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Because the alternative process plans have significant contributions to the production efficiency of a manufacturing system,
researchers have studied the integration of manufacturing functions, which can be divided into two groups, namely, integrated
process planning and scheduling (IPPS) and scheduling with due date assignment (SWDDA). Although IPPS and SWDDA are
well-known and solved problems in the literature, there are limited works on integration of process planning, scheduling, and
due date assignment (IPPSDDA). In this study, due date assignment function was added to IPPS in a dynamic manufacturing
environment. And the studied problem was introduced as dynamic integrated process planning, scheduling, and due date
assignment (DIPPSDDA). The objective function of DIPPSDDA is to minimize earliness and tardiness (E/T) and determine due
dates for each job. Furthermore, four different pure metaheuristic algorithms which are genetic algorithm (GA), tabu algorithm
(TA), simulated annealing (SA), and their hybrid (combination) algorithms GA/SA and GA/TA have been developed to facilitate
and optimize DIPPSDDA on the 8 different sized shop floors. The performance comparisons of the algorithms for each shop floor
have been given to show the efficiency and effectiveness of the algorithms used. In conclusion, computational results show that the
proposed combination algorithms are competitive, give better results than pure metaheuristics, and can effectively generate good

solutions for DIPPSDDA problems.

1. Introduction

Process planning, scheduling, and due date assignment
functions have an important role in modern manufacturing
systems. During the process planning stage, operations of
jobs are sequenced and the production information is trans-
ferred to the scheduling stage. In a production facility, process
planning stage comprises processes such as determination of
the manufacturing method for the product and selection of
appropriate machines for each part. Besides, in a job shop
scheduling problem (JSSP), machines are assigned to oper-
ations of jobs with the objective of optimizing determined
performance measures. Although process planning is used
as an input in scheduling, process planning and scheduling
functions are considered as two independent and separate
functions in classic manufacturing models [1]. In recent
years, it has been observed by various researchers across the
world that these two functions are interrelated and needed

to be handled together [2]. Integration of process planning
and scheduling (IPPS) studies aim to improve scheduling
performance measures such as optimizing makespan, job
flow times, earliness and tardiness (E/T) of each job, and
machine utilization level using different metaheuristic algo-
rithms. Furthermore, there are several review articles on IPPS
which can be given as [3-6]. On the other hand, many studies
proposed to integrate scheduling with due date assignment
(SWDDA) as well. Although there are numerous works on
IPPS and SWDDA, limited works on integrated process
planning, scheduling, and due date assignment (IPPSDDA)
have been conducted so far.

Obviously, integrating due date assignment function with
IPPS problem can provide a significant improvement in
the objective function and the global performance of the
manufacturing system. The first study on IPPSDDA was
conducted by Demir and Taskin [7]. Demir et al. [8-12]
also presented genetic algorithm (GA), simulated annealing
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(SA), tabu algorithm (TA), evolutionary strategies (ES), and
hybrid algorithms to improve the global performance of the
IPPSDDA problem. In this study, in addition to the other
studies on IPPSDDA, we considered a dynamic scheduling
model in which each job enters the system at a random
time and we introduced the integration of process planning,
dynamic scheduling, and due date assignment (DIPPSDDA)
problem. The main contribution, and the point at which
this study is separated from other studies, is to build a
discrete event simulation model for IPPSDDA problem that
can adapt to unexpected and sudden internal or external
changes (dynamic events) in a manufacturing system. We
studied new job arrivals that may occur in real shop floors
as dynamic event for this study. Furthermore, it is also aimed
at solving the DIPPSDDA problem with different efficient
metaheuristic algorithms which are simulated annealing
(SA), tabu algorithm (TA), genetic algorithm (GA), and the
combination of GA/SA, GA/TA to improve the performance
of the solutions. The proposed model has been built with
the advantages of object-oriented programming (OOP) and
discrete event simulation (DES) to enhance the flexibility of
the model.

This paper is organized as follows: Section 1 is the
introduction part of the study. A review of related works
is presented in Section 2. The background and definition
of DIPPSDDA are given in Section 3. Section 4 discusses
solution techniques for the DIPPSDDA. Section 5 gives the
computational results and analysis of the study. Conclusions
and future researches are also summarized in Section 6.

2. Related Works

Minimizing costs by eliminating wastes is a core principle
of a just-in-time (JIT) production philosophy. Thus, deter-
mining due dates as close as possible to their due dates is
inseparable from this philosophy. If companies can complete
their productions on given due dates, they can make more
realistic plans and have optimum capacity usage for shop
floors. In this way, resources are used efficiently, and the
company increases customer satisfaction. In most modern
JIT companies, a job is expected to be completed in its time.
The completion of jobs after their due dates could lead to
an increase in costs and a decrease in customer satisfaction
and, worst, customer loss. On the other hand, the completion
of jobs before their due date can cause inventory holding
costs. Integrated systems were proposed by considering the
process planning and scheduling or scheduling with due date
assignment together to avoid ineffective production. Some
of the earlier studies reported that it is possible to find
the optimal due dates and optimal sequences of jobs using
different heuristic algorithms [13-20]. The objective of these
studies is to minimize the cost related to due date assignment
and scheduling functions.

Besides, some of the recent studies on SWDDA can
be given such as [21-30]. There are 3 types of due date
assignment models in the literature as follows:

(i) Common due date assignment (CON): a predefined
common due date for each job.
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(ii) Due date assignment considering process times: slack
due dates (SLK), total-work-content (TWK), process-
ing plus due dates (PPW), etc.

(iii) Assignment of due dates according to given values.

Scheduling problems with an optimized due date has
been the subject of considerable works over the last several
decades. Determining the due date is a matter that needs to be
emphasized in terms of customer satisfaction for companies.
If the due dates are not met, the companies may face various
problems. Some of the studies on scheduling together with
the due date covered both single machine scheduling and
multimachine problems. Scheduling studies considering due
dates for single machine problems can often be seen in the
literature such as [17, 23, 26, 31-35]. Panwalkar and Smith
[36] have studied the problem of determining the common
due date for the scheduling problem consisting of 7 jobs and
one machine in the shop floor. At the end of the study, the
problem was solved using a polynomial bound scheduling
algorithm. Cheng [37] has set common due dates for each job
to minimize delay for a single machine scheduling problem.
Biskup and Cheng [38] have attempted to solve the problem of
single machine scheduling and the assignment of due dates in
which job is done with cramped process times. In Gupta and
Sen’s [39] study, decisions about scheduling, batching, and
the due date assignment were combined for a single machine
scheduling problem with » groups of jobs. Bank and Werner
[40] determined the duration of release and the duration of
the transaction time for each job and assigned a common due
date. Cheng [41] has aimed to find the optimal due dates for
a scheduling problem. He has emphasized that the heuristic
method finds effective solutions for the problem.

An early study on the single machine scheduling prob-
lem with early and late due date penalties was conducted
by Sidney [42]. In another study, the same problem was
addressed again by Seidmann et al. [43], and an algorithm
was developed to improve the solution performances. Other
studies in which E/T are penalized for single machine
schedules can be given such as [32-34, 44].

On the other hand, there are still many studies in the
literature in which there is more than one machine. All
these studies have attempted to determine common due dates
for each job. With the intuitive use of heuristic algorithms,
many machine scheduling problems such as job floor type
production can be solved. There is also a published literature
review for multimachine scheduling problems conducted by
Lauff and Werner [45] in which researchers used, for solving
the multimachine scheduling problem, a specific due date. In
another review study, Gordon et al. [46] drew a framework
for the common due date and scheduling problems. In their
literature study, the models in which single machine and
parallel machines are included and the other studies in the
literature on this subject were reviewed. A study list on
SWDDA classified based on subjects or objectives of the study
is given in Table 1. Other examples of studies on scheduling
with due date assignment can be found in [46-48].

In a classic manufacturing model, process planning and
scheduling functions are carried out separately where only
fixed process plans are transferred to the scheduling stage.
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TaBLE 1: Studies with different approaches to SWDDA.

Studies

Subjects or objectives

[16, 18, 21-23, 25-28, 30, 32, 46, 53-56]
(13,17, 19, 20, 24, 26, 31, 57-59]
[16, 20, 23-30, 54]

[53]

(18,19, 22, 28, 46, 55, 56]

(13, 45, 59, 60]

(57, 58]

[20]

[31]

[31, 58]

[21, 27, 31, 54]

[61]

(18, 22, 24, 26, 28, 45, 53, 55, 56, 62]
[29]

[30]

[60]

[32]

(17, 21, 25, 31, 32]

[19]

[23]

119, 57

[20, 30]

[57]

[60]

Scheduling and common due date assignment
Scheduling and separate due date assignment
Single machine scheduling with due date assignment
Two-machine flow shop scheduling with due date assignment
Parallel machine scheduling with due date assignment
Multi-machine scheduling with due date assignment
Job shop scheduling with due date assignment
Earliness Penalty
Maximum Lateness
Total tardiness
E/T penalties
Tardiness and due date related cost
Due-date related, E/T
Due date, E/T, delivery cost
Due date assignment, earliness and weighted number of tardy jobs
Processing, E/T costs
Resource consumption, E/T costs
Weighted number of late jobs; Number of tardy jobs
Minimize maximum absolute lateness
Due date, absolute lateness and processing time reduction
PPW (Process Plus Wait)

SLK (Common Slack)

TWK (Total work content)

Different ready times

Fixed process plans may cause some inefficient schedules
because of the inflexible nature. To overcome these problems
the idea of integrating process planning with scheduling has
arisen from the fact that working with alternative process
plans on scheduling has improved the efficiency in man-
ufacturing systems. Wilhelm and Shin [49] addressed the
efficiency of “alternative operations” in their study in 1985 for
the first time. After that, the studies on IPPS were conducted
by several researchers. Chryssolouris et al. [50] tried to
integrate process planning and scheduling for the first time in
1985. Other early IPPS studies were carried out by Sundaram
and Fu [51].

The best way to integrate process planning and scheduling
is to take two functions together. The integration of process
planning and scheduling functions is NP-Hard problem, and
it is difficult to find their optimal results in a reasonable time,
even with small sized problems [52]. There are many studies
in the literature on the integration of these two functions,
which can be classified based on their solution approaches as
given in Table 2.

At the beginning of 2000, a very early study on IPPSDDA
was a Ph.D. thesis conducted by Demir and Taskin [7].
Integration of these three functions is useful to avoid the
problems that may arise in process planning, scheduling, and
due date assignment. The intent of working with integrated
functions is based on more efficient flow times, processing
times, and variations in machine capacities and manufactur-
ing flexibility. From a literary perspective, the integration of

the three functions is less mentioned. In studies of Demir
et al, the feasibility, advantages, solution methods, and
results of the integrated operation of the three functions
were mentioned. In addition to the models discussed in the
IPPS problems, preparation times were also considered in
these studies and the importance of considering preparation
times was discussed. They integrated three functions which
are process planning, scheduling, and due date assignment
using genetic algorithms in their thesis [7]. It is observed
that weighted due date assignment and weighted scheduling
improved the overall performance of the problem substan-
tially.

One of the current work areas related to the job
shop scheduling problem is dynamic scheduling. Dynamic
scheduling problems are frequently encountered in real job
floors, for example, jobs arriving at the shop floor randomly
over time, machine breakdowns, urgent jobs, or cancellation
of existing jobs. Zandieh and Adibi [72] have used a variable
neighboring search (VNS) algorithm to solve dynamic events
such as random jobs and machine failures in their study.
The dynamic scheduling problem can show deterministic
or stochastic properties according to the arrival time of the
jobs. Scheduling is deterministic if the arrival time of jobs is
known in advance; conversely, if arrival times are randomly
distributed according to a specific distribution, scheduling is
stochastic [73].

The first literature review related to dynamic scheduling
problems can be found in [98]. Dominic et al. [99] have
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TaBLE 2: Classification of IPPS studies based on solution approaches.

Solution Approach IPPS Studies

Multi-Agent Systems [63-68]

Evolutionary Algorithm [4, 39, 69-71]

Game Theory [31-33]

Genetic Algorithm [7,34-36, 40, 45-47, 49-52, 70, 72-75]

Honey Bee Optimization [76-78]

Imperialist Competitive Algorithm [79-81]

Particle Swarm Optimization [82-88]

Simulated Annealing [74, 89, 90]

Hybrid Approaches [76, 78, 83, 91-96]

Ant Colony Optimization [97]

developed two new dispatching rules that work in the
dynamic production job floor. Dispatching rules have been
revealed to be better than the existing SPT, LIFO, and LPT
rules. Aydin and Oztemel [100] have found a solution for
the dynamic scheduling problem using reinforced learning
factors for proper dispatching rule selection. Li et al. [101]
developed an artificial neural network (ANN) using a GA
for the problem. Sha and Liu [102] have developed a data
mining tool that adapts to the dynamic conditions of jobs.
Zandieh and Adibi [72] used it to predict the appropriate
parameters of scheduling methods for the shortest average
processing time. Zhang et al. [103] developed a hybrid and
taboo search algorithm for a dynamic flexible job shop
scheduling problem.

As mentioned before, dynamic integrated process plan-
ning and scheduling problems are limited in the literature. In
the study by Lin et al. [104] an integrated process planning
and scheduling problem has been addressed to avoid the
dynamic events that may occur in the job floors. Xia et al.
[92] conducted a study using alternative process plans with
the benefit of the machine breakdowns in the job floor, and
the problem with the random arrival of jobs was solved using
the neighbor search algorithm. Wong et al. [105] have solved
the dynamic integrated process planning and scheduling
(DIPPS) problem by suggesting a hybrid multifactor-based
system. Recent papers, including that of Yu et al. [106],
employed a discrete particle swarm optimization to solve
dynamic IPPS problem. They used discrete particle swarm
optimization (DPSO) algorithm to solve IPPS optimization
problem. Meissner and Aurich [107] applied a cyberphysical
system for IPPS. Sustainable IPPS problem was solved by Lee
and Ha [108] using a standard GA. Yin et al. [109] used two
competing agents for the integrated production, inventory,
and batch delivery scheduling and due date assignment. Mor
[110] studied common SWDDA with the focus on minmax
objective functions. Teymourifar and Ozturk [111] developed
a new dispatching rule for dynamic JSSP.

3. Problem Definition

Job shop scheduling problem (JSSP) mainly consists of 3
elements, which are machine configuration, process charac-
teristics, and objective function [112]. The main objective of

JSSP is to find a feasible schedule and to optimize given per-
formance measures such as optimizing makespan, earliness
and tardiness time of each job, and machine utilization level.

Basically, scheduling models can be divided into two
groups: static and dynamic models. If there are stochas-
tic events occurring over time such as new job arrivals,
machine breakdowns, and order cancellations, then this
kind of scheduling problem is named “dynamic scheduling
problem”. Most of the studies on scheduling focused on static
job shop scheduling. Static job shop scheduling means that
all scheduling conditions are static and all job information is
known and ready att = 0. A static JSSP deals with the process
of assigning # jobs to m machines with the aim of optimizing
determined performance measures simultaneously. Although
working on static job shop scheduling is a well-known
problem in the literature, dynamic events often occur, which
needs to be handled to increase the productivity and machine
balance rates in a real manufacturing system [98]. Actual
manufacturing scheduling models are naturally dynamic
which are harder to solve than static models [90, 91], because
when there is an interruption, proposed plans and schedules
should be revised to respond to such dynamic events.

In fact, JSSP belongs to the NP-Hard class without any
integration. That is why the integration problems are seen as
the hardest among scheduling problems [71]. It can be said
that the problem of DIPPSDDA has a huge solution space
which is difficult to solve in a reasonable time. Therefore,
the use of metaheuristic algorithms is essential for solving
DIPPSDDA. In this study, we consider that arrival of jobs
to the shop floor varies over time, which makes our model
dynamic [113, 114]. Jobs are stochastically arriving at the
system and have different weights, due dates, routes, and
precedence rules.

The assumptions of the problem to be addressed are listed
below:

(i) There is no ready job at t+ = 0, and the arrival time
of the job is distributed according to the exponential
distribution.

(ii) Due dates for jobs are not assigned at ¢t = 0.

(iii) Each machine can process a single operation at the
same time.
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(iv) The processing time of the jobs is distributed accord-
ing to the normal distribution.

(v) Machines are not broken down.
(vi) The preparation times of the machines are ignored.

(vii) Each job can only be delivered to the customer after
all its operations are finished.

The notation used for the formulation of the problem is
given in Table 3.

3.1. Due Date Assignment Rules. DIPPSDDA begins with
the determination of due dates which is the assignment of
the due dates of the jobs. In many cases, negotiations with
customers can be made to arrange due dates in this process
[63, 64]. Inconsistent due dates can lead to unwanted price
discounts, customer dissatisfaction, or even end-customer
loss. In classic manufacturing models, a job is expected
to be completed before its due date. In contrast, just-in-
time (JIT) manufacturing environment requires all jobs to
be completed exactly on their due dates. In most cases,
early due dates can lead to an increase in inventory costs.
Similarly, late due dates lead to customer dissatisfaction, price
disruption, and, worst, customer loss. There are many studies
using quadratic penalty functions to solve tardiness and
linear penalty functions to solve earliness and tardiness (E/T)
problems. In this study, linear penalty functions are utilized to
overcome these problems and generate more accurate process
plans.

Both dynamic and static due date assignment rules were
employed in this study. Dynamic due date assignment rules
use information about the job, route, and operation time, as
well as the shop floor and average processing times. Static due
date assignment rules use the information relevant to the job
such as the arrival of jobs, route information, and operations
for calculating due dates. All due date assignment rules used
in the study are given in Table 4 with the explanations and
equations.

3.2. Dispatching Rules. Dispatching rules are widely used for
job shop scheduling with simple implementation. Generally,
dispatching rules are used for the selection of the operations
by machines in shop floor. 8 different dispatching rules were
used in the study, and the list of dispatching rules, with the
priority index and the descriptions of the rules, is given in
Table 5. The slack is calculated as in (1).

slack =d,— p,—t €]

3.3. Objective Function. The objective of scheduling problems
has been often to minimize the makespan. Sometimes the
objective function may also be to minimize the average flow
time, balance the machine loads, etc. In this study, we use
a penalty function for both E/T and due dates for each
job. If the value of lateness is positive, this means that the
job is completed lately. If the value of lateness is negative,
this means that the job is completed early. The penalty for
early completion is 0, as expected, and in case of the early
completion time, the tardiness penalty is given as 0. Earliness,

tardiness, and due date penalties are calculated as in (2), (3),
and (4), respectively.

T; = max (c]- - dj,O) (2)

E; = max (dj - cj,O) (3)
D.

PDzwjx<8x<@>> (4)

Weights are applied for a better objective function in
the model. We considered a working day as one shift with
8 working hours and that makes 480 minutes per day. All
the weighted E/T and due date related costs are punished
according to (5) and (6). Meanwhile, (7) shows the sum of

the total penalty.
E;
PE:ij<5+4X<M>> (5)
T
PTzwjx<6+6x<4?0)) (6)
Piotar = Pp + Pg + Pr ™)

The objective function of the model is to minimize the
total penalties which are penalties for E/T and due dates. Then
the final objective function which is a fitness value of the
solution is calculated as shown in (8).

n
fmin = zptotal (8)
j=1

3.4. Data Studied. The configurations for the 8 shop floors
are given in Table 6. There is also a mini-shop floor for
testing algorithm performances by hand. For example, the
first shop floor includes 25 jobs, 10 operations, 5 different
routes, and 5 machines. Also, the number of iterations of
algorithms for the shop floors is given in Table 3. The
processing times in the shop floor conform to the nor-
mal distribution, which has a 6 average and 12 standard
deviations.

The data produced for the study were generated
specifically for this study because there is no other similar
data in the literature in which process planning, scheduling,
and due date assignment rules are employed. The data
belonging to the shop floors produced by using NumPy
library in the Python programming language were
separated according to the shop floors and saved as
“txt” files. Firstly, the time of job arrivals is generated
according to the exponential distribution and saved
in the file “arrivals_{shop_floor_number}.txt”. Secondly,
the machine sequences for each alternative process
plan of the jobs are saved in the file “machine_numbers_
{shop_floor_number}.txt” and the processing times are saved
in the file “operation_durations_{shop_floor_number}.txt”.
Finally, weights are given in the file “weights_{shop-
floor_number}.txt”. The data files are provided as
Supplementary Materials.
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TaBLE 3: The notation used for the formulation.
n : the number of jobs E; : the earliness time of j-th job
m  :the number of machines d; : due date time of j-th job
r : the number of routes o : the penalty coeflicient of early completion, « > 0,
0 : the number of operations B : the penalty coefficient of late completion, 3 > 0,
a;  :thearrival time of j-th job P, : the penalty for due date
w;  :the weight of the j-th job Py : the penalty for earliness
p;  :thetotal processing time of j-th job P, : the penalty for tardiness
p;;  :the processing time of i-th operation of j-th job P; : the penalty for j-th job
P., :the mean processing time of all jobs waiting P, ol : the total penalty
¢ : the departure time, the completion time of j-thjob  f, .. : the performance function
L;  :thelateness time of j-th job DD,  :the number of due date assignment rules
T;  :the tardiness time of j-th job DR, : the number of dispatching rules
I; : Priority index of j-th job D, : the difference between due date and arrival time of job j-th job
TABLE 4: Due date assignment rules.

Rule No Name Explanation Equations
0,1,2 SLK Slack di=a;+p; +q,
3,45 WSLK Weighted slack d;=a, + p; + w,.q,
6,7,8 TWK Total work content d;=a;+k.p;
9,10,11 WTWK Weighted total work content d;, =a;,+w, k.p;
12,13,14 NOPPT Number of operations plus processing time d; = a; + p;, + 5k.0;
15,16,17 WNOPPT The weighted number of operations plus processing time d; =a; + p; + 5w, k.o
18 RDM Random-allowance due dates d;=a,+N(3P,,P,)
19,20,21,22,23,24,25,26,27 PPW Processing-time-plus-wait d,=a,+k.p;+q,
28,29,30,31,32,33,34,35,36 WPPW Weighted processing-time-plus-wait d; = a; + wy, k. p; + w,.q,

3.5. Simulation Study. In the beginning of the study, the
shop floor is scheduled according to available jobs on hand.
When a new job arrives at the shop floor according to an
exponential distribution, the job list is updated, and the
problem turns into dynamic JSSP. To solve the dynamic
problem, a discrete event simulation has been established
for a job shop configuration to validate the performance of
the dispatching and due date rules. If we choose the right
distributions for the job arrivals and operation durations,
we can get more effective solutions for the simulations. The
simulation input data which have several jobs, machines,
operations, and routes were given in Table 5. Briefly, jobs have
different routes and they must be processed on each machine
only once. When a new job arrives at the shop floor, it is
taken to the machine queue according to the selected route
by the algorithm. Machines are allocated according to the
dispatching rule for the jobs waiting in the machine queue.
After that, processing times of each job are distributed with
a normal distribution. The due dates are determined using
selected due date assignment rule. Finally, 23 dispatching and
37 due date assignment rules are utilized, and simulation is
run till all jobs finish on the shop floor.
The steps of the simulation are as follows:

(i) Execute the algorithm to generate an individual solu-
tion.

(ii) When a new job comes to the shop floor, determine
weights, operation times, operation precedence and
durations, and route for the job.

(iii) Calculate the due date according to the selected due
date assignment rule for the job.

(iv) The first operation of the job enters the queue of the
machine to be assigned.

(v) The machine selects the operation from the pending
operations, according to the selected dispatching rule.

(vi) The completion time for the last operation of the job
is determined as the departure time of the job.

(vii) The earliness, tardiness (E/T), and due dates (D) for
the job are calculated using the objective function
which is given in (8).

(viii) The solution is optimized by running steps of the
proposed metaheuristics.

4. Solution Techniques

4.1. Genetic Algorithm (GA). In1975, Holland [115] proposed
GA which has a good performance in solving difficult
problems by mimicking the biological evolution process. GA
works based on the population of solutions which has a
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TABLE 5: Dispatching rules

Rule No Name Explanation Equations
0-1-2 WATC Weighted Apparent Tardiness Cost I = %e('n’”‘("“d"o)/ Kp)
i
1 -
3-4-5 ATC Apparent Tardiness Cost I = Ee(”’”x(sz“k‘o)/ Kp)
6 WMS Weighted Minimum Slack I, = — (slack) w,
7 MS Minimum Slack I, = — (slack)
8 WSPT Weighted shortest process time I = %
1
9 SPT Shortest process time I, = E
i
10 WLPT Weighted longest process time I = b
w;
11 LPT Longest process time L =p
12 WSOT Weighted shortest operation time I = %
i
1
13 SOT Shortest operation time I = —
bij
14 WLOT Weighted longest operation time I = Py
w;
15 LOT Longest operation time I = p;
1
16 EDD Earliest due date I = 7
17 WEDD Weighted Earliest due date I = %
1
18 ERD Earliest release date I =—
al
w
19 WERD Weighted earliest release date I =—
al
20 SIRO Service in random order random
21 FIFO First in first out I = 1
a;
22 LIFO Last in first out I =aq
TABLE 6: Shop configurations.
Shop Floors 1 2 3 4 5 6 7 8
Number of jobs 25 50 75 100 125 150 175 200
Number of operations 10 10 10 10 10 10 10 10
Number of machines 5 10 15 20 25 30 35 40
Number of routes 5 5 5 5 3 3 3 3
Iteration size 150 150 100 100 75 75 50 50

common use in the field of scheduling and IPPS. Thanks to
the popularity of GA and its easy-to-implement structure,
researchers commonly implement GA to solve a variety of
problems, including scheduling related problems. Genetic
operators are the most important part of the development of
GA modeling. In this study, selection, crossover, and muta-
tion GA operators were employed. To increase performance

with GA, it is needed to consider some parameters, such
as the number of initial populations, crossover rate, muta-
tion rate, the maximum number of generations, length of
chromosomes, encoding the chromosomes and decoding the
individuals, and calculating and formulating fitness function
in an eflicient way. Algorithm 1 shows the pseudocode for
GA.



(1) DO Random Search

(2) BEGIN to Initialize population
(3) Evaluate population

(4) Rank chromosomes

(5) for i < iter_size do

(6)  Ranking selection for parents
(7)  Crossover

(8)  Mutation

(9)  Replace population

(10)  Return sum

(11) end for

ALGORITHM I: Genetic algorithm.

The main steps of GA are as follow:

(1) Initialization of population: A random search was
performed in 10% of the total number of iterations
before the genetic algorithm was applied. Best 10
chromosomes from random search generate an initial
population for GA. Figure 1 shows a sample chromo-
some.

(2) GA operators: Next step is to generate a new popula-
tion from the mating pool through genetic operators
which are crossover and mutation.

(a) Crossover: Operator selects two chromosomes

as parents and creates new child individuals.
In the beginning, the crossover operator deter-
mines the crossover point size, which is calcu-
lated using formula C;,, = floor(0.1xN) where
N is the chromosome length, so C;,, is related
to the length of the chromosome. For example,
if N is equal to 27 which is the value of the first
shop floor, C;,, is calculated as 2. Each gene
on a chromosome has a different probability
to be selected as a crossover point, where due
date rule gene and dispatching rule gene have a
dominant probability of 0.5 and the rest of the
genes share the other 0.5 equally. An example of
crossover operation is given in Figure 2.

(b) Mutation: Operator selects a dynamic number

of points changing according to the length of
the chosen chromosome and changes it to an
appropriate value from the domain. Each gene
of the chromosome has a different probability
to be selected as a mutation point where the due
date rule gene and dispatching rule gene have a
dominant probability of 0.5 and the rest of the
genes share the other 0.5 equally. An example
of mutation operation is given in Figure 3.
M, is the number of mutation points which is

= floor(0.5xN).

calculated using formula M;,,

(c) Selection: Process of selecting parents is

repeated until the stopping criteria are met
which is the maximum iteration size. The
average fitness value of the population decreases
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in time, as the chromosomes with the best
fitness values are selected for the new gen-
eration.

(i) Ranking selection method: A linear rank-
ing selection method is used in which
the best chromosome in a population
gets more probability to be selected. This
method is chosen because the best and
worst fitness values get closer as the iter-
ations go on in time. In the last iteration,
the fitness values are almost equal. This will
cause the algorithm to use the same proba-
bilities when selecting among the best and
the worst chromosomes. Contrary to the
use of fitness values alone, sorting individ-
uals and assigning probabilities according
to their positions will give better solutions
to this problem. In the ranking selection
method, chromosomes have the probability
of being selected according to their ranking
and these probabilities are fixed for all
iterations. In this study, the preferred prob-
ability for 10 chromosomes is [0.3, 0.2, 0.15,
0.12, 0.10, 0.07, 0.03, 0.02, 0.006, 0.004],
respectively. Table 7 shows the differences
in selection probabilities between roulette
wheel and ranking selection methods, for
the initial and last population.

(3) Updating the population: As the population size
needs to be limited to a fixed number which is 10 for
this study, 10 best chromosomes will always survive at
the end of the iteration.

4.2. Tabu Algorithm (TA). Glover [116] proposed the funda-
mental framework of TA, which is a metaheuristic algorithm
designed to find a near-optimum solution for complex
problems. It starts from an initial solution generated based
on local search. After it finds a feasible solution, TA tries to
get better fitness values by selecting the best individual in each
iteration. TA searches space for finding a good neighborhood.
It stores the previous bad solutions in a tabu list. This process
is repeated until the maximum iteration number is reached.
The tabu list is updated and compared to the current solution
at every single iteration. The size of the tabu list is kept fixed
to use memory effectively. Algorithm 2 shows the pseudocode
for TA, and variable neighborhood search algorithm for TA
and SA is illustrated in Figure 4.

4.3. Simulated Annealing (SA). SA is used to solve large-scale
optimization problems, which was developed by Kirkpatrick
et al. [117] based on the cooling and recrystallization pro-
cess of hot materials. SA is another neighborhood search
algorithm and widely used to solve big combinatorial opti-
mization problems. It is used in many problems in numerous
disciplines; in particular, global extremum is searched within
the many local extrema [118]. SA evaluates the neighborhoods
with the fitness value, but it might choose the worst move
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Shop floor 1

Due date assignment Dispatching rule
rule

N=27

Routes of jobs

Chromosomes

Gene Number | O 1| 2|3|4|5]6|7]|8]9
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FIGURE 1: A sample chromosome.

Shop floor 1 Ciige =2 Crossover points: [5 12]
Parent 1 1 8 0 1 2 2(1 3 1160 4 1|3 00 3 21312120 3 0 4
Crossover points
Parent 2 10 10 1 4 1 3(4 0 3 3 2 1 1({3 3 40 3 0 2 22200 4 4
Child 1 1 8 0 1 2240 3 321132003 21312120320 4
Child 2 10 10 1 4 1 3 1 3 1 1 0 4 1 3 3 4 0 3 0 2 2 2 2 00 4 4
FIGURE 2: A sample crossover operation.
Shop floor 1 Mgjpe =2 Mutation points: [5 12]
Parent 1 8 0 1 2213110413003 213121201320 4
Y ¥
Child 1 8 0 121131160433 00O032123121U01320 4

FIGURE 3: A sample mutation operation.

in each iteration to escape from a local minimum. The
probability of selecting a solution is given by an exponential
control function in which the parameter of the function
will decrease during the execution which is given in (9). SA
differs from TA as it diversifies the solutions by randomizing
them, while TA diversifies them by forcing new solutions.
Algorithm 3 shows the pseudocode for SA:

P = o UEE)/E) [kgT)

accept —

)

where P, is the acceptance rate, T is the temperature,
kg is the Boltzmann constant, E; is the fitness value of the
current solution, and E, is the fitness value of the next
solution. P, depends on the value of the T. At the first
iteration the temperature is high; when it moves to the next

iterations, the temperature is decreased gradually.

5. Experimental Results

A computer program in Python programing language was
developed to solve DIPPSDDA using Jupyter IDE on a
computer which has Intel i5-6200U processor with 2.30 GHz
speed and 8 GB of memory. The most used package list to
develop the program can be given as follows: sequences,
matrices, and probability calculations used in this study were
coded using the NumPy library [119]. The Pandas library [120]
provides important conveniences for data analysis and data
science and was used to analyze data in tables. The Matplotlib
library [121] was used to visualize the graphs in the study and
analyze the data. A library named Salabim [122] was used for
the simulation which is an important part of this study.

A discrete event simulation (DES) model was developed
to represent a job shop scheduling system for this study. At
t = 0, there is no job and the machines are ready to operate.
Discrete event simulation updates the system itself when a
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FIGURE 4: Variable neighborhood search (VNS) algorithm flow chart.

job arrives. The arrival time was assigned to the next job  the second graph, as giving all shop floors at the same chart

based on the cumulative time of the interarrivals so far. The
arrival intervals of jobs and the number of jobs within these
intervals in each shop floors are provided with histogram
graphs in Figure 5. The first graph shows the arrival times for
the first 4 shop floors, and the next 4 shop floors are shown in

reduces the readability of the chart. It is also assumed that the
time between arrivals is an integer number. The arrival time
of the next job is calculated by adding the value generated by
the exponential distribution function to the arrival time of
the previous job.
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TaBLE 7: The differences between the selection probabilities of the roulette wheel and ranking selection methods.
Chromosome Fitness Roulette wheel selection probability Ranking selection probability
Initial Population Best 189.42 0.1277 0.300
Average 241.53 0.1000 0.100
Worst 380.76 0.0635 0.004
Sum of fitness 2415.30
Last Population Best 159.21 0.1011 0.300
Average 161.18 0.1000 0.100
Worst 163.12 0.0987 0.004
Sum of fitness 1611.80

(1) BEGIN to Choose shop floor n,m, 0
(2) Generate initial solution solution,
(B)i—1

(4) while iteration < iter_size do

(5)  if solution, not in tabu list then

(6) ie—i+1

(7) Generate solutiony using VNS

(8) if solutiony < solution, then return solution
9) end if

(10)  else

(11) Update tabu list return solution,,

(12)  endif

(13) end while

ALGORITHM 2: Tabu algorithm.

(1) BEGIN to Choose shop floor n,m, 0
(2) Generate solution,,

(3) temperature «— 100

(4) solutions «— @

(5) while temperature > 0 do

(6) Generate solutiony using VNS
(7) 8§ «— solution,, — solution,

y

(8) if 6 < 0 then return solutiony

(9) else

(10) Calculate P,

1) if P, .., < random then return solution,
(12) elsereturn solution,

13) end if

(14)  endif

(15)  temperature «— temperature — 100/iteration
(16)  solutions.append(solution,.)

(17) end while

size

ALGORITHM 3: Simulated annealing.

Another purpose of this study is to determine the benefit

of the integration of due date assignment and the dispatching
rules with process planning by realizing 4 different levels of
integration. At the first level of integration, SIRO dispatching
rule and RDM due date assignment rule were tested. It can
also be said that no rules are applied to this level. At the
second level of integration, dispatching rules are included in
the problem. However, due date assignment rule is still being

determined with RDM, and only the benefit of determining
the dispatching rule is attempted. At the third level of
integration, the dispatching rule was left as SIRO and the
due date assignment rules were applied. At the fourth level
of integration, the improvement in the solution has been
observed in the case where all the dispatching rules and due
date assignment rules are applied where process planning
weighted scheduling and weighted due date assignment
functions are fully integrated. According to these tests, results
show that full integration level always gives the best result.
Solutions of different integration levels for 8th shop floor are
compared in Table 8. Full integration level has been observed
to have the best performance as shown in Table 8.

Experimental results of VNS, SA, TA, GA, and HA
algorithms are compared with each other and compared
with the results of the ordinary solution, which is found
without applying any algorithms. The number of iterations is
determined based on the characteristics of the algorithms, as
GA is population-based and SA and TA are individual-based.
In each iteration of the GA, 10 individuals are generated.
However, only one individual is produced in each iteration
of the SA and TA algorithms. Therefore, the number of
iterations given to GA is not equal to the SA and TA
algorithms. Iteration numbers of SA and TA algorithms are
taken as ten times of GA iteration number. Best, mean,
and worst results of VNS, SA, TA, GA, and HA algorithms
are recorded. The performance graphs of the algorithms are
plotted separately for each shop floor and given in Figure 6.

As mentioned before, the developed model is a run on
discrete event-time simulation. Simulation outputs have been
examined instantaneously, proving that the system works
correctly according to the different due date and dispatching
rules, different shop floor types, and different types of jobs
and machinery. Simulation trace records all the movements
obtained over time until the last job is completed. For better
reading of simulation results, Gantt charts for the first two
shop floors are given in Figures 7 and 8. Figure 7 shows the
Gantt chart for the first shop floor in which the best solution
from TA algorithm is calculated with the chromosome of [9,
6,4,1,3,0,4,3,2,4,2,2,0,3,3,0,2,1,4,1,2,2,1,1, 3,0,
1] with 163.28 fitness value. Figure 8 shows the Gantt chart
for the second shop floor in which the best solution from
GA/TA is calculated with the chromosome of [3, 17, 3, 2, 2,
2,2,2,4,3,3,1,2,2,4,41,1,0,0,1,3,3,3,0,3,0,0, 3, 2,
2,2,2,2,3,2,0,1,4,2,3,2,2,4,1,2,1, 3, 2,0, 1, 3] with
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TaBLE 8: Comparison of solutions at different integration levels for shop floor 8.
Level Algorithm Best Average Worst CPU (s)
1-SIRO-RDM VNS 1670.78 1670.78 1672.39 330
SA 1662.96 1665.28 1667.40 336
TA 1540.97 1583.97 1662.53 333
GA 1576.26 1578.43 1579.66 698
HA 1596.39 1598.75 1600.79 683
2-DSP-RDM VNS 1524.83 1572.95 1665.59 325
SA 1648.10 1664.70 1683.02 335
TA 1520.66 1568.20 1654.37 332
GA 1583.77 1585.29 1586.08 698
HA 1592.13 1633.13 1666.77 698
3-SIRO-DD VNS 1647.39 1647.42 1651.04 168
SA 1641.08 1654.84 1674.16 171
TA 1635.27 1636.65 1649.23 202
GA 1135.05 1530.61 1623.52 350
HA 1643.08 1654.90 1667.06 295
4-DSP-DD VNS 1312.05 1339.74 1322.21 329
SA 1285.0 1290.05 1300.06 328
TA 1255.75 1260.85 1304.91 329
GA 1265.41 1280.32 1298.51 348
HA 1246.18 1255.60 1298.51 337

311.09 fitness value. The Gantt charts of larger shop floors
are not graphically presented because they are complex and
impossible to follow. In addition to the classical Gantt charts,
indicators are added to the graphs, which show the arrivals of
jobs. In the Gantt chart, each job is represented with a color
bar and all box pieces represent the single operation of a job.

6. Discussion and Conclusions

We studied the integration of process planning, scheduling,
and due date assignment manufacturing functions that are
related to and affecting the performance of each other in a
dynamic shop floor where jobs arrive to the system stochas-
tically. In actual manufacturing model, these functions are

also affected by various events such as urgent orders, order
cancellations, maintenance, machine breakdowns, and delays
in supplies. However, studies on the integration of process
planning, scheduling, and due date assignment are limited,
and most of these studies are working in a static environ-
ment; our work focused on designing effective algorithm
for the dynamic integrated problem. As only scheduling
problem is NP-Hard, integration of scheduling with other
manufacturing function is also NP-Hard. Thus, it is essential
to use a heuristic solution for such a problem. We have
developed 4 different pure metaheuristic algorithms and their
combination algorithms to solve DIPPSDDA. Our objective
for DIPPSDDA was to minimize the earliness, tardiness, and
due date times of each job in 8 different shop floors. Even
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FIGURE 6: Best, average, and worst performances of proposed algorithms on different shop floors.

with integrating, these functions are not enough to model
real-world problems thoroughly. Based on the tested exper-
iments, it was shown that the proposed hybrid algorithm
(GA/TA) and TA algorithms have generally a good frame

for the integration problem. Besides, GA/TA and TA show
higher reliability to solve DIPPSDDA. Unfortunately, it is not
possible to make a benchmark to test the performance of the
proposed system as it is a new field in the literature. The main
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FIGURE 8: Schedule of the best solution generated from TA in the shop floor 2.

contribution of this study is to develop a new model which is
called DISPPSDA over the current IPPS and DIPPS models.
The study also demonstrates the benefits of running due
date assignment and dispatching rules with process plan
selection together. Shop floors have been run without any
due date assignment and dispatching rule; then the rules are

integrated step by step. As a result, it is observed that the best
results are obtained at full integration level.

This study is one of the few studies on dynamic inte-
grated process planning and scheduling. The following three
suggestions can be the objectives of future work. Firstly,
the flexibility of operations and operation numbers or the
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flexibility of processes and numbers can be integrated into the
structure of DIPPSDDA. Secondly, the work can be further
tailored to the dynamic events such as machine breakdowns,
cancellation of jobs, and the arrival of new urgent jobs. Lastly,
in the objective function of the problem, earliness, tardiness,
and due date times are punished. In addition, more objectives
can be specified to the problem such as makespan, machine
balance rates, and minimum wait times of each job. Thus, the
problem can be made multiobjective.

Data Availability

The “.txt” data used to support the findings of this study are
included within the Supplementary Materials.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary Materials

The data produced for the study were generated specifically
for this study because there is no other similar data in the
literature in which process planning, scheduling, and due
date assignment rules are employed. The data belonging to
the shop floors produced by using NumPy library in the
Python programming language were separated according to
the shop floors and saved as “.txt” files. Firstly, the time of job
arrivals is generated according to the exponential distribu-
tion and saved in the file “arrivals_{shop_floor_number}.txt”.
Secondly, the machine sequences for each alternative process
plan of the jobs are saved in the file “machine_numbers_
{shop_floor_number}.txt” and the processing times are saved
in the file “operation_durations_{shop_floor_number}.txt”.
Finally, weights are given in the file “weights_{shop_floor_
number}.txt”. (Supplementary Materials)

References

(1] Y. E Zhang, A. N. Saravanan, and J. Y. H. Fuh, “Integration of
process planning and scheduling by exploring the flexibility of
process planning,” International Journal of Production Research,
vol. 41, no. 3, pp. 611-628, 2003.

[2] X. Li, L. Gao, X. Shao, C. Zhang, and C. Wang, “Mathe-
matical modeling and evolutionary algorithm-based approach
for integrated process planning and scheduling;,” Computers &
Operations Research, vol. 37, no. 4, pp. 656-667, 2010.

[3] W.Tanand B. Khoshnevis, “Integration of process planning and
scheduling-a review;” Journal of Intelligent Manufacturing, vol.
11, no. 1, pp. 51-63, 2000.

[4] M. Gen, L. Lin, and H. Zhang, “Evolutionary techniques for
optimization problems in integrated manufacturing system:
State-of-the-art-survey,” Computers ¢ Industrial Engineering,
vol. 56, no. 3, pp. 779-808, 2009.

[5] X. Li, L. Gao, C. Zhang, and X. Shao, “A review on integrated
process planning and scheduling,” International Journal of
Manufacturing Research, vol. 5, no. 2, pp. 161-180, 2010.

15

[6] R. K. Phanden, A. Jain, and R. Verma, “Integration of process
planning and scheduling: a state-of-the-art review; Interna-
tional Journal of Computer Integrated Manufacturing, vol. 24, no.
6, pp. 517-534, 2011.

[7] H. I Demir and H. Taskin, Integrated process planning, schedul-
ing and due-date assignment [phd thesis], Sakarya University,
Sakarya, Turkey, 2005.

[8] H. I. Demir and C. Erden, “Solving process planning and
weighted scheduling with wnoppt weighted due-date assign-
ment problem using some pure and hybrid meta-heuristics;”
Sakarya Universitesi Fen Bilimleri Enstitiisii Dergisi, vol. 21, no.
2, pp. 210-222, 2017.

[9] C. Erden, H. I. Demir, A. Goksu, and O. Uygun, “Solving
process planning, ATC scheduling and due-date assignment
problems concurrently using genetic algorithm for weighted
customers,” Academic Platform-Journal of Engineering and Sci-
ence, 2018.

[10] H. I. Demir, O. Uygun, L. Cil, M. Ipek, and M. Sari, “Process
planning and scheduling with slk due-date assignment where
earliness, tardiness and due-dates are punished,” Journal of
Industrial and Intelligent Information, vol. 3, no. 3, 2014.

[11] H.I. Demir, T. Cakar, M. Ipek, B. Erkayman, and O. Canpolat,
“Process planning and scheduling with PPW due-date assign-
ment using hybrid search,” International Journal of Science and
Technology, vol. 2, no. 1, pp. 20-37, 2016.

[12] H. L. Demir, A. H. Kokcam, E Simsir, and O. Uygun, “Solving
process planning, weighted earliest due date scheduling and
weighted due date assignment using simulated annealing and
evolutionary strategies,” World Academy of Science, Engineering
and Technology International Journal of Industrial and Manufac-
turing Engineering, vol. 11, no. 9, pp. 1512-1519, 2017.

(13] H.Lussand M. B. Rosenwein, “A due date assignment algorithm
for multiproduct manufacturing facilities,” European Journal of
Operational Research, vol. 65, no. 2, pp. 187-198, 1993.

[14] P.De,]. B. Ghosh, and C. E. Wells, “Scheduling about a common
due date with earliness and tardiness penalties,” Computers &
Operations Research, vol. 17, no. 2, pp. 231-241, 1990.

[15] S. Li, C. T. Ng, and J. Yuan, “Group scheduling and due
date assignment on a single machine,” International Journal of
Production Economics, vol. 130, no. 2, pp. 230-235, 2011.

[16] M. Y. Kovalyov, “Batch scheduling and common due date
assignment problem: an NP-hard case,” Discrete Applied Math-
ematics: The Journal of Combinatorial Algorithms, Informatics
and Computational Sciences, vol. 80, no. 2-3, pp. 251-254, 1997.

(17] V. Gordon and W. Kubiak, “Single machine scheduling with
release and due date assignment to minimize the weighted
number of late jobs,” Information Processing Letters, vol. 68, no.
3, pp. 153-159, 1998.

[18] G. I. Adamopoulos and C. P. Pappis, “Scheduling under a
common due-date on parallel unrelated machines,” European
Journal of Operational Research, vol. 105, no. 3, pp. 494-501,
1998.

[19] T. C. E. Cheng and M. Y. Kovalyov, “Complexity of parallel
machine scheduling with processing-plus-wait due dates to
minimize maximum absolute lateness,” European Journal of
Operational Research, vol. 114, no. 2, pp. 403-410, 1999.

[20] V. S. Gordon and V. A. Strusevich, “Earliness penalties on a
single machine subject to precedence constraints: SLK due date
assignment,” Computers & Operations Research, vol. 26, no. 2,
pp. 157-177,1999.


http://downloads.hindawi.com/journals/mpe/2019/1572614.f1.zip

16

[21] D. Biskup and H. Jahnke, “Common due date assignment for
scheduling on a single machine with jointly reducible process-
ing times,” International Journal of Production Economics, vol.
69, no. 3, pp. 317-322, 2001.

[22] G. Mosheiov and U. Yovel, “Minimizing weighted earliness-
tardiness and due-date cost with unit processing-time jobs,”
European Journal of Operational Research, vol. 172, no. 2, pp.
528-544, 2006.

[23] J.-B. Wang, “Single machine scheduling with common due date
and controllable processing times,” Applied Mathematics and
Computation, vol. 174, no. 2, pp- 1245-1254, 2006.

[24] Y. Xia, B. Chen, and J. Yue, “Job sequencing and due date
assignment in a single machine shop with uncertain processing
times,” European Journal of Operational Research, vol. 184, no. 1,
pp. 63-75, 2008.

[25] D. Shabtay, “Due date assignments and scheduling a single
machine with a general earliness/tardiness cost function,” Com-
puters & Operations Research, vol. 35, no. 5, pp. 1539-1545, 2008.

[26] V.S. Gordon and V. A. Strusevich, “Single machine scheduling
and due date assignment with positionally dependent process-
ing times,” European Journal of Operational Research, vol. 198,
no. 1, pp. 57-62, 2009.

[27] H. Allaoua and I. Osmane, “Variable parameters lengths genetic
algorithm for minimizing earliness-tardiness penalties of single
machine scheduling with a common due date,” Electronic Notes
in Discrete Mathematics, vol. 36, no. C, pp. 471-478, 2010.

[28] N. H. Tuong and A. Soukhal, “Due dates assignment and JIT
scheduling with equal-size jobs,” European Journal of Opera-
tional Research, vol. 205, no. 2, pp. 280-289, 2010.

[29] Y.Q.Yin, T. C. E. Cheng, D. H. Xu, and C. C. Wu, “Common due
date assignment and scheduling with a rate-modifying activity
to minimize the due date, earliness, tardiness, holding, and
batch delivery cost,” Computers & Industrial Engineering, vol.
63, no. 1, pp. 223-234, 2012.

[30] S. Li, C. T. Ng, and J. Yuan, “Scheduling deteriorating jobs
with CON/SLK due date assignment on a single machine,
International Journal of Production Economics, vol. 131, no. 2, pp.
747-751, 2011.

[31] X. Qi, G. Yu, and J. E Bard, “Single machine scheduling with
assignable due dates,” Discrete Applied Mathematics: The Journal
of Combinatorial Algorithms, Informatics and Computational
Sciences, vol. 122, no. 1-3, pp- 211-233, 2002.

[32] C.T. D. Ng, T. C. Cheng, M. Kovalyov, and S. S. Lam, “Single
machine scheduling with a variable common due date and
resource-dependent processing times,” Computers & Operations
Research, vol. 30, no. 8, pp. 1173-1185, 2003.

[33] T. C. Cheng, Z.-L. Chen, and N. V. Shakhlevich, “Common due
date assignment and scheduling with ready times,” Computers
& Operations Research, vol. 29, no. 14, pp. 1957-1967, 2002.

[34] A.C.Nearchou, “A differential evolution approach for the com-
mon due date early/tardy job scheduling problem,” Computers
& Operations Research, vol. 35, no. 4, pp. 1329-1343, 2008.

[35] K.-C. Ying, “Minimizing earlinesstardiness penalties for com-
mon due date single-machine scheduling problems by a recov-
ering beam search algorithm,” Computers Industrial Engineer-
ing, vol. 55, no. 2, pp. 494-502, 2008.

[36] S.S.Panwalkar, M. L. Smith, and A. Seidmann, “Common due
date assignment to minimize total penalty for the one machine

scheduling problem,” Operations Research, vol. 30, no. 2, pp.
391-399, 1982.

Mathematical Problems in Engineering

[37] T.C. Cheng, “An alternative proof of optimality for the common
due-date assignment problem,” European Journal of Operational
Research, vol. 37, no. 2, pp. 250-253, 1988.

[38] D. Biskup and T. C. E. Cheng, “Single-machine scheduling
with controllable processing times and earliness, tardiness and
completion time penalties,” Engineering Optimization, vol. 31,
no. 1-3, pp. 329-336, 1999.

[39] S.K. Guptaand T. Sen, “Minimizing a quadratic function of job
lateness on a single machine,” Engineering Costs and Production
Economics, vol. 7, no. 3, pp. 187-194, 1983.

[40] J. Bank and F. Werner, “Heuristic algorithms for unrelated par-
allel machine scheduling with a common due date, release dates,
and linear earliness and tardiness penalties,” Mathematical and
Computer Modelling, vol. 33, no. 4-5, pp. 363-383, 2001.

[41] T. C. Cheng, “Optimal due-date determination and sequenc-
ing with random processing times,” Applied Mathematical
Modelling: Simulation and Computation for Engineering and
Environmental Systems, vol. 9, no. 8, pp. 573-576, 1987.

[42] J. B. Sidney, “Optimal single-machine scheduling with earliness
and tardiness penalties,” Operations Research, vol. 25, no. 1, pp.
62-69, 1977.

[43] A. Seidmann, S. S. Panwalkar, and M. L. Smith, “Optimal
assignment of due-dates for a single processor scheduling
problem,” International Journal of Production Research, vol. 19,
no. 4, pp. 393-399, 1981.

[44] T.Ibarakiand Y. Nakamura, “A dynamic programming method
for single machine scheduling,” European Journal of Operational
Research, vol. 76, no. 1, pp. 72-82, 1994.

[45] V. Lauft and E Werner, “Scheduling with common due date,
earliness and tardiness penalties for multimachine problems: a
survey, Mathematical and Computer Modelling, vol. 40, no. 5-6,
pp. 637-655, 2004.

[46] V. S. Gordon, J. M. Proth, and C. Chu, “A survey of the state-
of-the-art of common due date assignment and scheduling
research,” European Journal of Operational Research, vol. 139, no.
1, pp. 1-25, 2002.

[47] T.C.E. Chengand M. C. Gupta, “Survey of scheduling research
involving due date determination decisions,” European Journal
of Operational Research, vol. 38, no. 2, pp. 156-166, 1989.

[48] K. R. Baker, “Sequencing rules and due-date assignments in a
job shop,” Management Science, vol. 30, no. 9, pp. 1093-1104,
1984.

[49] W. E. Wilhelm and H.-M. Shin, “Effectiveness of alternate

>

operations in a flexible manufacturing system,” International
Journal of Production Research, vol. 23, no. 1, pp. 65-79, 1985.

[50] G. Chryssolouris, S. Chan, and N. P. Suh, “An integrated
approach to process planning and scheduling,” CIRP Annals -
Manufacturing Technology, vol. 34, no. 1, pp. 413417, 1985.

[51] R. M. Sundaram and S.-s. Fu, “Process planning and scheduling
I, a method of integration for productivity improvement,”
Computers & Industrial Engineering, vol. 15, pp. 296-301, 1988.

[52] B.Khoshnevisand Q. M. Chen, “Integration of process planning
and scheduling functions,” Journal of Intelligent Manufacturing,
vol. 2, no. 3, pp. 165-175, 1991.

[53] M. Birman and G. Mosheiov, “A note on a due-date assign-
ment on a two-machine flow-shop,” Computers & Operations
Research, vol. 31, no. 3, pp. 473-480, 2004.

[54] X.Cai, V.Y.S. Lum, and J. M. T. Chan, “Scheduling about a com-
mon due date with job-dependent asymmetric earliness and
tardiness penalties,” European Journal of Operational Research,
vol. 98, no. 1, pp- 154-168, 1997.



Mathematical Problems in Engineering

[55]

(56]

(58]

[59]

[60]

(61]

(63]

[66]

(67]

(68]

L. Min and W. Cheng, “Genetic algorithms for the optimal com-
mon due date assignment and the optimal scheduling policy
in parallel machine earliness/tardiness scheduling problems,”
Robotics and Computer-Integrated Manufacturing, vol. 22, no. 4,
pp. 279-287, 2006.

G. Mosheiov, “A common due-date assignment problem on
parallel identical machines,” Computers ¢ Operations Research,
vol. 28, no. 8, pp- 719-732, 2001.

V. Vinod and R. Sridharan, “Simulation modeling and analysis
of due-date assignment methods and scheduling decision rules
in a dynamic job shop production system,” International Journal
of Production Economics, vol. 129, no. 1, pp. 127-146, 2011.

T. Yang, Z. He, and K. K. Cho, “An effective heuristic method
for generalized job shop scheduling with due dates,” Computers
& Industrial Engineering, vol. 26, no. 4, pp. 647-660, 1994.

S. R. Lawrence, “Negotiating due-dates between customers and
producers,” International Journal of Production Economics, vol.
37, no. 1, pp. 127-138, 1994.

J. N. D. Gupta, K. Kriiger, V. Lauff, E. Werner, and Y. N. Sotskov,
“Heuristics for hybrid flow shops with controllable processing
times and assignable due dates,” Computers ¢ Operations
Research, vol. 29, no. 10, pp. 1417-1439, 2002.

D. Chen, S. Li, and G. Tang, “Single machine scheduling
with common due date assignment in a group technology
environment,” Mathematical and Computer Modelling, vol. 25,
no. 3, pp. 81-90, 1997,

D. Shabtay and G. Steiner, “The single-machine earliness-
tardiness scheduling problem with due date assignment and
resource-dependent processing times,” Annals of Operations
Research, vol. 159, pp. 25-40, 2008.

T. N. Wong, C. W. Leung, K. L. Mak, and R. Y. K. Fung, “An
agent-based negotiation approach to integrate process planning
and scheduling,” International Journal of Production Research,
vol. 44, no. 7, pp- 1331-1351, 2006.

M. K. Lim and Z. Zhang, “A multi-agent based manufacturing
control strategy for responsive manufacturing,” Journal of Mate-
rials Processing Technology, vol. 139, no. 1-3, pp. 379-384, 2003.

P. Gu, S. Balasubramanian, and D. H. Norrie, “Bidding-based
process planning and scheduling in a multi-agent system,”
Computers & Industrial Engineering, vol. 32, no. 2, pp. 477-496,
1997.

X. Li, C. Zhang, L. Gao, W. Li, and X. Shao, “An agent-based
approach for integrated process planning and scheduling,
Expert Systems with Applications, vol. 37, no. 2, pp. 1256-1264,
2010.

M. Lim and D. Zhang, “An integrated agent-based approach for
responsive control of manufacturing resources,” Computers &
Industrial Engineering, vol. 46, no. 2, pp. 221-232, 2004.

T. N. Wong, C. W. Leung, K. L. Mak, and R. Y. Fung,
“Integrated process planning and scheduling/rescheduling—an
agent-based approach,” International Journal of Production
Research, vol. 44, no. 18-19, pp. 3627-3655, 2006.

P. S. Ow and T. E. Morton, “The single machine early/tardy
problem,” Management Science, vol. 35, no. 2, pp. 177-191, 1989.
C. Y. Lee and J. Y. Choi, “A genetic algorithm for job sequenc-
ing problems with distinct due dates and general early-tardy
penalty weights,” Computers & Operations Research, vol. 22, no.
8, pp. 857-869, 1995.

C. Moon and Y. Seo, “Evolutionary algorithm for advanced
process planning and scheduling in a multi-plant;” Computers
& Industrial Engineering, vol. 48, no. 2, pp. 311-325, 2005.

(72]

(73]

(74]

(75]

(76]

(77]

(81]

(82]

(83]

(84]

17

M. Zandieh and M. A. Adibi, “Dynamic job shop scheduling
using variable neighbourhood search,” International Journal of
Production Research, vol. 48, no. 8, pp. 2449-2458, 2010.

S.-C. Lin, E. D. Goodman, and W. E Punch, “A genetic
algorithm approach to dynamic job shop scheduling problems,”
in Proceedings of the 7th International Conference on Genetic
Algorithms, 1997.

T. C. E. Cheng, “A heuristic for common due-date assignment
and job scheduling on parallel machines,” Journal of the Opera-
tional Research Society, vol. 40, no. 12, pp. 1129-1135, 1989.

K. R. Baker and G. D. Scudder, “Sequencing with earliness and
tardiness penalties: a review;” Operations Research, vol. 38, no. 1,
pp. 22-35,1990.

B. Yuan, C.-Y. Zhang, X.-Y. Shao, and Z.-B. Jiang, “An effective
hybrid honey bee mating optimization algorithm for balancing
mixed-model two-sided assembly lines,” Computers & Opera-
tions Research, vol. 53, pp. 3241, 2015.

X.Li, W. Li, X. Cai, and E He, “A honey-bee mating optimization
approach of collaborative process planning and scheduling for
sustainable manufacturing,” in Proceedings of the 2013 IEEE 17th
International Conference on Computer Supported Cooperative
Work in Design (CSCWD), pp. 465-470, IEEE, Whistler, BC,
Canada, June 2013.

X.X.Li, W.D. Li, X. T. Cai, and E Z. He, “A hybrid optimization
approach for sustainable process planning and scheduling;’
Integrated Computer-Aided Engineering, vol. 22, no. 4, pp. 311-
326, 2015.

L. Liqing, L. Hai, L. Gongliang, and Y. Guanghong, “Integrated
production planning and scheduling system design,” in Proceed-
ings of the 2017 8th IEEE International Conference on Software
Engineering and Service Science (ICSESS), pp. 731-734, IEEE,
Beijing, China, November 2017.

K. Lian, C. Zhang, X. Shao, and L. Gao, “Optimization of
process planning with various flexibilities using an imperialist
competitive algorithm,” The International Journal of Advanced
Manufacturing Technology, vol. 59, no. 5-8, pp. 815-828, 2012.

S. Zhang, Y. Xu, Z. Yu, W. Zhang, and D. Yu, “Combining
extended imperialist competitive algorithm with a genetic algo-
rithm to solve the distributed integration of process planning
and scheduling problem,” Mathematical Problems in Engineer-
ing, vol. 2017, Article ID 9628935, 13 pages, 2017.

X. Li, L. Gao, and X. Wen, “Application of an efficient modified
particle swarm optimization algorithm for process planning,”
The International Journal of Advanced Manufacturing Technol-
0gy, vol. 67, no. 5-8, pp- 1355-1369, 2013.

E Zhao, Y. Hong, D. Yu, Y. Yang, and Q. Zhang, “A hybrid
particle swarm optimisation algorithm and fuzzy logic for
process planning and production scheduling integration in
holonic manufacturing systems,” International Journal of Com-
puter Integrated Manufacturing, vol. 23, no. 1, pp. 20-39, 2010.

Y. W. Guo, W. D. Li, A. R. Mileham, and G. W. Owen, “Appli-
cations of particle swarm optimisation in integrated process
planning and scheduling,” Robotics and Computer-Integrated
Manufacturing, vol. 25, no. 2, pp. 280-288, 2009.

Y.-]. Tseng, E-Y. Yu, and E-Y. Huang, “A green assembly
sequence planning model with a closed-loop assembly and
disassembly sequence planning using a particle swarm opti-
mization method,” The International Journal of Advanced Man-
ufacturing Technology, vol. 57, no. 9-12, pp. 1183-1197, 2011.

H. Zhu, W. Ye, and G. Bei, “A particle swarm optimization for

integrated process planning and scheduling,” in Proceedings of



18

(87]

(88]

(89]

[90]

[95]

[96]

(100]

[101]

the 2009 IEEE 10th International Conference on Computer-Aided
Industrial Design Conceptual Design, pp. 1070-1074, IEEE, 2009.

Y. W. Guo, W. D. Li, A. R. Mileham, and G. W. Owen,
“Optimisation of integrated process planning and scheduling
using a particle swarm optimisation approach,” International
Journal of Production Research, vol. 47, no. 14, pp. 3775-3796,
2009.

L. I. Ba, Y. Li, M. Yang et al., “A mathematical model for mul-
tiworkshop IPPS problem in batch production,” Mathematical
Problems in Engineering, vol. 2018, Article ID 7948693, 16 pages,
2018.

W. D. Li and C. A. McMahon, “A simulated annealing-based
optimization approach for integrated process planning and
scheduling,” International Journal of Computer Integrated Man-
ufacturing, vol. 20, no. 1, pp. 80-95, 2007.

A. A. R. Hosseinabadi, H. Siar, S. Shamshirband, M. Shojafar,
and M. H. N. Md. Nasir, “Using the gravitational emulation
local search algorithm to solve the multi-objective flexible
dynamic job shop scheduling problem in Small and Medium
Enterprises,” Annals of Operations Research, vol. 229, no. 1, pp.
451-474, 2014.

A. B. Farahabadi and A. Hosseinabadi, “Present a new hybrid
algorithm scheduling flexible manufacturing system consider-
ation cost maintenance,” International Journal of Scientific &
Engineering Research, vol. 4, no. 9, pp. 1870-1875, 2013.

H. Xia, X. Li, and L. Gao, “A hybrid genetic algorithm with
variable neighborhood search for dynamic integrated process
planning and scheduling,” Computers & Industrial Engineering,
vol. 102, pp. 99-112, 2016.

J. N. Hooker, “A hybrid method for planning and scheduling,”
Constraints. An International Journal, vol. 10, no. 4, pp. 385-401,
2005.

X. Y. Li, X. Y. Shao, L. Gao, and W. R. Qian, “An effective hybrid
algorithm for integrated process planning and scheduling;’
International Journal of Production Economics, vol. 126, no. 2,
pp. 289-298, 2010.

W. Huang, Y. Hu, and L. Cai, “An effective hybrid graph and
genetic algorithm approach to process planning optimization
for prismatic parts,” The International Journal of Advanced
Manufacturing Technology, vol. 62, no. 9-12, pp. 1219-1232, 2012.

W. Zhang, M. Gen, and J. Jo, “Hybrid sampling strategy-based
multiobjective evolutionary algorithm for process planning and
scheduling problem,” Journal of Intelligent Manufacturing, vol.
25, no. 5, pp. 881-897, 2014.

C. W. Leung, T. N. Wong, K. L. Mak, and R. Y. K. Fung,
“Integrated process planning and scheduling by an agent-based
ant colony optimization,” Computers & Industrial Engineering,
vol. 59, no. 1, pp. 166-180, 2010.

R. Ramasesh, “Dynamic job shop scheduling: A survey of
simulation research,” Omega , vol. 18, no. 1, pp. 43-57, 1990.

P. D. Dominic, S. Kaliyamoorthy, and M. S. Kumar, “Efficient
dispatching rules for dynamic job shop scheduling,” The Inter-
national Journal of Advanced Manufacturing Technology, vol. -1,
no. 1, pp. 1-1, 2003.

M. E. Aydin and E. Oztemel, “Dynamic job-shop scheduling
using reinforcement learning agents,” Robotics and Autonomous
Systems, vol. 33, no. 2, pp- 169-178, 2000.

S. Li, Z. Wu, and X. Pang, “Job shop scheduling in real-time
cases;,” The International Journal of Advanced Manufacturing
Technology, vol. 26, no. 7-8, pp. 870-875, 2005.

[102]

[103]

[104]

[105]

[106]

(107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

(115

[116]

[117]

(18]

[119]

Mathematical Problems in Engineering

D. Y. Shaand C.-H. Liu, “Using data mining for due date assign-
ment in a dynamic job shop environment,” The International
Journal of Advanced Manufacturing Technology, vol. 25, no. 11-
12, pp. 1164-1174, 2005.

L. Zhang, L. Gao, and X. Li, “A hybrid genetic algorithm and
tabu search for a multi-objective dynamic job shop scheduling
problem;” International Journal of Production Research, vol. 51,
no. 12, pp. 3516-3531, 2013.

C. R. Lin, H. Chen, and Q. Xiao, “Dynamic integrated process
planning and scheduling,” Journal of the Chinese Institute of
Engineers, vol. 18, no. 2, pp. 21-32, 2001.

T. N. Wong, C. W. Leung, K. L. Mak, and R. Y. K. Fung,
“Dynamic shopfloor scheduling in multi-agent manufacturing
systems,” Expert Systems with Applications, vol. 31, no. 3, pp.
486-494, 2006.

M. R. Yu, B. Yang, and Y. Chen, “Dynamic integration of
process planning and scheduling using a discrete particle swarm
optimization algorithm,” Advances in Production Engineering &
Management, vol. 13, no. 3, pp. 279-296, 2018.

H. Meissner and J. C. Aurich, “Implications of cyber-physical
production systems on integrated process planning and
scheduling,” Procedia Manufacturing, vol. 28, pp. 167-173, 2019.
H. Lee and C. Ha, “Sustainable integrated process planning
and scheduling optimization using a genetic algorithm with an
integrated chromosome representation,” Sustainability, vol. 11,
no. 2, p. 502, 2019.

Y. Yin, Y. Yang, D. Wang, T. C. Cheng, and C.-C. Wu, “Integrated
production, inventory, and batch delivery scheduling with due
date assignment and two competing agents,” Naval Research
Logistics (NRL), vol. 65, no. 5, pp. 393-409, 2018.

B. Mor, “Minmax scheduling problems with common due-
date and completion time penalty;” Journal of Combinatorial
Optimization, pp. 1-22, 2018.

A. Teymourifar and G. Ozturk, “New dispatching rules and
due date assignment models for dynamic job shop scheduling
problems,” International Journal of Manufacturing Research, vol.
13, no. 4, pp. 302-329, 2018.

M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems,
Springer, Cham, Switherland, 5th edition, 2016.

L. Chunlin, Z. J. Xiu, and L. Layuan, “Resource scheduling
with conflicting objectives in grid environments: Model and
evaluation,” Journal of Network and Computer Applications, vol.
32, no. 3, pp. 760-769, 2009.

H. Van Luu and X. Tang, “An efficient algorithm for scheduling
sensor data collection through multi-path routing structures,’
Journal of Network and Computer Applications, vol. 38, no. 1, pp.
150-162, 2014.

J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, University of Michigan Press, Oxford, UK,
1975.

E Glover, “Tabu search: a tutorial,” Interfaces, vol. 20, no. 4, pp.
74-94,1990.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680,
1983.

S. Kirkpatrick, “Optimization by simulated annealing: quanti-
tative studies,” Journal of Statistical Physics, vol. 34, no. 5-6, pp.
975-986, 1984.

T. E. Oliphant, A guide to NumPy, vol. 1, Trelgol Publishing USA,
2006.



Mathematical Problems in Engineering

[120] W. McKinney, “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference,
vol. 445, pp. 51-56, Austin, TX, USA, 2010.

[121] J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput-
ing in Science & Engineering, vol. 9, pp. 90-95, 2007.

[122] R. van der Ham, “salabim: discrete event simulation and

animation in Python,” Journal of Open Source Software, vol. 3,
no. 27, p. 767, 2018.

19



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

