf:type rdf:resource="#ReputationContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#AuthLevel1 -->

<AuthenticationContext rdf:about="#AuthLevel1">
<rdf:type rdf:resource="&owl;Thing"/>

</AuthenticationContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#AuthLevel2 -->

<AuthenticationContext rdf:about="#AuthLevel2">
<rdf:type rdf:resource="&owl;Thing"/>

</AuthenticationContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ConfLevel1 -->

<ConfidentialityContext rdf:about="#ConfLevel1">
<rdf:type rdf:resource="&owl;Thing"/>
<isPartOf rdf:resource="#ConfLevel1"/>

</ConfidentialityContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#ConfLevel2 -->

<ConfidentialityContext rdf:about="#ConfLevel2">
<rdf:type rdf:resource="&owl;Thing"/>
<isPartOf rdf:resource="#ConfLevel2"/>

</ConfidentialityContext>

262

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#CurrencyTypeVerification -->

<owl:Thing rdf:about="#CurrencyTypeVerification">
<rdf:type rdf:resource="#PreConditionContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#E-ClientFinancialService -->

<owl:Thing rdf:about="#E-ClientFinancialService">
<rdf:type rdf:resource="#Service"/>
<hasCostContext rdf:resource="#0.2"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#EncryptionVerification -->

<PreConditionContext rdf:about="#EncryptionVerification">
<rdf:type rdf:resource="&owl;Thing"/>

</PreConditionContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#Euro -->

<owl:Thing rdf:about="#Euro">
<rdf:type rdf:resource="#CurrencyContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#False -->

<NonRepudiationContext rdf:about="#False">
<rdf:type rdf:resource="#AuthenticationContext"/>
<rdf:type rdf:resource="#ConfidentialityContext"/>
<rdf:type rdf:resource="#IntegrityContext"/>
<rdf:type rdf:resource="&owl;Thing"/>

</NonRepudiationContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#GBP -->

<owl:Thing rdf:about="#GBP">
<rdf:type rdf:resource="#CurrencyContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#GlobalBankingService -->

<owl:Thing rdf:about="#GlobalBankingService">
<hasCostContext rdf:resource="#0.2"/>

</owl:Thing>

263

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#HSBCBankingService -->

<Service rdf:about="#HSBCBankingService">
<rdf:type rdf:resource="&owl;Thing"/>
<hasCostContext rdf:resource="#0.1"/>
<hasReputiationContext rdf:resource="#1"/>
<hasPreConditionContext rdf:resource="#CurrencyTypeVerification"/>
<hasPreConditionContext rdf:resource="#EncryptionVerification"/>
<hasSecurity rdf:resource="#1111"/>
<hasProtocolContext rdf:resource="#Pro1-HSBCBankingService"/>
<hasTrustContext rdf:resource="#TCert1"/>
<hasPreConditionContext rdf:resource="#UserAccountVerification"/>
<hasInputContext rdf:resource="#accountNumberIns"/>
<needConnectivityContext rdf:resource="#connectivity"/>
<hasPerformanceContext rdf:resource="#perf-HSBCBankingService"/>
<hasInputContext rdf:resource="#transactionAmountIns"/>

</Service>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#IntegriLevel1 -->

<IntegrityContext rdf:about="#IntegriLevel1">
<rdf:type rdf:resource="&owl;Thing"/>

</IntegrityContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#IntegriLevel2 -->

<IntegrityContext rdf:about="#IntegriLevel2">
<rdf:type rdf:resource="&owl;Thing"/>

</IntegrityContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#1111 -->

<SecurityContext rdf:about="#1111">
<rdf:type rdf:resource="&owl;Thing"/>
<hasNon-RepudiationContext rdf:resource="#True"/>
<hasConfidentialityContext rdf:resource="#True"/>
<hasAuthenticationContext rdf:resource="#True"/>
<hasIntegrityContext rdf:resource="#True"/>

</SecurityContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#NonRepLevel1 -->

<owl:Thing rdf:about="#NonRepLevel1">
<rdf:type rdf:resource="#NonRepudiationContext"/>

</owl:Thing>

264

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#NonRepLevel2 -->

<owl:Thing rdf:about="#NonRepLevel2">
<rdf:type rdf:resource="#NonRepudiationContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#Pro1-HSBCBankingService -->

<ProtocolContext rdf:about="#Pro1-HSBCBankingService">
<rdf:type rdf:resource="&owl;Thing"/>
<hasDefinition rdf:datatype="&xsd;string"

>Pre -
EncryptionVerification,
UserAccountVerification,
CurrencyTypeVerification.

</hasDefinition>
</ProtocolContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#TCert1 -->

<owl:Thing rdf:about="#TCert1">
<rdf:type rdf:resource="#TrustContext"/>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#True -->

<AuthenticationContext rdf:about="#True">
<rdf:type rdf:resource="#ConfidentialityContext"/>
<rdf:type rdf:resource="#IntegrityContext"/>
<rdf:type rdf:resource="#NonRepudiationContext"/>
<rdf:type rdf:resource="&owl;Thing"/>

</AuthenticationContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#USD -->

<CurrencyContext rdf:about="#USD">
<rdf:type rdf:resource="&owl;Thing"/>

</CurrencyContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#UserAccountVerification -->

<PreConditionContext rdf:about="#UserAccountVerification">
<rdf:type rdf:resource="&owl;Thing"/>

</PreConditionContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/

265

ServiceContextOntology.owl#accountNumberIns -->

<InputContext rdf:about="#accountNumberIns">
<rdf:type rdf:resource="&owl;Thing"/>
<hasData rdf:datatype="&xsd;string">ISS1234</hasData>

</InputContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#connectivity -->

<ConnectivityContext rdf:about="#connectivity">
<rdf:type rdf:resource="&owl;Thing"/>
<hasConnectivityStrength rdf:datatype="&xsd;string">> 5 Mbps
</hasConnectivityStrength>

</ConnectivityContext>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#perf-HSBCBankingService -->

<owl:Thing rdf:about="#perf-HSBCBankingService">
<rdf:type rdf:resource="#PerformanceContext"/>
<hasResponseTime rdf:datatype="&xsd;string">< 600 ms</hasResponseTime>

</owl:Thing>

<!-- http://www.semanticweb.org/ontologies/2010/3/28/
ServiceContextOntology.owl#transactionAmountIns -->

<owl:Thing rdf:about="#transactionAmountIns">
<rdf:type rdf:resource="#InputContext"/>
<hasData rdf:datatype="&xsd;string">3000</hasData>
<hasContext rdf:resource="#USD"/>

</owl:Thing>
</rdf:RDF>

<!-- Generated by the OWL API (version 2.2.1.1138) http://owlapi.sourceforge.net -->

A.7 Analysis of scenarios from classical business domain

We developed and analysed case-study scenarios from classical business domain,

e-learning domain and convenience services domain with the help of domain ex-

perts in our research group, [Pahl 2008]. In here, we extracted some scenarios

from the project delivarable D1 [Pahl 2008].

266

1). Scenario:

A user pays a utility bill through a service broker using his/her mobile device.

The broker is responsible for composition and execution of required services while

respecting dynamic requirements.

Assumptions:

The broker uses services provided by service providers and the broker is charged

for usage of services. Dynamic requirements attached to SLAs are monitored at

broker. The broker respects dynamic requirements so that it needs to set con-

straints for each process instance, such as that the cost of a process needs to be

less than 0.5 USD, the security setting of a process instance needs to be "1111", the

process execution time needs to be less than 400 ms, etc.

Dynamic requirements:

• Cost of a service

• Response time of a service

• Security setting of a service and process

• The user device needs to support a process output message type (e.g., pro-

cess output is a MMS message)

• The user device connection needs to support a message type (e.g., connection

need to support MMS messaging)

• The broker’s middleware updates need to support services

• The currency type parameter of a banking service, and user information

service should be similar (i.e., semantics of input and output parameters

need to be similar).

• The user information service and banking service should use message en-

cryption.

267

2). Scenario:

A client is booking a holiday in a remote country through a broker.

Assumptions:

A broker use services from service providers and the broker is charged for usage

of services.

Dynamic requirements:

• The hotel information service should provide trusted information.

• The hotel information service can provide information based on user pref-

erences (such as, parking facility, charges, shuttle services - the service uses

its own semantic frameworks to provide requested information)

• A local banking service may be needed for the payment process and a cur-

rency conversion service need to be used as a pre-condition of the banking

service.

• The currency type of input/output parameters of services needs to be matched.

• The local banking service and user information service need to use message

encryption.

• The execution time of the local banking service should not exceed process

execution-time constraint set by the broker.

• The linguistic information of services may need to be considered.

3). Scenario: E-learning courseware generator will generate a database course-

ware.

Assumptions: A courseware generator is the application system. Based on infor-

mation and knowledge resources, course content is automatically generated. This

case study reflects a knowledge- and information-intensive application.

268

Dynamic requirements:

• user device is a PDA

• a low speed GPRS connection

• trustworthiness of the content

• size of the database courseware suits for mobile device

4). Scenario: Multilingual convenience services - Technical support system (con-

venience service) for a software system (tool).

Assumptions: A sample technology-oriented service is considered in a multilin-

gual environment. Convenience services are integral to recently emerging service

and social networking platforms. These often span countries and languages. This

domain reflects a service-based application in modern information, communica-

tions and social networking environments.

Dynamic requirements:

• language of requested information

• user device information

• trustworthiness of the content

• regulatory compliance of the content

269

Appendix B

Context constraints

B.1 Logical view of an ECVC

We developed explicit context validation constraints using the Message Automa-

tion Workbench. The logical view of a cost constraint can be viewed as in figure

B.1,

If a constraint fails at validation, a failure report is generated. The failure report

can be defined as in figure B.1. These failure reports can be used for logging

and monitoring processes introduced in the validation monitoring architecture in

chapter 7.

B.2 Context reasoning service

ICVCs are implemented as reasoning services. A complete implementation of the

reasoning service used in the case study in chapter 6 (Example 3), can be presented

as follows,

package device;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import org.semanticweb.owlapi.apibinding.OWLManager;
import org.semanticweb.owlapi.model.*;

270

Figure B.1: A logical view of a cost constraint

import java.io.File;
import java.util.Iterator;
import java.util.Set;

@WebService()
public class Constraint_DeviceSupportMMS {

//Web service operation

@WebMethod(operationName = "OP_DeviceSupportMMS")
public String OP_DeviceSupportMMS(@WebParam(name = "device")
String device, @WebParam(name = "dFeature")
String dFeature, @WebParam(name = "uriOntology")
String uriOntology) {

//TODO write your implementation code here:
String ret="";
OWLClass c = null;
OWLNamedIndividual ins = null;
OWLObjectProperty Oprop = null;

try{
// Create the manager that we will use to load ontologies.
OWLOntologyManager manager = OWLManager.createOWLOntologyManager();

271

// Let’s load an ontology
//File file = new File("C:/NewProtoType/ServiceContext.owl");
File file = new File(uriOntology);
OWLOntology ontology = manager.loadOntologyFromOntologyDocument(file);

Set classes = ontology.getClassesInSignature();
for(Iterator itins = classes.iterator(); itins.hasNext();){

c = (OWLClass)itins.next();
if(c.getNNF().toString().contains("MobileDevice")){

//ret = c.getIndividuals(ontology).toString();
Set<OWLIndividual> individuals = c.getIndividuals(ontology);
//ret = individuals.toString();
//check for device instance
for(Iterator it2 = individuals.iterator(); it2.hasNext();){
ins = (OWLNamedIndividual)it2.next();
//ret = ins.toString();
if(ins.toString().contains(device)){

//ret = ins.toString();
Set<OWLObjectPropertyExpression> props =
ins.getObjectPropertyValues(ontology).keySet();

for(Iterator it3 = props.iterator(); it3.hasNext();){
Oprop = (OWLObjectProperty)it3.next();
if(Oprop.toString().contains("hasFacilities")){

//ret = Oprop.toString();
Set <OWLIndividual> ins2 =
ins.getObjectPropertyValues(Oprop, ontology);

for(Iterator it4= ins2.iterator(); it4.hasNext();){
if(it4.next().toString().contains(dFeature)){

ret = "true";
}else{

ret = "false";
}

}//for Feature

}//if object property

}//for object property

}//if individual

}//for select individual

}//if MobileDevice
}//for select class

}
catch (Exception e) {

ret = e.toString();
}

return ret;
}//end of Web method

}//end of class

272

Appendix C

Prototype : Constraints
instrumentation and validation
monitoring

C.1 Overview

The overall architecture for dynamic instrumentation of context constraints and

their validation monitoring is illustrated in figure 7.1. We implemented a proto-

type to illustrate dynamic instrumentation of context constraints and their valida-

tion monitoring at process run-time. The implementation aspects are illustrated

in the following sections.

C.2 Instrumentation and validation monitoring

The implementation of IVS (figure 7.1) with its operations and a data collector are

detailed. The IVS in chapter 7 is used to instrument and validate both ECVCs and

ICVCs described in chapter 6.

C.2.1 Instrumentation and validation operation for ECVCs

This section describes the implementation of OperationValidation, which en-

ables dynamic instrumentation and validation monitoring of ECVCs (chapter 6).

273

For example, the pre-conditions attached to PaymentService is illustrated.

The configuration file PreCon-PaymentService.mavconfig is hard coded, which

can pass as an input parameter.

Input: DynamicContext.xml, PreCon-PaymentService.mavconfig

Output: True or False

1 import javax.jws.WebMethod ;

2 import javax.jws.WebParam ;

3 import javax . jws .WebServ ice ;

4 import j a v a x . x m l . p a r s e r s . * ;

5 import c o m . s y s t e m w i r e . x l i n k i t . a p i . * ;

6 import org.w3c.dom. * ;

7

8 @WebService ()

9 publ i c c l a s s WebService_Validation {

10

11 @WebMethod(operationName = " Operat ionVal idat ion ")

12 publ i c S t r i n g opera t ion (@WebParam(name = " DynamicContext ")

13 S t r i n g DynamicContext , @WebParam(name = " u r l _ c o n f i g ") S t r i n g u r l _ c o n f i g) {

14 //the conf igurat ion f i l e i s hard coded f o r the i l l u s t r a t i o n purpose

15 S t r i n g u r l _ c o n f i g = " PreCon−PaymentService.mavconfig " ;

16 S t r i n g output = " " ;

17 Document doc = nul l ;

18 t r y {

19 DocumentBuilderFactory f a c t = DocumentBuilderFactory.newInstance () ;

20 DocumentBuilder bui lder = fact.newDocumentBuilder () ;

21 // DynamicContext conta ins context i n s t a n c e s

22 doc = b u i l d e r . p a r s e (DynamicContext) ;

23 } ca tch (Exception e) { output = e . t o S t r i n g () ; Sys tem.ex i t (1) ; }

24

25 Val idator v a l i d a t o r = new Val idator () ;

26 t r y {

27 v a l i d a t o r . i n i t i a l i s e (" . . . /personalDomain /conf ig " , u r l _ c o n f i g) ;

28 } ca tch (Val idatorExcept ion e) {

29 output = " Fa i led to i n i t i a l i z e " ;

30 Sys tem.ex i t (1) ;

31 }

32

33 // perform the v a l i d a t i o n

34 t r y {

35 Val idatorResul t r e s u l t = v a l i d a t o r . c h e c k (doc , Validator.REPORT_HTML) ;

36 switch (r e s u l t . g e t R e s u l t ()) {

37 case ValidatorResult.RESULT_PASS :

38 output= " Val idat ion True " ;

39 break ;

40 case ValidatorResult.RESULT_RULE_FAILED :

41 output = " Val idat ion False " ;

42 break ;

43 }// switch

44 } ca tch (Val idatorExcept ion e) {

274

45 output = " Fa i led to v a l i d a t e " ;

46 Sys tem.ex i t (1) ;

47 }

48

49 re turn output ;

50 }// end of v a l i d a t i o n method

51 }//end of c l a s s

The xlinkit.api is imported into the validation service. The Validator class

is used to create a validator instance, and initialise() method is used to

initialise the validator instance to a given configuration file. Once the validator

instance has been initialised, then the check() method is used to validate con-

straints attached in the configuration file with dynamic context instances attached

in the document object doc.

C.2.2 Instrumentation and validation operation for ICVCs

This example illustrates dynamic instrumentation of an ICVC (implemented as a

reasoning service) to reason about a device property (or connection data). The

ICVC profile attached to a para Name is selected dynamically. The binding and

SOAP message information of the ICVC is captured from the ICVC profile. The

binding and SOAP message are generated, and the context reasoning service is

invoked. The reasoning service, reasons a user device using the given ontology for

MMS message facility. This reasoning service outputs True or False accordingly.

Input: MobileDevice, N95, MMS, url ContextOntology

Output: True or False

1

2 // Web s e r v i c e operat ion

3 @WebMethod(operationName = " operation−ReasoningInvoke ")

4 publ i c S t r i n g operat ion_dec is ion (@WebParam(name = " para_Name ")

5 S t r i n g para_Name , @WebParam(name = " para_Value ")

6 S t r i n g para_Value , @WebParam(name = " para_Feature ")

7 S t r i n g para_Feature , @WebParam(name = " url_paraOntology ")

8 S t r i n g url_paraOntology) {

9

10 // s e l e c t i n g ICVC p r o f i l e (ICVCprofi le) ,

11 // t h i s in fo can be s tored in a database t a b l e

12 i f (para_Name.equalsIgnoreCase (" device ")) {

275

13 ur l_ ICVCprof i le_Constra i ntS erv i ce = " . . . / c o n s t r a i n t s /ICVCprofile_DeviceSupportMMSConstraint .xml " ;

14 } e l s e i f (para_Name.equalsIgnoreCase (" connection ")) {

15 ur l_ ICVCprof i le_Constra i ntS erv i ce = " . . . / c o n s t r a i n t s /ICVCprofi le_ConnectionDataConstraint .xml " ;

16 }

17

18

19 F i l e f i l e = new F i l e (ur l_ ICVCprof i le_Constra i ntS erv i ce) ;

20 i f (f i l e . e x i s t s ()) {

21 t r y {

22 //read ICVC p r o f i l e and get binding and soap message i n f o r

23 DocumentBuilderFactory f a c t = DocumentBuilderFactory.newInstance () ;

24 DocumentBuilder bui lder = fact.newDocumentBuilder () ;

25 Document doc = b u i l d e r . p a r s e (f i l e) ;

26

27 endPointUrl = doc.getElementsByTagName (" endPointUrl ") . i t em (0) .ge tTextContent () ;

28 serviceName = doc.getElementsByTagName (" serviceName ") . i t em (0) .ge tTextContent () ;

29 portName = doc.getElementsByTagName (" portName ") . i t em (0) .ge tTextContent () ;

30 operationName = doc.getElementsByTagName (" operationName ") . i t em (0) .ge tTextContent () ;

31 messagePrefix = doc.getElementsByTagName (" messagePrefix ") . i t em (0) .ge tTextContent () ;

32 messageNameSpace = doc.getElementsByTagName (" messageNameSpace ") . i t em (0) .ge tTextContent () ;

33 paraName = doc.getElementsByTagName (" paraName") . i t em (0) .ge tTextContent () ;

34 paraValue = para_Value ;//N95 , N12 , O2connection e t c .

35 paraNameFeature = doc.getElementsByTagName (" paraNameFeature ") . i t em (0) .ge tTextContent () ;

36 paraValueFeature = para_Feature ;//MMS

37 paraNameOntoUrl = doc.getElementsByTagName (" paraNameOntoUrl ") . i t em (0) .ge tTextContent () ;

38 paraValueOntoUrl = url_paraOntology ;// ontology ur l of device , connection

39

40

41 //invoking e x t e r n a l s e r v i c e

42 QName QserviceName = new QName(serviceName) ;

43 QName QportName = new QName(portName) ;

44

45 //Create a s e r v i c e and add at l e a s t one port to i t

46 Serv ice s e r v i c e = S e r v i c e . c r e a t e (QserviceName) ;

47 serv ice .add Po rt (QportName , SOAPBinding.SOAP11HTTP_BINDING , endPointUrl) ;

48 Dispatch dispatch = s e r v i c e . c r e a t e D i s p a t c h (QportName , SOAPMessage.class , Service.Mode.MESSAGE) ;

49

50 MessageFactory messageFactory = MessageFactory.newInstance () ;

51 SOAPMessage message = messageFactory.createMessage () ;

52

53 //Create o b j e c t s f o r the message par ts

54 SOAPPart soapPart = message.getSOAPPart () ;

55 SOAPEnvelope envelope = soapPar t .ge tEnvelope () ;

56 SOAPBody body = envelope.getBody () ;

57

58 // Construct the message payload.

59 SOAPElement operat ion = body.addChildElement (operationName , messagePrefix , messageNameSpace) ;

60 SOAPElement device = operation.addChildElement (paraName) ;

61 device.addTextNode (paraValue) ;

62 SOAPElement f e a t u r e = operation.addChildElement (paraNameFeature) ;

63 feature.addTextNode (paraValueFeature) ;

64 SOAPElement uriOntology = operation.addChildElement (paraNameOntoUrl) ;

65 uriOntology.addTextNode (paraValueOntoUrl) ;

66 message.saveChanges () ;

276

67

68 //invoke the reasoning s e r v i c e

69 SOAPMessage response = (SOAPMessage) dispatch . invoke (message) ;

70 r e t = response.getSOAPBody () . g e t F i r s t C h i l d () .ge tTextContent () ;

71

72 }

73 catch (Exception e) { r e t = e . t o S t r i n g () + " : while invoking " ; }

74

75 } e l s e { r e t =" F i l e not found " } ;

76

77 re turn r e t ;

78

79 }//end of web method

C.2.3 ICVC Profile

ICVC profile used in the above ICVC is,

1

2 <Serv ice id = " ICVCprofile_DeviceSupportMMSConstraint ">

3 <Binding >

4 <endPointUrl >ht tp :// l o c a l h o s t :8080/ ProTypeV1_WebApp/Constraint_DeviceSupportMMSService </endPointUrl >

5 <serviceName >Constraint_DeviceSupportMMSService </serviceName >

6 <portName>Constraint_DeviceSupportMMSPort</portName>

7 </Binding >

8 <SOAP>

9 <operationName>OP_DeviceSupportMMS</operationName>

10 <messagePrefix>ns2</messagePrefix>

11 <messageNameSpace>ht tp :// device /</messageNameSpace>

12 <paraName>device </paraName>

13 <paraValue>temp</paraValue>

14 <paraNameFeature>dFeature </paraNameFeature>

15 <paraValueFeature>temp</paraValueFeature>

16 <paraNameOntoUrl>uriOntology </paraNameOntoUrl>

17 <paraValueOntoUrl>temp</paraValueOntoUrl>

18 </SOAP>

19 </Serv ice >

The default value of each field is temp.

277

C.2.4 Data collector

We used monitoring directives and data collectors to monitor, collect and facili-

tate transitory context to the context space of the service process execution. The

response time data collector described in the case study in chapter 7 was imple-

mented as,

Input: InTime, OutTime

Output: ResponseTime context

1

2 @WebService ()

3 publ i c c l a s s WebService_ResponseTime_DataCollector {

4

5 //Web s e r v i c e operat ion

6

7 @WebMethod(operationName = " operation_ResponseTime ")

8 publ i c S t r i n g operation_ResponseTime (@WebParam(name = " InTime ")

9 S t r i n g InTime , @WebParam(name = " OutTime ")

10 S t r i n g OutTime) {

11

12 S t r i n g t1MS = InTime.subst r ing (9 , 1 1) ;

13 i n t t1MSint = I n t e g e r . p a r s e I n t (t1MS) ;

14

15 S t r i n g t2MS = OutTime.substring (9 , 1 1) ;

16 i n t t2MSint = I n t e g e r . p a r s e I n t (t2MS) ;

17

18 S t r i n g t1S = InTime.subst r ing (6 , 8) ;

19 i n t t 1 S i n t = I n t e g e r . p a r s e I n t (t1S) ;

20

21 S t r i n g t2S = OutTime.substring (6 , 8) ;

22 i n t t 2 S i n t = I n t e g e r . p a r s e I n t (t2S) ;

23

24 i n t out =0 ;

25 i f (t2MSint≥t1MSint) {

26 out = ((t2MSint − t1MSint) + (t 2 S i n t − t 1 S i n t)* 1 0 0 0) ;

27 } e l s e {

28 out = ((t2MSint + (t 2 S i n t−t 1 S i n t)* 1 0 0 0) − t1MSint) ;

29 }

30

31 //wri te data to an XML f i l e

32 t r y {

33 OutputStream fout = new FileOutputStream (" . . . /personalDomain /conf ig/RuntimeContext.xml ") ;

34 OutputStream bout = new BufferedOutputStream (fout) ;

35 OutputStreamWriter outW = new OutputStreamWriter (bout) ;

36

37 outW.write (" <? xml vers ion =\"1 . 0 \" ") ;

38 outW.write (" standalone =\"no\"?>\ r\n ") ;

39

278

40 outW.write (" < Context >\r\n ") ;

41 outW.write (" < RuntimeContext >\r\n ") ;

42 outW.write (" < ResponseTime > ") ;

43 outW.write (I n t e g e r . t o S t r i n g (out)) ;

44 outW.write (" </ ResponseTime>\r\n ") ;

45 outW.write (" </ RuntimeContext >\r\n ") ;

46 outW.write (" </ Context >\r\n ") ;

47

48 outW.flush () ;

49 outW.close () ;

50

51 } ca tch (UnsupportedEncodingException e) { }

52 ca tch (IOException e) { }

53

54 re turn (" RuntimeContext.xml ") ;

55 }

56

57 }

279

C.3 Performance evaluation

C.3.1 Design view of the instrumented process

Figure C.1: A part of instrumented process

This is a design view of an instrumented process, which we developed using

NeBeans IDE and its integrated BPEL designer.

280

C.3.2 Process coding

<?xml version="1.0" encoding="UTF-8"?>
<process

name="Process_ProType4"
targetNamespace="http://enterprise.netbeans.org/bpel/BpelModule_ProType4/Process_ProType4"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:sxt="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Trace"
xmlns:sxed="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Editor"
xmlns:tns="http://enterprise.netbeans.org/bpel/BpelModule_ProType4/Process_ProType4"
xmlns:ns0="http://www.ripedev.com/"
xmlns:sxxf="http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/XPathFunctions"
xmlns:ns1="http://microsoft.com/webservices/"
xmlns:ns2="http://webservices.daehosting.com/temperature"
xmlns:ns3="http://www.oorsprong.org/websamples.countryinfo">
<import namespace="http://j2ee.netbeans.org/wsdl/RequestReply"
location="Partners/RequestReply/RequestReply.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/ZipCode.asmxWrapper"
location="Partners/ZipCode.asmx/ZipCode.asmxWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://www.ripedev.com/"
location="Partners/ZipCode.asmx/ZipCode.asmx.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/LocalTime.asmxWrapper"
location="Partners/LocalTime.asmx/LocalTime.asmxWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://www.ripedev.com/"
location="Partners/LocalTime.asmx/LocalTime.asmx.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/TemperatureConversions.wsoWrapper"
location="Partners/TemperatureConversions.wso/TemperatureConversions.wsoWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://webservices.daehosting.com/temperature"
location="Partners/TemperatureConversions.wso/TemperatureConversions.wso.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/CountryInfoService.wsoWrapper"
location="Partners/CountryInfoService.wso/CountryInfoService.wsoWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://www.oorsprong.org/websamples.countryinfo"
location="Partners/CountryInfoService.wso/CountryInfoService.wso.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/WebService_ValidationServiceWrapper"
location="Partners/WebService_Validation/WebService_ValidationServiceWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://ProType1/"
location="Partners/WebService_Validation/WebService_ValidationService.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://enterprise.netbeans.org/bpel/
WebService_ProcessExecutionTimeInMillisecondsServiceWrapper"
location="Partners/WebService_ProcessExecutionTimeInMilliseconds/
WebService_ProcessExecutionTimeInMillisecondsServiceWrapper.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<import namespace="http://ProType1/"
location="Partners/WebService_ProcessExecutionTimeInMilliseconds/
WebService_ProcessExecutionTimeInMillisecondsService.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
<partnerLinks>

<partnerLink name="PartnerLink_Validation"
xmlns:tns="http://enterprise.netbeans.org/bpel/WebService_ValidationServiceWrapper"
partnerLinkType="tns:WebService_ValidationLinkTypeP4"
partnerRole="WebService_ValidationRole"/>
<partnerLink name="PartnerLink_Zip"

281

xmlns:tns="http://enterprise.netbeans.org/bpel/ZipCode.asmxWrapper"
partnerLinkType="tns:ZipCodeSoapLinkType" partnerRole="ZipCodeSoapRole"/>
<partnerLink name="PartnerLink_LocalTime"
xmlns:tns="http://enterprise.netbeans.org/bpel/LocalTime.asmxWrapper"
partnerLinkType="tns:LocalTimeSoapLinkType" partnerRole="LocalTimeSoapRole"/>
<partnerLink name="PartnerLink_TempConversion"
xmlns:tns="http://enterprise.netbeans.org/bpel/TemperatureConversions.wsoWrapper"
partnerLinkType="tns:TemperatureConversionsSoapTypeLinkType"
partnerRole="TemperatureConversionsSoapTypeRole"/>
<partnerLink name="PartnerLink_CountryInfo"
xmlns:tns="http://enterprise.netbeans.org/bpel/CountryInfoService.wsoWrapper"
partnerLinkType="tns:CountryInfoServiceSoapTypeLinkType"
partnerRole="CountryInfoServiceSoapTypeRole"/>
<partnerLink name="PartnerLink_results"
xmlns:tns="http://enterprise.netbeans.org/bpel/
WebService_ProcessExecutionTimeInMillisecondsServiceWrapper"
partnerLinkType="tns:WebService_ProcessExecutionTimeInMillisecondsLinkTypeR"
partnerRole="WebService_ProcessExecutionTimeInMillisecondsRole"/>
<partnerLink name="PartnerLink1" xmlns:tns="http://j2ee.netbeans.org/wsdl/RequestReply"
partnerLinkType="tns:RequestReply" myRole="RequestReplyPortTypeRole"/>

</partnerLinks>
<variables>

<variable name="ZipCodeToAreaCode_Out" messageType="ns0:ZipCodeToAreaCodeSoapOut"/>
<variable name="ZipCodeToAreaCode_In" messageType="ns0:ZipCodeToAreaCodeSoapIn"/>
<variable name="out_Time" type="xsd:string"/>
<variable name="Operation_ProcessExecutionTime_Out" xmlns:tns="http://ProType1/"
messageType="tns:operation_ProcessExecutionTimeResponse"/>
<variable name="Operation_ProcessExecutionTime_In" xmlns:tns="http://ProType1/"
messageType="tns:operation_ProcessExecutionTime"/>
<variable name="S5_PostValidation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S5_PostValidation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S5_PreValidation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S5_PreValidation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S4_PostValidation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S4_PostValidation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S4_PreValidation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S4_PreValidation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S3_PostValidation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S3_PostValidation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S3_Pre_Validation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S3_Pre_Validation_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="Post_Validation_S2_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="Post_Validation_S2_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="Pre_Validation_S2_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="Pre_Validation_S2_In" xmlns:tns="http://ProType1/"
messageType="tns:validation"/>
<variable name="S1_Post_Validation_Out" xmlns:tns="http://ProType1/"
messageType="tns:validationResponse"/>
<variable name="S1_Post_Validation_In" xmlns:tns="http://ProType1/"

282

messageType="tns:validation"/>
<variable name="PrePostTrue" type="xsd:string"/>
<variable name="PostFail" type="xsd:string"/>
<variable name="PreFail" type="xsd:string"/>
<variable name="S1_Pre_Validation_Out"
xmlns:tns="http://ProType1/" messageType="tns:validationResponse"/>
<variable name="S1_Pre_Validation_In"
xmlns:tns="http://ProType1/" messageType="tns:validation"/>
<variable name="CountryCurrency_Out"
xmlns:tns="http://www.oorsprong.org/websamples.countryinfo"
messageType="tns:CountryCurrencySoapResponse"/>
<variable name="CountryCurrency_In"
xmlns:tns="http://www.oorsprong.org/websamples.countryinfo"
messageType="tns:CountryCurrencySoapRequest"/>
<variable name="CelciusToFahrenheit_Out"
xmlns:tns="http://webservices.daehosting.com/temperature"
messageType="tns:CelciusToFahrenheitSoapResponse"/>
<variable name="CelciusToFahrenheit_In"
xmlns:tns="http://webservices.daehosting.com/temperature"
messageType="tns:CelciusToFahrenheitSoapRequest"/>
<variable name="LocalTimeByZipCode_Out" messageType="ns0:LocalTimeByZipCodeSoapOut"/>
<variable name="LocalTimeByZipCode_In" messageType="ns0:LocalTimeByZipCodeSoapIn"/>
<variable name="in_Time" type="xsd:string"/>
<variable name="ZipCodeToCityState_Out" xmlns:s0="http://www.ripedev.com/"
messageType="s0:ZipCodeToCityStateSoapOut"/>
<variable name="ZipCodeToCityState_In" xmlns:s0="http://www.ripedev.com/"
messageType="s0:ZipCodeToCityStateSoapIn"/>
<variable name="P4_RequestReplyOperation_Out"
xmlns:tns="http://j2ee.netbeans.org/wsdl/RequestReply"
messageType="tns:RequestReplyOperationResponse"/>
<variable name="P4_RequestReplyOperation_In"
xmlns:tns="http://j2ee.netbeans.org/wsdl/RequestReply"
messageType="tns:RequestReplyOperationRequest"/>

</variables>
<sequence>

<receive name="P4_Receive1" createInstance="yes" partnerLink="PartnerLink1"
operation="RequestReplyOperation"
xmlns:tns="http://j2ee.netbeans.org/wsdl/RequestReply"
portType="tns:RequestReplyPortType" variable="P4_RequestReplyOperation_In"/>
<assign name="Assign1">

<copy>
<from variable="P4_RequestReplyOperation_In" part="part1"></from>
<to variable="P4_RequestReplyOperation_Out" part="part1"/>

</copy>
<copy>

<from>sxxf:current-time()</from>
<to variable="in_Time"/>

</copy>
<copy>

<from>’Pre Conditions Fail : ’</from>
<to variable="PreFail"/>

</copy>
<copy>

<from>’PrePostTrue : ’</from>
<to variable="PrePostTrue"/>

</copy>
<copy>

<from>’PostconditionFail: ’</from>
<to variable="PostFail"/>

</copy>
</assign>
<assign name="Assign14">

<copy>
<from>’Context_BillService.xml’</from>

283

<to>$S1_Pre_Validation_In.parameters/datafile</to>
</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S1_Pre_Validation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_S1_Pre_Validation" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation"
inputVariable="S1_Pre_Validation_In" outputVariable="S1_Pre_Validation_Out"/>
<if name="If1">

<condition>$S1_Pre_Validation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<sequence name="Sequence1">

<assign name="Assign2">
<copy>

<from>’12288’</from>
<to>$ZipCodeToCityState_In.parameters/ns0:ZipCode</to>

</copy>
</assign>
<invoke name="Invoke_ZipCode" partnerLink="PartnerLink_Zip"
operation="ZipCodeToCityState" portType="ns0:ZipCodeSoap"
inputVariable="ZipCodeToCityState_In" outputVariable="ZipCodeToCityState_Out"/>
<assign name="Assign3">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1,
$ZipCodeToCityState_Out.parameters/ns0:ZipCodeToCityStateResult/
ns0:anyType)</from>

<to variable="P4_RequestReplyOperation_Out" part="part1"/>
</copy>

</assign>
<assign name="Assign17">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S1_Post_Validation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S1_Post_Validation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_PostVal_S1" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation" inputVariable="S1_Post_Validation_In"
outputVariable="S1_Post_Validation_Out"/>
<if name="If2">

<condition>$S1_Post_Validation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<assign name="Assign15">

<copy>
<from>concat($PrePostTrue, ’S1:’)</from>
<to variable="PrePostTrue"/>

</copy>
</assign>
<else>

<assign name="Assign16">
<copy>

<from>concat($PostFail, ’S1 : ’)</from>
<to variable="PostFail"/>

</copy>
</assign>

</else>
</if>

284

</sequence>
<else>

<assign name="Assign13">
<copy>

<from>concat($PreFail, ’:S1:’)</from>
<to variable="PreFail"/>

</copy>
</assign>

</else>
</if>
<assign name="Assign18">

<copy>
<from>’Context_BillService.xml’</from>
<to>$Pre_Validation_S2_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$Pre_Validation_S2_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_Val_S2" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation"
inputVariable="Pre_Validation_S2_In" outputVariable="Pre_Validation_S2_Out"/>
<if name="If3">

<condition>$Pre_Validation_S2_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<sequence name="Sequence2">

<assign name="Assign5">
<copy>

<from>’12288’</from>
<to>$LocalTimeByZipCode_In.parameters/ns0:ZipCode</to>

</copy>
</assign>
<invoke name="Invoke_LocalTime" partnerLink="PartnerLink_LocalTime"
operation="LocalTimeByZipCode" portType="ns0:LocalTimeSoap"
inputVariable="LocalTimeByZipCode_In" outputVariable="LocalTimeByZipCode_Out"/>
<assign name="Assign6">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1,
$LocalTimeByZipCode_Out.parameters/ns0:LocalTimeByZipCodeResult)
</from>

<to variable="P4_RequestReplyOperation_Out" part="part1"/>
</copy>

</assign>
<assign name="Assign20">

<copy>
<from>’Context_BillService.xml’</from>
<to>$Post_Validation_S2_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$Post_Validation_S2_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_PostVal_S2" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation" inputVariable="Post_Validation_S2_In"
outputVariable="Post_Validation_S2_Out"/>
<if name="If4">

<condition>$Post_Validation_S2_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<assign name="Assign21">

<copy>

285

<from>concat($PrePostTrue, ’S2 : ’)</from>
<to variable="PrePostTrue"/>

</copy>
</assign>
<else>

<assign name="Assign22">
<copy>

<from>concat($PostFail, ’S2 : ’)</from>
<to variable="PostFail"/>

</copy>
</assign>

</else>
</if>

</sequence>
<else>

<assign name="Assign19">
<copy>

<from>concat($PreFail, ’S2 : ’)</from>
<to variable="PreFail"/>

</copy>
</assign>

</else>
</if>
<assign name="Assign23">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S3_Pre_Validation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S3_Pre_Validation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_Val_S3" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation"
inputVariable="S3_Pre_Validation_In" outputVariable="S3_Pre_Validation_Out"/>
<if name="If5">

<condition>$S3_Pre_Validation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<sequence name="Sequence3">

<assign name="Assign7">
<copy>

<from>’12288’</from>
<to>$ZipCodeToAreaCode_In.parameters/ns0:ZipCode</to>

</copy>
</assign>
<invoke name="Invoke_pn" partnerLink="PartnerLink_Zip"
operation="ZipCodeToAreaCode"
portType="ns0:ZipCodeSoap" inputVariable="ZipCodeToAreaCode_In"
outputVariable="ZipCodeToAreaCode_Out"/>
<assign name="Assign8">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1,
$ZipCodeToAreaCode_Out.parameters/ns0:ZipCodeToAreaCodeResult/
ns0:anyType)</from>

<to variable="P4_RequestReplyOperation_Out" part="part1"/>
</copy>

</assign>
<assign name="Assign25">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S3_PostValidation_In.parameters/datafile</to>

</copy>

286

<copy>
<from>’config_BillService.xml’</from>
<to>$S3_PostValidation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_PostVal_S3" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation" inputVariable="S3_PostValidation_In"
outputVariable="S3_PostValidation_Out"/>
<if name="If6">

<condition>$S3_PostValidation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<assign name="Assign26">

<copy>
<from>concat($PrePostTrue, ’S3 : ’)</from>
<to variable="PrePostTrue"/>

</copy>
</assign>
<else>

<assign name="Assign27">
<copy>

<from>concat($PostFail, ’S3 : ’)</from>
<to variable="PostFail"/>

</copy>
</assign>

</else>
</if>

</sequence>
<else>

<assign name="Assign24">
<copy>

<from>concat($PreFail, ’S3 : ’)</from>
<to variable="PreFail"/>

</copy>
</assign>

</else>
</if>
<assign name="Assign28">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S4_PreValidation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S4_PreValidation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_PreVal_S4" partnerLink="PartnerLink_Validation"
operation="validation"
xmlns:tns="http://ProType1/" portType="tns:WebService_Validation"
inputVariable="S4_PreValidation_In" outputVariable="S4_PreValidation_Out"/>

<if name="If7">
<condition>$S4_PreValidation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<sequence name="Sequence4">

<assign name="Assign9">
<copy>

<from>30</from>
<to>$CelciusToFahrenheit_In.parameters/ns2:nCelcius</to>

</copy>
</assign>
<invoke name="Invoke_TemperatureConvert"
partnerLink="PartnerLink_TempConversion"
operation="CelciusToFahrenheit" portType="ns2:TemperatureConversionsSoapType"

287

inputVariable="CelciusToFahrenheit_In"
outputVariable="CelciusToFahrenheit_Out"/>
<assign name="Assign10">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1,
$CelciusToFahrenheit_Out.parameters/ns2:CelciusToFahrenheitResult)
</from>

<to variable="P4_RequestReplyOperation_Out" part="part1"/>
</copy>

</assign>
<assign name="Assign30">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S4_PostValidation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S4_PostValidation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_S4_PostVal" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"
portType="tns:WebService_Validation" inputVariable="S4_PostValidation_In"
outputVariable="S4_PostValidation_Out"/>
<if name="If8">

<condition>$S4_PostValidation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<assign name="Assign31">

<copy>
<from>concat($PrePostTrue, ’S4 : ’)</from>
<to variable="PrePostTrue"/>

</copy>
</assign>
<else>

<assign name="Assign32">
<copy>

<from>concat($PostFail, ’S4 : ’)</from>
<to variable="PostFail"/>

</copy>
</assign>

</else>
</if>

</sequence>
<else>

<assign name="Assign29">
<copy>

<from>concat($PreFail, ’S4 : ’)</from>
<to variable="PreFail"/>

</copy>
</assign>

</else>
</if>
<assign name="Assign33">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S5_PreValidation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S5_PreValidation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_S5_PreVal" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/"

288

portType="tns:WebService_Validation"
inputVariable="S5_PreValidation_In" outputVariable="S5_PreValidation_Out"/>
<if name="If9">

<condition>$S5_PreValidation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<sequence name="Sequence5">

<assign name="Assign11">
<copy>

<from>’LK’</from>
<to>$CountryCurrency_In.parameters/ns3:sCountryISOCode</to>

</copy>
</assign>
<invoke name="Invoke_CountryInfo" partnerLink="PartnerLink_CountryInfo"
operation="CountryCurrency" portType="ns3:CountryInfoServiceSoapType"
inputVariable="CountryCurrency_In" outputVariable="CountryCurrency_Out"/>
<assign name="Assign12">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1,
$CountryCurrency_Out.parameters/ns3:CountryCurrencyResult)</from>

<to variable="P4_RequestReplyOperation_Out" part="part1"/>
</copy>

</assign>
<assign name="Assign35">

<copy>
<from>’Context_BillService.xml’</from>
<to>$S5_PostValidation_In.parameters/datafile</to>

</copy>
<copy>

<from>’config_BillService.xml’</from>
<to>$S5_PostValidation_In.parameters/conf</to>

</copy>
</assign>
<invoke name="Invoke_PostVal_S5" partnerLink="PartnerLink_Validation"
operation="validation" xmlns:tns="http://ProType1/" portType=
"tns:WebService_Validation" inputVariable="S5_PostValidation_In"
outputVariable="S5_PostValidation_Out"/>
<if name="If10">

<condition>$S5_PostValidation_Out.parameters/return =
’Pre condition: rules are valid’</condition>
<assign name="Assign36">

<copy>
<from>concat($PrePostTrue, ’S5 : ’)</from>
<to variable="PrePostTrue"/>

</copy>
</assign>
<else>

<assign name="Assign37">
<copy>

<from>concat($PostFail, ’S5 : ’)</from>
<to variable="PostFail"/>

</copy>
</assign>

</else>
</if>

</sequence>
<else>

<assign name="Assign34">
<copy>

<from>concat($PreFail, ’S5 : ’)</from>
<to variable="PreFail"/>

</copy>
</assign>

</else>
</if>

289

<assign name="Assign40">
<copy>

<from>sxxf:current-time()</from>
<to variable="out_Time"/>

</copy>
</assign>
<assign name="Assign4">

<copy>
<from>concat($PrePostTrue, $PostFail, $PreFail,
$P4_RequestReplyOperation_Out.part1,’:In Time=’, $in_Time,
’:Out Time=’, $out_Time)</from>
<to variable="P4_RequestReplyOperation_Out" part="part1"/>

</copy>
</assign>
<assign name="Assign39">

<copy>
<from variable="out_Time"/>
<to>$Operation_ProcessExecutionTime_In.parameters/out_Time</to>

</copy>
<copy>

<from variable="in_Time"/>
<to>$Operation_ProcessExecutionTime_In.parameters/in_Time</to>

</copy>
<copy>

<from variable="PrePostTrue"/>
<to>$Operation_ProcessExecutionTime_In.parameters/results</to>

</copy>
</assign>
<invoke name="Invoke_ProcessExecutionTime" partnerLink="PartnerLink_results"
operation="operation_ProcessExecutionTime" xmlns:tns="http://ProType1/"
portType="tns:WebService_ProcessExecutionTimeInMilliseconds"
inputVariable="Operation_ProcessExecutionTime_In"
outputVariable="Operation_ProcessExecutionTime_Out"/>
<assign name="Assign38">

<copy>
<from>concat($P4_RequestReplyOperation_Out.part1, ’ :
Process Execution Time in MS = ’,
$Operation_ProcessExecutionTime_Out.parameters/return)</from>
<to variable="P4_RequestReplyOperation_Out" part="part1"/>

</copy>
</assign>
<reply name="P4_Reply1" partnerLink="PartnerLink1"
operation="RequestReplyOperation"
xmlns:tns="http://j2ee.netbeans.org/wsdl/RequestReply"
portType="tns:RequestReplyPortType"
variable="P4_RequestReplyOperation_Out"/>

</sequence>
</process>

290

Appendix D

Questionnaire

We made the questionnaire available online, which can be found at

http : //www.computing.dcu.ie/ kyapa/MySurvey.htm.

The first page provides an introduction about our research so that participants can

get an high level idea about the survey questions. We believe that will help to get

a useful feedback from them. A part of the survey Web interface can be viewed as

in figure D.1.

Figure D.1: Survey - Web interface

291

Questionnaire

This questionnaire is designed to determine the opinions of experts about
requirements at Web service application runtime. The experts are selected from
various organisations, in the service computing domain, around the world - Ireland,
UK, USA, Sri Lanka, Iran, India etc. The feedback is used to evaluate the context
model, which is one of the contributions in my PhD thesis. As a quid pro quo, I am
happy to acknowledge you and your organisation in my thesis.

Name (Optional): Organisation (Optional): Current job role (Optional):
Qualification [BSc. MSc. PhD (Major)] (Optional): Are you happy to be acknowledged? [Yes/No]

Expertise:
 [] Service based applications
 [] Distributed systems applications
 [] Cloud computing applications
 [] Content-oriented service based application
 [] Social network applications
 [] Mobile/Telecommunication applications
 [] Ubiquitous systems/applications
 [] Context aware applications
 [] Semantic Web applications
 [] Other

Q1.
Services have quality of service properties.
Q1(a). Do you think the following properties of a service can be requirements in
a service process at process runtime?
 Strongly

Agree
Agree No

Opinion
Disagree Strongly

Disagree
[Performance – the measurement
of the time behaviour of services
in terms of response time]

[Reliability – the ability of a
service to be executed within the
maximum expected time frame]

[Availability – the probability of a
service to be accessible]

[Cost - the price of a service in a
currency type]

[Reputation - a measure of
trustworthiness of a service]

[Regulatory compliance - a
measure of how well a service is
aligned with government or
organisational regulations]

[Security - the integrity,
authentication, non-repudiation
and confidentiality aspects of a
service]

[Trust - refers to the trust
relationships between client (user
/broker) and provider]

292

Q1(b). Can you think of any other quality of service properties, which can be
requirements in a service process at process runtime?

Q2.

The ISO/IEC 9126 tries to develop a common understanding of objectives and goals
of a project. The quality model of ISO/IEC 9126 classifies software quality in a
structured set of characteristics and sub-characteristics. However, our concern is
dynamic Web service context in Web service applications, in which some aspects
which are not covered in ISO/IEC 9126 deserved to be addressed. We reused some
aspects in ISO/IEC 9126, which we found necessary.

We define dynamic Web service context as client, provider or service-related
information, which enables or enhances effective composition and collaboration
between Web services. This effective composition and collaboration related to Web
services composition and collaboration at Web service application runtime.

Q2(a). Do you think the properties defined in the above question (Performance,
Reliability, Availability, etc.), properly cover the scope of dynamic Web service
context attached to Quality of Service properties (in ISO/IEC 9126)?

Strongly Agree Agree No Opinion Disagree Strongly Disagree

Q2(b). Do you have any comment?

Q3.

Each application domain may need/have its own requirements for interacting with
Web services or service processes.
Q3(a). Do you think the following aspects of an application domain can create
requirements in a service process at process runtime?

 Strongly
Agree

Agree No
Opinion

Disagree Strongly
Disagree

[Semantics - refer to semantic
frameworks in terms of vocabularies,
taxonomies and Ontologies]

[Linguistics - refer to the languages
used to express queries, functionalities
and responses]

[Measures and Standards - refer to
locally used standards for
measurements, currencies etc.]

293

Q3(b). Can you think of any other application domain dependent properties, which
can create requirements in a service process at process runtime?

Q4.

Platform refers to the technical environment in which a service or process is executed.
Q4(a). Do you think the followings can create requirements in a service process
at process runtime?

 Strongly
Agree

Agree No
Opinion

Disagree Strongly
Disagree

[Device - refers to the
computer/hardware platform in
which a service or process is
executed]

[Operating system - refers to the
software platform of a
device/hardware in which a
service or process is executed]

[Connectivity - refers to the
network infrastructure used by
the service to communicate]

Q4(b). Can you find any other platform dependent properties, which can create
requirements in a service process at process runtime?

Q5.

Functional properties describe operational features of services.
Q5(a). Do you think the following aspects attached to a service can create
requirements in a service process at process runtime?

 Strongly
Agree

Agree No
Opinion

Disagree Strongly
Disagree

[Semantics relevant to Input /
Output parameters of a service]

[Pre-conditions/Post-conditions of
a service]

[Protocol information - refers to
invoking pre-conditions/Post-
conditions in a particular order
relevant to a Web service]

294

Q5(b). Can you find any other functional properties, which can create requirements in
a service process at process runtime?

Q6.

Context notion is widely used in pervasive computing and mobile computing
applications to define dynamic aspects, such as temporal and locative aspects. We
extended this concept and defined dynamic service context as client, provider or
service-related information, which enables or enhances effective composition and
collaboration between them. This effective composition and collaboration attached to
service composition and collaboration at process runtime. The dynamic service
context was modelled in a context model ontology, which facilitates shared
conceptualization and reasoning of dynamic aspects attached to service processes.
One concern is defining requirements, which emerge at process runtime as context
constraints, focusing requirements validation at process runtime.

Q6(a). Do you think the definition of dynamic service context from the
perspective of dynamic aspects of service processes is informative enough?

Strongly Agree Agree No Opinion Disagree Strongly
Disagree

Q6(b). Do you have any comment?

295

296

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem definition
	1.2.1 Central hypothesis
	1.2.2 Detailed research problems

	1.3 Contributions
	1.4 Organization of the thesis

	2 Literature review
	2.1 Introduction
	2.2 Notion of context for Web services
	2.2.1 Context definition
	2.2.2 Context categorization

	2.3 Context modeling and manipulation
	2.3.1 Context modeling
	2.3.2 Context manipulation and reasoning

	2.4 Constraints generation and validation monitoring
	2.4.1 Constraints generation
	2.4.2 Constraints instrumentation and validation monitoring

	2.5 Discussion

	3 Contextualization and context constraints management framework
	3.1 Motivation
	3.2 Contextualization and context constraints management framework
	3.2.1 Dynamic service context modeling
	3.2.2 Manipulation and reasoning context specifications
	3.2.3 Context constraints generation
	3.2.4 Constraints instrumentation and validation monitoring

	3.3 Chapter summary

	4 Context modeling
	4.1 Introduction
	4.2 Context model taxonomy
	4.2.1 Overview
	4.2.2 Dynamic service context
	4.2.3 Taxonomy development methodology
	4.2.4 Context model taxonomy definition
	4.2.5 Non-taxonomic relationships

	4.3 Context modeling
	4.3.1 Ontology-based context modeling
	4.3.2 Description logic - SHOIN(D)
	4.3.3 Ontology-based service context formalisation

	4.4 Case study - Context model ontology integration
	4.4.1 Tool support
	4.4.2 Case study

	4.5 Chapter summary

	5 Context manipulation and reasoning
	5.1 Introduction
	5.2 Context model specification and service context profiles
	5.3 Context manipulation operators
	5.3.1 Service-level context manipulation
	5.3.2 Process-level context manipulation

	5.4 Context composition
	5.5 Context reasoning
	5.5.1 Subsumption
	5.5.2 Consistency checking
	5.5.3 Context derivation

	5.6 Case study
	5.7 Chapter summary

	6 Context constraints
	6.1 Introduction
	6.2 Context constraints modeling
	6.2.1 Context model utilisation for constraints
	6.2.2 Class model for context constraints modeling
	6.2.3 Context constraints (CC)

	6.3 Context constraints generation
	6.3.1 Tool support
	6.3.2 ECVC generation process (ECVCGProcess)
	6.3.3 ECVC generation algorithm (ECVCGAlgorithm)
	6.3.4 ICVCs generation

	6.4 Case study - Context constraints generation
	6.4.1 Tool support
	6.4.2 Case study

	6.5 Chapter summary

	7 Instrumentation and validation monitoring
	7.1 Introduction
	7.1.1 Overview
	7.1.2 Overall architecture description

	7.2 Context constraint configurator generation for ECVCs
	7.2.1 Generating constraint sets
	7.2.2 Selecting constraints (Constraint selector)
	7.2.3 Configuring constraints (Configurator)

	7.3 Process instrumentation and validation monitoring
	7.3.1 Tool support
	7.3.2 Instrumentation and validation monitoring
	7.3.3 Instrumentation and validation service (IVS)
	7.3.4 Data collectors
	7.3.5 Discussion

	7.4 Case study
	7.5 Chapter summary

	8 Evaluation
	8.1 Introduction
	8.1.1 Aims
	8.1.2 Evaluation strategy

	8.2 Context model ontology
	8.2.1 Overview
	8.2.2 Case study based evaluation
	8.2.3 Discussion : Case study based evaluation
	8.2.4 Analysis of expert opinions : Questions and answers
	8.2.5 Analysis of expert opinions : Results and discussion
	8.2.6 Summary and Discussion

	8.3 Context manipulation and composition
	8.3.1 Overview
	8.3.2 Validity : Case study based empirical evaluation
	8.3.3 Discussion

	8.4 Context constraints generation
	8.4.1 Overview
	8.4.2 Performance : Analytical evaluation
	8.4.3 Discussion

	8.5 Constraints instrumentation and validation monitoring
	8.5.1 Overview
	8.5.2 Performance : Analytical evaluation
	8.5.3 Performance : Experimental evaluation
	8.5.4 Tool support and discussion

	8.6 Threats to validity
	8.6.1 Empirical methods
	8.6.2 Analytic methods

	9 Conclusions
	9.1 Overview
	9.2 Summary of contributions
	9.3 Discussion and future work
	9.3.1 Discussion
	9.3.2 Future work

	Bibliography
	A OWL-based implementation of the context model ontology
	A.1 Functional context
	A.2 Quality of service context
	A.3 Domain context
	A.4 Platform context
	A.5 Context derivation - SWRL/OWL rule
	A.6 OWL-based implementation of context model ontology
	A.7 Analysis of scenarios from classical business domain

	B Context constraints
	B.1 Logical view of an ECVC
	B.2 Context reasoning service

	C Prototype : Constraints instrumentation and validation monitoring
	C.1 Overview
	C.2 Instrumentation and validation monitoring
	C.2.1 Instrumentation and validation operation for ECVCs
	C.2.2 Instrumentation and validation operation for ICVCs
	C.2.3 ICVC Profile
	C.2.4 Data collector

	C.3 Performance evaluation
	C.3.1 Design view of the instrumented process
	C.3.2 Process coding

	D Questionnaire

