539 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    A trillion frames per second: the techniques and applications of light-in-flight photography

    Get PDF
    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light-in-flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost.Comment: Published in Reports on progress in Physic

    Development of a laser based inspection system for surface defect detection

    Get PDF
    The objective of this project was to design and develop a laser based inspection system for the detection of surface defects and to assess its potentiality for high-speed online applications. The basic components of this inspection system are a laser diode module as illumination source, a random access CMOS camera as detector unit, and an XYZ translation stage. Algorithms were developed to analyze the data obtained from the scanning of different sample surfaces. The inspection system was based on optical triangulation principle. The laser beam was incident obliquely to the sample surface. Differences in surface height were then detected as a horizontal shift of the laser spot on the sample surface. This enabled height measurements to be taken, as per the triangulation method. The developed inspection system was first calibrated in order to obtain a conversion factor that would render a relationship between the measured spot shift on the sensor and the vertical displacement of the surface. Experiments were carried out on different sample material surfaces: brass, aluminum <ind stainless steel. The developed system is able to accurately generate three-dimensional topographic maps of the defects presented to it in this work. A spatial resolution of approximately 70 pm and a depth resolution of 60 pm were achieved. Characterization o f the inspection system was also performed by measuring the accuracy of distance measurements

    Correction of Errors in Time of Flight Cameras

    Get PDF
    En esta tesis se aborda la corrección de errores en cámaras de profundidad basadas en tiempo de vuelo (Time of Flight - ToF). De entre las más recientes tecnologías, las cámaras ToF de modulación continua (Continuous Wave Modulation - CWM) son una alternativa prometedora para la creación de sensores compactos y rápidos. Sin embargo, existen gran variedad de errores que afectan notablemente la medida de profundidad, poniendo en compromiso posibles aplicaciones. La corrección de dichos errores propone un reto desafiante. Actualmente, se consideran dos fuentes principales de error: i) sistemático y ii) no sistemático. Mientras que el primero admite calibración, el último depende de la geometría y el movimiento relativo de la escena. Esta tesis propone métodos que abordan i) la distorsión sistemática de profundidad y dos de las fuentes de error no sistemático más relevantes: ii.a) la interferencia por multicamino (Multipath Interference - MpI) y ii.b) los artefactos de movimiento. La distorsión sistemática de profundidad en cámaras ToF surge principalmente debido al uso de señales sinusoidales no perfectas para modular. Como resultado, las medidas de profundidad aparecen distorsionadas, pudiendo ser reducidas con una etapa de calibración. Esta tesis propone un método de calibración basado en mostrar a la cámara un plano en diferentes posiciones y orientaciones. Este método no requiere de patrones de calibración y, por tanto, puede emplear los planos, que de manera natural, aparecen en la escena. El método propuesto encuentra una función que obtiene la corrección de profundidad correspondiente a cada píxel. Esta tesis mejora los métodos existentes en cuanto a precisión, eficiencia e idoneidad. La interferencia por multicamino surge debido a la superposición de la señal reflejada por diferentes caminos con la reflexión directa, produciendo distorsiones que se hacen más notables en superficies convexas. La MpI es la causa de importantes errores en la estimación de profundidad en cámaras CWM ToF. Esta tesis propone un método que elimina la MpI a partir de un solo mapa de profundidad. El enfoque propuesto no requiere más información acerca de la escena que las medidas ToF. El método se fundamenta en un modelo radio-métrico de las medidas que se emplea para estimar de manera muy precisa el mapa de profundidad sin distorsión. Una de las tecnologías líderes para la obtención de profundidad en imagen ToF está basada en Photonic Mixer Device (PMD), la cual obtiene la profundidad mediante el muestreado secuencial de la correlación entre la señal de modulación y la señal proveniente de la escena en diferentes desplazamientos de fase. Con movimiento, los píxeles PMD capturan profundidades diferentes en cada etapa de muestreo, produciendo artefactos de movimiento. El método propuesto en esta tesis para la corrección de dichos artefactos destaca por su velocidad y sencillez, pudiendo ser incluido fácilmente en el hardware de la cámara. La profundidad de cada píxel se recupera gracias a la consistencia entre las muestras de correlación en el píxel PMD y de la vecindad local. Este método obtiene correcciones precisas, reduciendo los artefactos de movimiento enormemente. Además, como resultado de este método, puede obtenerse el flujo óptico en los contornos en movimiento a partir de una sola captura. A pesar de ser una alternativa muy prometedora para la obtención de profundidad, las cámaras ToF todavía tienen que resolver problemas desafiantes en relación a la corrección de errores sistemáticos y no sistemáticos. Esta tesis propone métodos eficaces para enfrentarse con estos errores

    Amorphous silicon e 3D sensors applied to object detection

    Get PDF
    Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm

    Correction of Errors in Time of Flight Cameras

    Get PDF
    En esta tesis se aborda la corrección de errores en cámaras de profundidad basadas en tiempo de vuelo (Time of Flight - ToF). De entre las más recientes tecnologías, las cámaras ToF de modulación continua (Continuous Wave Modulation - CWM) son una alternativa prometedora para la creación de sensores compactos y rápidos. Sin embargo, existen gran variedad de errores que afectan notablemente la medida de profundidad, poniendo en compromiso posibles aplicaciones. La corrección de dichos errores propone un reto desafiante. Actualmente, se consideran dos fuentes principales de error: i) sistemático y ii) no sistemático. Mientras que el primero admite calibración, el último depende de la geometría y el movimiento relativo de la escena. Esta tesis propone métodos que abordan i) la distorsión sistemática de profundidad y dos de las fuentes de error no sistemático más relevantes: ii.a) la interferencia por multicamino (Multipath Interference - MpI) y ii.b) los artefactos de movimiento. La distorsión sistemática de profundidad en cámaras ToF surge principalmente debido al uso de señales sinusoidales no perfectas para modular. Como resultado, las medidas de profundidad aparecen distorsionadas, pudiendo ser reducidas con una etapa de calibración. Esta tesis propone un método de calibración basado en mostrar a la cámara un plano en diferentes posiciones y orientaciones. Este método no requiere de patrones de calibración y, por tanto, puede emplear los planos, que de manera natural, aparecen en la escena. El método propuesto encuentra una función que obtiene la corrección de profundidad correspondiente a cada píxel. Esta tesis mejora los métodos existentes en cuanto a precisión, eficiencia e idoneidad. La interferencia por multicamino surge debido a la superposición de la señal reflejada por diferentes caminos con la reflexión directa, produciendo distorsiones que se hacen más notables en superficies convexas. La MpI es la causa de importantes errores en la estimación de profundidad en cámaras CWM ToF. Esta tesis propone un método que elimina la MpI a partir de un solo mapa de profundidad. El enfoque propuesto no requiere más información acerca de la escena que las medidas ToF. El método se fundamenta en un modelo radio-métrico de las medidas que se emplea para estimar de manera muy precisa el mapa de profundidad sin distorsión. Una de las tecnologías líderes para la obtención de profundidad en imagen ToF está basada en Photonic Mixer Device (PMD), la cual obtiene la profundidad mediante el muestreado secuencial de la correlación entre la señal de modulación y la señal proveniente de la escena en diferentes desplazamientos de fase. Con movimiento, los píxeles PMD capturan profundidades diferentes en cada etapa de muestreo, produciendo artefactos de movimiento. El método propuesto en esta tesis para la corrección de dichos artefactos destaca por su velocidad y sencillez, pudiendo ser incluido fácilmente en el hardware de la cámara. La profundidad de cada píxel se recupera gracias a la consistencia entre las muestras de correlación en el píxel PMD y de la vecindad local. Este método obtiene correcciones precisas, reduciendo los artefactos de movimiento enormemente. Además, como resultado de este método, puede obtenerse el flujo óptico en los contornos en movimiento a partir de una sola captura. A pesar de ser una alternativa muy prometedora para la obtención de profundidad, las cámaras ToF todavía tienen que resolver problemas desafiantes en relación a la corrección de errores sistemáticos y no sistemáticos. Esta tesis propone métodos eficaces para enfrentarse con estos errores

    An overview of depth cameras and range scanners based on time-of-flight technologies

    Get PDF
    “The final publication is available at Springer via http://dx.doi.10.1007/s00138-016-0784-4.This work has received funding from the French Agence Nationale de la Recherche (ANR) under the MIXCAM project ANR-13-BS02-0010-01, and from the European Research Council (ERC) under the Advanced Grant VHIA Project 340113

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore