105 research outputs found

    Hybrid Genetic Bees Algorithm applied to Single Machine Scheduling with Earliness and Tardiness Penalties

    Get PDF
    This paper presents a hybrid Genetic-Bees Algorithm based optimised solution for the single machine scheduling problem. The enhancement of the Bees Algorithm (BA) is conducted using the Genetic Algorithm's (GA's) operators during the global search stage. The proposed enhancement aims to increase the global search capability of the BA gradually with new additions. Although the BA has very successful implementations on various type of optimisation problems, it has found that the algorithm suffers from weak global search ability which increases the computational complexities on NP-hard type optimisation problems e.g. combinatorial/permutational type optimisation problems. This weakness occurs due to using a simple global random search operation during the search process. To reinforce the global search process in the BA, the proposed enhancement is utilised to increase exploration capability by expanding the number of fittest solutions through the genetical variations of promising solutions. The hybridisation process is realised by including two strategies into the basic BA, named as â\u80\u9creinforced global searchâ\u80\u9d and â\u80\u9cjumping functionâ\u80\u9d strategies. The reinforced global search strategy is the first stage of the hybridisation process and contains the mutation operator of the GA. The second strategy, jumping function strategy, consists of four GA operators as single point crossover, multipoint crossover, mutation and randomisation. To demonstrate the strength of the proposed solution, several experiments were carried out on 280 well-known single machine benchmark instances, and the results are presented by comparing to other well-known heuristic algorithms. According to the experiments, the proposed enhancements provides better capability to basic BA to jump from local minima, and GBA performed better compared to BA in terms of convergence and the quality of results. The convergence time reduced about 60% with about 30% better results for highly constrained jobs

    Machine scheduling using the Bees algorithm

    Get PDF
    Single-machine scheduling is the process of assigning a group of jobs to a machine. The jobs are arranged so that a performance measure, such as the total processing time or the due date, may be optimised. Various swarm intelligence techniques as well as other heuristic approaches have been developed for machine scheduling. Previously, the Bees Algorithm, a heuristic optimisation procedure that mimics honeybee foraging, was successfully employed to solve many problems in continuous domains. In this thesis, the Bees Algorithm is presented to solve various single-machine scheduling benchmarks, all of which, chosen to test the performance of the algorithm, are NP-hard and cannot be solved to optimality within polynomially-bounded time. To apply the Bees Algorithm for machine scheduling, a new neighbourhood structure is defined. Several local search algorithms are combined with the Bees Algorithm. This work also introduces an enhanced Bees Algorithm. Several additional features are considered to improve the efficiency of the algorithm such as negative selection, chemotaxis, elimination and dispersal which is similar to the ‘site abandonment’ strategy used in the original algorithm, and neighbourhood change. A different way to deploy neighbourhood procedures is also presented. ii Three categories of machine scheduling problems, namely, single machine with a common due date, total weighted tardiness, and total weighted tardiness with sequence-dependent setup are used to test the enhanced Bees Algorithm’s performance. The results obtained compare well with those produced by the basic version of the algorithm and by other well-known techniques

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Multicriteria hybrid flow shop scheduling problem: literature review, analysis, and future research

    Get PDF
    This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future researchon this topic, including the following: (i) use uniform and dedicated parallel machines, (ii) use exact and metaheuristics approaches, (iv) develop lower and uppers bounds, relations of dominance and different search strategiesto improve the computational time of the exact methods,  (v) develop  other types of metaheuristic, (vi) work with anticipatory setups, and (vii) add constraints faced by the production systems itself

    Solving Integrated Process Planning, Dynamic Scheduling, and Due Date Assignment Using Metaheuristic Algorithms

    Get PDF
    Because the alternative process plans have significant contributions to the production efficiency of a manufacturing system, researchers have studied the integration of manufacturing functions, which can be divided into two groups, namely, integrated process planning and scheduling (IPPS) and scheduling with due date assignment (SWDDA). Although IPPS and SWDDA are well-known and solved problems in the literature, there are limited works on integration of process planning, scheduling, and due date assignment (IPPSDDA). In this study, due date assignment function was added to IPPS in a dynamic manufacturing environment. And the studied problem was introduced as dynamic integrated process planning, scheduling, and due date assignment (DIPPSDDA). The objective function of DIPPSDDA is to minimize earliness and tardiness (E/T) and determine due dates for each job. Furthermore, four different pure metaheuristic algorithms which are genetic algorithm (GA), tabu algorithm (TA), simulated annealing (SA), and their hybrid (combination) algorithms GA/SA and GA/TA have been developed to facilitate and optimize DIPPSDDA on the 8 different sized shop floors. The performance comparisons of the algorithms for each shop floor have been given to show the efficiency and effectiveness of the algorithms used. In conclusion, computational results show that the proposed combination algorithms are competitive, give better results than pure metaheuristics, and can effectively generate good solutions for DIPPSDDA problems

    An evolutionary approach for solving the job shop scheduling problem in a service industry

    Get PDF
    In this paper, an evolutionary-based approach based on the discrete particle swarm optimization (DPSO) algorithm is developed for finding the optimum schedule of a registration problem in a university. Minimizing the makespan, which is the total length of the schedule, in a real-world case study is considered as the target function. Since the selected case study has the characteristics of job shop scheduling problem (JSSP), it is categorized as a NP-hard problem which makes it difficult to be solved by conventional mathematical approaches in relatively short computation time

    Cost Factor Focused Scheduling and Sequencing: A Neoteric Literature Review

    Get PDF
    The hastily emergent concern from researchers in the application of scheduling and sequencing has urged the necessity for analysis of the latest research growth to construct a new outline. This paper focuses on the literature on cost minimization as a primary aim in scheduling problems represented with less significance as a whole in the past literature reviews. The purpose of this paper is to have an intensive study to clarify the development of cost-based scheduling and sequencing (CSS) by reviewing the work published over several parameters for improving the understanding in this field. Various parameters, such as scheduling models, algorithms, industries, journals, publishers, publication year, authors, countries, constraints, objectives, uncertainties, computational time, and programming languages and optimization software packages are considered. In this research, the literature review of CSS is done for thirteen years (2010-2022). Although CSS research originated in manufacturing, it has been observed that CSS research publications also addressed case studies based on health, transportation, railway, airport, steel, textile, education, ship, petrochemical, inspection, and construction projects. A detailed evaluation of the literature is followed by significant information found in the study, literature analysis, gaps identification, constraints of work done, and opportunities in future research for the researchers and experts from the industries in CSS
    corecore