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Resumen

En esta tesis se aborda la corrección de errores en cámaras de profundidad basadas en tiempo de
vuelo - Time of Flight (ToF). De entre las más recientes tecnologías, las cámaras ToF de modulación
continua - Continuous Wave Modulation (CWM) - son una alternativa prometedora para la creación
de sensores compactos y rápidos. Sin embargo, existe una gran variedad de errores que afectan
notablemente la medida de profundidad, comprometiendo posibles aplicaciones. La corrección de
dichos errores propone un reto desafiante. Actualmente, se consideran dos fuentes principales de
error: i) sistemático y ii) no sistemático. Mientras que el primero admite calibración, el segundo
depende de la geometría y el movimiento relativo de la escena. Esta tesis propone métodos que
abordan i) la distorsión sistemática de profundidad y dos de las fuentes de error no sistemático más
relevantes: ii.a) la interferencia por multicamino y ii.b) los artefactos de movimiento.

La distorsión sistemática de profundidad en cámaras ToF surge principalmente debido al uso
de señales sinusoidales no perfectas para modular. Como resultado, las medidas de profundidad
aparecen distorsionadas, pudiendo ser reducidas con una etapa de calibración. Esta tesis propone
un método de calibración basado en mostrar a la cámara un plano en diferentes posiciones y ori-
entaciones. Este método no requiere de patrones de calibración y, por tanto, puede hacer uso de los
planos, que de manera natural, aparecen en la escena. El método propuesto encuentra una función
que obtiene la corrección de profundidad correspondiente a cada píxel. Esta tesis mejora los métodos
existentes en cuanto a precisión, eficiencia e idoneidad.

La interferencia por multicamino - Multipath Interference (MpI) - surge debido a la superposición
de la señal reflejada por diferentes caminos con la reflexión directa, produciendo distorsiones que
se hacen más notables en superficies convexas. La MpI es la causa de importantes errores en la
estimación de profundidad en cámaras CWM ToF. Esta tesis propone un método que elimina la
MpI a partir de un solo mapa de profundidad. El enfoque propuesto no requiere más información
acerca de la escena que las medidas ToF. El método se fundamenta en un modelo radiométrico de las
medidas que se emplea para estimar de manera muy precisa el mapa de profundidad sin distorsión.

Una de las tecnologías líderes para la obtención de profundidad en imagen ToF está basada en
Photonic Mixer Device (PMD). Dicha tecnología obtiene la profundidad mediante el muestreado
secuencial de la correlación entre la señal de modulación y la señal proveniente de la escena en difer-
entes desplazamientos de fase. Con movimiento, los píxeles PMD capturan profundidades diferentes
en cada etapa de muestreo, produciendo artefactos de movimiento. En esta tesis se propone un
método para la corrección de dichos artefactos que destaca por su velocidad y sencillez, pudiendo
ser incluido fácilmente en el hardware de la cámara. La profundidad de cada píxel se recupera
gracias a la consistencia entre las muestras de correlación en el píxel PMD y de la vecindad local.
Este método obtiene correcciones precisas, reduciendo los artefactos de movimiento enormemente.
Además, como resultado de este método, se obtiene el flujo óptico en los contornos en movimiento
a partir de una única captura.

A pesar de ser una alternativa muy prometedora para la obtención de profundidad, las cámaras
ToF todavía tienen que resolver problemas desafiantes en relación a la corrección de errores sis-
temáticos y no sistemáticos. Esta tesis propone métodos eficaces para enfrentarse con estos errores.

Palabras clave: cámara de tiempo de vuelo, errores sistemáticos de profundidad, interferencia
por multicamino y artefactos de movimiento.





Abstract

This thesis addresses the correction of errors in Time of Flight (ToF) depth cameras. Among current
technologies, Continuous Wave Modulation (CWM) ToF cameras are a promising alternative for
creating compact and fast sensors. However, a wide variety of error sources notably affect depth
measurements, compromising potential applications. Correction of errors in ToF cameras is a very
challenging problem. Two main types of errors are considered: i) systematic and ii) non-systematic
errors. While the former admits calibration, the latter depends on the scene’s geometry and motion.
This thesis proposes methods to address i) systematic depth distortion and two of the most relevant
sources of non-systematic errors: ii.a) multipath interference and ii.b) motion artifacts.

Systematic depth distortion in ToF cameras is mainly produced by the use of non-ideal sinusoidal
signals to modulate light. As a result, depth measurements appear distorted but this distortion can
be reduced with a calibration step. This thesis proposes a calibration method based on showing the
camera a flat surface in different positions and orientations. This method does not require special
patterns and thus, natural planes existing in the scene can be used. The proposed method finds a
function that gives the corresponding depth correction for every pixel. This thesis improves existing
methods in terms of accuracy, efficiency and optimality.

Multipath Interference (MpI) appears due to the overlap of light reflected from different paths
with the direct path reflection, producing notable distortions that become more pronounced in
convex surfaces. Multipath interference of light is the cause of important errors in CWM ToF depth
estimation. This thesis proposes a method that removes MpI from a single depth map. The proposed
approach does not require information about the scene, apart from ToF measurements. The method
is based on a radiometric model of ToF measurements that is used to estimate very accurately the
undistorted depth map.

One of the leading CWM ToF imaging technologies for depth sensing is based on Photonic Mixer
Device (PMD), that obtains depth by sequentially sampling the correlation between the modulation
signal and the incoming signal from the scene at several phase shifts. With motion, PMD pixels
capture different depths at each stage of the pipeline, producing motion artifacts. The method
proposed in this thesis for correcting motion artifacts is very fast, simple and can be easily included
in camera’s hardware. Depth of each pixel is recovered by exploiting consistency of each sample
of the correlation function given by the PMD pixel and its local neighbours. This method obtains
accurate corrections that highly reduce motion artifacts. In addition, as a result of this method, the
motion flow of occluding contours is available from a single frame.

Despite being a very promising alternative for depth sensing, ToF cameras need to solve challeng-
ing problems regarding the correction of systematic and non-systematic errors. This thesis proposes
effective methods to cope with these errors.

Keywords: Time of Flight Camera, Systematic Depth Distortion, Multipath Interference and
Motion Artifacts.
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Chapter 1

Introduction

1.1 Motivation

This thesis addresses the correction of errors for one of the most promising technologies in
low-cost depth sensing: Time of Flight (ToF) cameras. So far, ToF cameras have been used
in a wide variety of problems, bringing new frontiers in several fields: i) electronics [1, 2], ii)
computer vision [3, 4], iii) robotics [5, 6], vi) medical imaging [7, 8], v) entertainment [9], vi)
security [10,11], vi) ray tracing [12,13]), etc.

A ToF camera consists of a sensor array, similar to that used to capture light in a conventional
camera, that provides a measurement of depth for each of its pixels. As a result, the camera
produces a range image (i.e. 2.5D image) of the scene. To obtain distances, ToF cameras measure
the time-of-flight of a light signal that impacts the scene and returns back to the sensor. Current
ToF technologies can be classified into three categories: i) pulsed modulation, ii) Continuous
Wave Modulation (CWM) and iii) pseudo-noise modulation. The most established architecture
is based on CWM technology. In practice, CWM ToF cameras use modulated infrared (IR) light
sources, measuring time-of-flights with signal phase shifts. In this thesis we focus on CWM ToF
technology which is commonly based on Photonic Mixer Device (PMD) pixels.

In 2001, Lange et al. [1] established the foundations of modern ToF cameras. Since then,
commercial ToF cameras have progressively reduced their cost while showing improvements in
terms of frame rate, size or accuracy. These improved features make recent ToF cameras a
suitable solution in many applications and also a promising candidate for small and portable
applications, such as mobile phones [14,15] or medical endoscopes [8,16]. Compared to multiple
camera systems, which need complex processing and textured surfaces, ToF technology provides
fast and reliable depth information at the hardware level that is independent of the scene’s
texture.

Currently, CWM ToF cameras represent one of the leading technologies in range imaging,
producing compact and low-cost sensors. However, CWM ToF technology suffers from error
sources that still limit its accuracy (further information can be found in [1]). These errors can
be classified into i) systematic and ii) non-systematic errors. Systematic errors have been dis-
cussed widely in the literature and most of them admit calibration (see [17] for a comprehensive
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survey). Despite most commercial cameras include factory-made hardware compensations for
some systematic errors, they result in practice imprecise and require additional calibration pro-
cesses, involving complex equipment and a highly technical knowledge. Contrary, non-systematic
error sources don’t admit calibration as they depend on the scene or they have a random be-
haviour. Correction of non-systematic errors is thus very challenging and some of the solutions
proposed in the literature involve several disciplines, such as machine learning, signal processing,
graphics, etc.

These aforementioned error sources affect depth measurements significantly and limit the
applicability of ToF cameras in practice. Correction of these errors is necessary and decisive
to consolidate ToF cameras as a reliable depth sensing technology. A main motivation of this
thesis is to propose correction methods for both systematic and non-systematic errors that do
not require special equipment or additional hardware. This makes them affordable for a final
user. This thesis focuses on CWM ToF cameras, as they represent a very promising technology.
However, some of the solutions proposed can be used in any depth camera.

1.2 Problem Statement

This thesis addresses the correction of systematic and non-systematic errors, mainly in CWM
ToF cameras. We propose a general calibration method for systematic depth distortion and
methods for reducing two main sources of non-systematic errors: multipath interference and
motion artifacts, that have a relevant impact on depth’s accuracy.

The main cause of systematic depth distortion in CWM ToF cameras is due to the fact that
the modulation signal is not a perfect sinusoidal, the so-called wiggling error (see [1]). As a
consequence, depth distortion can be high in some cases (see Fig. 1.1 for an overview).

Figure 1.1: Systematic depth distortion phenomenon in a set of planes. We show in colours i)
the distorted input (red curves) and ii) the corresponding ground truth (blue lines).

Most non-systematic errors depend on the scene’s geometry or motion, though they are often
called random errors. Therefore, they don’t admit calibration techniques. Methods reducing
non-systematic errors require to analyse the scene seen by the camera and to model how these
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errors interact with a particular geometry or motion. In this thesis, we propose the modelling
and correction of two challenging and relevant non-systematic errors: i) Multipath Interference
(MpI) and ii) motion artifacts.

Multipath interference appears when reflected light from a given point of the scene overlaps
with light reflected from other parts of the scene. This produces a distortion on the depth that
becomes more pronounced in the vicinity of corners or holes (see Fig. 1.2 for an illustration).

Figure 1.2: Multipath interference phenomenon. On the left, we show the physical setup of a
corner-like scene. On the right, we show in red the MpI effect in the scene: the corner has no

flat surfaces but curved.

Motion artifacts appear when there is relative motion between the camera and the scene. In
that case, during integration time of a frame, a pixel captures light from different depths which
generates artifacts. Their magnitude depend on the particular technology used for computing
depth. In PMD cameras, depth is obtained by measuring the correlation of the incoming signal
in a pipeline of four sequential stages. With motion, the different steps are not coherent with a
single depth, producing artifacts (see Fig. 1.3 for an example).

Figure 1.3: Motion artifacts phenomenon. We show a planar object moving in a perpendicular
direction in front of the camera. On the left, we show the original object. On the right, the

captured amplitude image and a zoomed version of the affected area, respectively.
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1.3 Proposed Approach

This section contains an overview of the proposed solutions that address both systematic and
non-systematic errors mentioned in Section 1.2. Calibration of systematic depth distortion is
presented first, followed by correction methods for non-systematic errors. The ordering is not
chronological as can be deduced from the publications derived from the thesis.

1.3.1 Systematic Depth Distortion

Correction of systematic errors in ToF cameras becomes a priority for the acquisition of reliable
measurements. In this document, a calibration method is proposed that compensates systematic
depth distortion for any depth sensor. This thesis proposes a method that doesn’t require
expensive equipment nor complex settings. Hence, the final user only needs to show the camera
a plane in different positions and orientations and to provide a reduced set of anchor points
whose ground truth depth is known. A correction function is obtained for every pixel and
every depth. Existing works had failed so far to give an efficient and global solution to this
problem. The main contribution is to show that finding such correction function is indeed
a convex optimisation problem. Convexity is gained by reformulating the constraints on the
correction function using differential properties of planes. With this method one can calibrate
a depth camera in closed-form using linear least-squares and natural planes existing in most of
man-made environments.

1.3.2 Non-Systematic Multipath Interference

This thesis presents a method that automatically corrects the distortion caused by multipath
interference in depth measurements obtained with CWM ToF cameras. A radiometric model is
used to model MpI. Using this model this thesis demonstrates that all the information needed
for compensating the influence of MpI on the scene, captured by the camera, is self-contained
in the measurements (depth and amplitude of IR signal). An iterative optimisation method is
proposed that, based on the measurements contaminated with MpI, gives depth correction for
each pixel.

1.3.3 Non-Systematic Motion Artifacts

Finally, this thesis presents a method for correctingmotion artifacts in PMD-based ToF cameras.
The main idea is to use the different stages of the PMD technology to detect and to remove
motion artifacts from a single frame. The proposed algorithm is very fast, simple and can be
easily included in camera’s hardware. This method recovers depth of each pixel by exploiting
consistency of each stage of PMD’s pipeline and using information from pixels’ neighbours. In
addition, this method obtains the motion flow of occluding contours in the image from a single
frame.
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1.4 Contributions of the Thesis

The following contributions are derived from the methods proposed in this thesis:

• A new calibration method for the correction of systematic depth distortion in ToF cameras,
which is also applicable to any depth sensor. The proposed method computes a global
correction function by simply showing to the camera a plane in different positions and
angles covering the desired depth range. The solution is convex and requires linear least-
squares.

• A new method for the correction of multipath interference in ToF cameras. This method
proposes a radiometric model that explains the multipath phenomenon in ToF imaging.
It is used as a generative model of the ToF measurements, allowing one to recover depth
deviation caused by multipath distortion.

• A new method for the correction of motion artifacts in a single frame for PMD-based ToF
cameras, which also obtains optical flow in occluding contours. This method is simple,
fast and can be incorporated in camera’s hardware.

• In addition, a new type of primitive specially adapted to range imaging called Linear Plane
Border (LPB), which is also applicable for any depth sensor. These are planar stripes of
a certain width that are delineated at one side by a linear edge (i.e. depth discontinuity).
We extend previous works to robustly detect multiple LPBs in range images from noisy
sensors.

The contributions carried out during the thesis generated the following publications:

• D. Jiménez, D. Pizarro, M. Mazo and S. Palazuelos, “Modelling and Correction of
Multipath Interference in Time of Flight Cameras”, in IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2012. [18]

• D. Jiménez, S. Behnke and D. Pizarro, “Linear Plane Border. A Primitive for
Range Images Combining Depth Edges and Surface Points”, in Proceedings of
8-th International Conference on Computer Vision Theory and Applications (VISAPP),
2013. [19]

• D. Jiménez, D. Pizarro, M. Mazo and S. Palazuelos, “Modeling and Correction of
Multipath Interference in Time of Flight Cameras” in Image and Vision Computing
Journal (Elsevier), 2013. [20]

• D. Jiménez, D. Pizarro and M. Mazo, “Single Frame Correction of Motion Artifacts
in PMD-based Time of Flight Cameras” in Image and Vision Computing Journal
(Elsevier), 2014. [21]

• D. Jiménez, D. Pizarro, A. Bartoli and M. Mazo, “CaDDiP: A Closed-Form Solution
based on Local Planarity for the Calibration of Depth Distortion in Depth
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Cameras”, submitted to IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.

During the thesis the author have also participated in the following research-related activities:

• Supervised MSc and BSc projects.

– “Efficient Implementation of an Algorithm to Correct Multipath Interference in ToF
Cameras”, 2012-2013.

– “Optimisation of Time-Consuming Functions using GPU-based implementation”,
2013-2014.

– “Unified Design of a Common Interface for Time of Flight Cameras (QOP)”, 2012-
2014.

• Informative talks.

– “Outdoor scene analysis using Time of Flight Cameras”, in Proceedings of 3rd Season
of Young Researchers of the University of Alcalá, 2011.

– “2.5D Vision using Time of Flight Cameras”, in Season of Conferences and Seminars
of the University of Alcalá, 2013.

– “2.5D Vision using Time of Flight Cameras. Technology and Challenges”, in Season
of Conferences and Seminars of the University of Alcalá, 2014.

1.5 Structure of the Document

The rest of the document is structured as follows.

• In Chapter 2 we first review the most relevant range imaging techniques in computer vision
and we briefly explain PMD-based CWM ToF fundamentals. Finally, we describe previous
works regarding the correction of errors in CWM ToF cameras that are addressed in the
present thesis.

• Chapter 3 describes the proposed calibration of systematic depth distortion for depth
cameras.

• Chapter 4 shows our contribution in the modelling and correction of multipath interference
in CWM ToF cameras.

• Chapter 5 describes the proposed correction of motion artifacts in PMD-based ToF cameras
with motion flow estimation in a single frame.

• In Chapter 6 we discuss the conclusions of the present work. We focus on both the benefits
and the limitations of each proposal and we present future research lines that could be
started following the developed work.
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• Appendices A and B clarify some details regarding the correction of motion artifacts in
Chapter 5 and some related contributions derived during the thesis, respectively.

Every chapter in the document is self-contained and follows the same structure. First, an
introduction to the problem and an overview, including a graphical abstract, is presented. Next,
we introduce the notation, that can be slightly different on each chapter, and we describe the
specific theoretical background. It follows a detailed explanation of the proposed method and
finally, results and conclusion are presented.





Chapter 2

State of the Art

2.1 Introduction

This chapter reviews the existing literature on the correction of errors in Continuous Wave
Modulation (CWM) Time of Flight (ToF) cameras. We focus on three main error sources
studied in the thesis: i) systematic depth distortion and ii.a) multipath interference and ii.b)
motion artifacts, respectively for systematic and non-systematic errors. In any case, several
surveys are referenced in this chapter, should the reader need a deeper knowledge.

This chapter is organised as follows: in Section 2.2 we review the existing alternatives for
depth estimation. Section 2.3 presents the fundamentals and different technologies in CWM ToF
imaging. In Section 2.4 we review the main systematic error sources and the existing calibration
methods. Similarly, in Section 2.5 we review the most significant non-systematic error sources
and then we describe existing methods for correction of multipath interference (Section 2.5.1)
and the compensation of motion artifacts (Section 2.5.2), respectively.

2.2 Range Sensing Techniques

An important objective in Computer Vision is to achieve similar capacities of living beings to
understand the world using vision. Depth perception is one of the most important skills in highly
developed animals, such as the human being. Depth computation has been a subject of interest
for the research community and several optical and acoustic techniques have been proposed in
the literature to compute depth in a particular scenario (e.g. stereo vision or bio-sonar).

According to its working principle, we distinguish in this section three different categories
in the extraction of depth information using optical devices: 1 ) interferometry, 2 ) triangulation
and 3 ) light’s time of flight.

2.2.1 Interferometry

Interferometry is based on the superposition of two monochromatic waves of a fixed frequency
f but with different amplitudes (a1 and a2) and with different phases (ϕ1 and ϕ2), [22]. When



10 Chapter 2. State of the Art

two light waves are superimposed, it results in a different monochromatic wave with different
amplitude a3 and different phase ϕ3 while keeping the same frequency. Based on the well-known
phenomenon of interference, the resultant intensity at a particular point depends on whether the
waves reinforce or cancel each other. Thus, the amplitude a3 reaches a maximum for a resulting
phase difference of multiples of the light wavelength λ/2, while it reaches a minimum for phase
differences multiple of λ/2 + λ/4.

An interferometer is an optical instrument that splits the light beam into two parts by a
beam splitter and travels two different paths. Both reflected beams are made to cross each
other and the region of crossing will exhibit an interference fringe. Counting the number of
minimum-maximum transitions in the interference, the distance between the optical system and
the target surface can be measured with an accuracy of at least λ.

The main disadvantage of classical interferometer is that the unambiguous distance measure-
ments are limited to λ and absolute distance measurements are not possible with this method.
To overcome this limitation, different methods have been proposed in the literature using mul-
tiple wavelengths or enhanced systems. Despite the requirement of a precise alignment of the
optics, the basic application for interferometry is the most accurate technique for small distances,
ranging from micrometres to several centimetres.

2.2.2 Triangulation

Triangulation methods obtain depth information by analysing the trigonometric identities of a
triangle that is formed between a point in a surface and the lines of sight of an optical system
(see [23]). If this optical system consists of two passive receivers, the technique is called i) passive
triangulation. If it consists of one receiver and one active emitter, the measurement principle is
called ii) active triangulation.

Passive Triangulation From its similarity to human eyes, passive triangulation is the
most common and well-known technique for the extraction of depth cues. Based on the stereopsis
of the human eyes, this method computes depth by using the overlapping field of view of a pair
of cameras in a stereo configuration. The operating depth range of stereo vision is determined by
the separation between cameras (baseline): the higher the required depth range, the higher the
required baseline distance. If an specific point can be seen in both images, then it’s possible to
determine its depth. Thus, the main challenge in stereo vision is to find point correspondences
within both images. Based on epipolar geometry and image rectification, the two problem of
finding correspondences is commonly reduced to finding the best match along a given scan line
(see [24]). Assuming that the baseline b between the two cameras is known and that the measured
viewing angles between the baseline and the two projection lines of two optical systems are α
and β, the distance between the baseline and the target can be determined by:

D = b
1

tanα + 1
tan β

. (2.1)
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In Fig. 2.1 we show a diagram of the passive triangulation method.

Figure 2.1: Passive triangulation for depth computing. Point Q can be recovered looking for
the point correspondence in both images.

Passive stereo imaging is computationally expensive. In order to calculate the triangulation,
corresponding points or features have to be matched between both images. The offset between
the points in the two images is called disparity. From the disparity the distance can be calculated
if the intrinsic and extrinsic parameters of both receivers (usually cameras) are known (see [25]).
Feature extraction and matching require sufficient intensity and colour variation in the image
for robust correlation. This requirement renders stereo vision less effective if the subject lacks
these variations, for example, measuring the distance to an uniformly coloured object.

Due to occlusions, some parts of one image may not be visible in the other and hence no
depth information can be extracted from the disparity for these parts (shadowing effect). This
makes the matching problem difficult as it introduces features with no correspondence.

Active Triangulation In contrast to passive stereo vision, active systems like laser or
structured light scanners avoid the problematic task of finding point correspondences by replac-
ing one camera by a light source. By doing so, the triangulation angles are well-defined through
the exit angle of the emitted light and the position of signal within the image (see Fig. 2.2).
The main problems arise when the emitted light is not reflected properly. This is the case when
an object is either too far away or its material properties result in very dark or saturated areas
in the image.
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The configuration of a simple active triangulation sensor is shown in Fig. 2.2. A light
source projects a single point onto the measurement object. The reflected light is measured
by the sensor’s receiver. With b representing the horizontal distance between an emitter and
the optical axis of a receiver (baseline length), f the focal length and p the position where the
reflected light hits the image, the distance to the object can be calculated using Eq. (2.2).

D = f · b
p

(2.2)

Figure 2.2: Active triangulation for depth computing. Point Q can be recovered avoiding point
correspondences.

Such a simple sensor configuration restrains the distance measurement capability to a single
point. To determine the shape of an object, either the sensor or the object itself must be moved
and several measurements have to be taken. More sophisticated triangulation sensors use 2D
light patterns and 2D cameras (e.g. the Kinect v1 sensor [26]). They project a light pattern
onto the object, which is received by the camera system. These systems directly provide range
images, where depth is given for every pixel. Those images are also known as 2.5D images.

2.2.3 Time of Flight

A Time of Flight camera is a sensor that gives, for every pixel, the distance between the camera
and the scene in a particular direction. As a result, the camera produces a range image of the
scene. The original idea for obtaining depth in ToF cameras consists of measuring the time-
of-flight of a signal that travels from a light source, collides in the scene and returns back to a
sensing element. Several technologies address depth computation from a different perspectives.
We distinguish three categories: i) pulsed modulation, ii) continuous wave modulation (CWM)
and iii) pseudo-noise modulation. The most established architecture is based on CWM and
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Photonic Mixer Device (PMD) technology that obtains depth from the phase shift between two
signals: i) square periodic signal used for infrared light modulation and ii) light reflected from
the scene, that camera pixels convert into an electrical signal (see [1]). In Fig. 2.3 we show a
general diagram of the distance recovery using ToF technology.

Figure 2.3: Time of flight technology for depth computing. Point Q can be recovered
measuring the phase shift between the emitted and the received signals.

PMD ToF cameras are based on the so-called 4 phase-shift system where each pixel of the
ToF sensor includes a 2-well Complementary Metal Oxide Semiconductor (CMOS) architecture.
Each well integrates samples of the correlation function between the incoming reflected infrared
(IR) signal and the reference signal used for light modulation. The main idea is that if we
sufficiently sample the correlation between reference and incoming signals, one can recover depth
with invariance to gain and offset variations of the signal. Current PMD ToF cameras sample
the correlation function at 4 different phase shifts {ϕ0, ϕπ/2, ϕπ, ϕ3π/2}. From these samples the
depth D is obtained as follows:

D = c

4πfmod
· arctan

(
ϕ3π/2 − ϕπ/2

ϕ0 − ϕπ

)
, (2.3)

where c = 3 · 108m/s is the speed of light and fmod is the modulation frequency.

The maximum unambiguous depth range (Dmax) in ToF technology is determined by the
frequency used for modulation (see Eq. 2.4). For any point further than Dmax, for instance
D + n Dmax, the measured distance would be D. This effect is called phase wrapping, and n

refers to the number of wrappings.

Dmax = c

2fmod
(2.4)
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2.2.4 Comparison of Depth Imaging Technologies

In Table 2.1 we show a comparison between the most established depth sensing technologies:
triangulation and CWM ToF. We highlight in colours the key features of each technology: high
performance features are shown in green while low performance features are shown in red. We
use yellow to remark some the performance as average.

FEATURES Passive
Triangulation

Active
Triangulation

CWM Time of
Flight

Image Resolution High Resolution High Resolution Mid Resolution
(< 512× 424)

Frame Rate < 25 fps < 25 fps < 90 fps
Depth Accuracy Medium High Medium

Depth Range Baseline
Dependent

Scalable (Light
Dependent) Scalable

SW complexity High Medium Low
Active

Illumination No Yes Yes

Required Texture Yes No No
Shadowing effect Yes Yes No
Correspondence

Problem Yes No No

Extrinsic
Calibration Yes Yes No

Compactness Low Medium High
Power

Consumption Low Medium Medium/High

Material Cost Low Medium Medium
Indoor Yes Yes Yes
Outdoor No No Yes

Table 2.1: Comparison between Triangulation a Time of Flight range sensing technologies.

The key benefit of CWM ToF against triangulation is that the former is a compact cost-
effective depth imaging solution that provides per-pixel depth measurements in a fast and reliable
way at the hardware level. ToF cameras are unaffected by varying environmental illumination,
remove the shadowing effect and offers the possibility to work outdoor. This powerful com-
bination makes PMD ToF sensors well-suited for a wide variety of applications, becoming a
competitive alternative to other depth sensing technologies (see [27] for an overview).

2.3 Time of Flight Imaging

As described is Section 2.2.3, current ToF technologies can be classified into three categories: i)
pulsed modulation, ii) continuous wave modulation and iii) pseudo-noise modulation. In this
thesis we focus on the most established architecture: PMD-based CWM technology. In PMD
sensors each smart pixel samples the correlation between emitted and received light signals.
Current PMD cameras compute eight correlation samples per pixel in four sequential stages to
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obtain depth with invariance to signal amplitude and offset variations. Each pixel integrates
charge during hundreds of nanoseconds on each stage, which provides sub-centimetre accuracy
at a high frame rate.

2.3.1 Working Principle

Every CWM ToF camera is composed of four basic elements: i) an incoherent IR light source, ii)
a frequency modulator, iii) a CCD/CMOS array of correlation pixels and iv) a phase shift mod-
ule. The active light source is modulated using a continuous wave modulator. This light doesn’t
need to be coherent since no interference is needed for the measurement. Instead, the signal
amplitude is modulated using a fixed frequency fmod. Hence, non-specific light sources need to
be incorporated. Currently, most of the commercial ToF cameras use different configurations of
Light Emitting Diode (LED) for the illumination module. In the last few years, researchers have
introduced different light sources that provide better properties (e.g. vertical-cavity lasers) or
enhanced photo-detectors (e.g. Single Photon Avalanche Diode (SPAD) pixel structure), that
are still under research.

Therefore, a CWM ToF camera emits a modulated light that collides with the scene, gets
reflected and travels back to the sensing elements of the camera, where it is converted into an
electrical signal. Through an optical system, the wavefront is imprinted into the sensor which
is responsible for the correlation and demodulation step. The emitted light can be modelled
theoretically as the following sine wave:

e(t) = A0 sin (2πfmodt), (2.5)

where fmod is the modulation frequency and A0 is the emission mean power.

The received signal has a different phase than the emitted one, defined in Eq. (2.5). Thus
we can express it as:

r(t) = o(t) +A0K sin (2πfmodt− β), (2.6)

where o(t) is an offset that models the received optical power from background illumination,
K is an attenuation factor due to the propagation and reflection of light (amplitude decay,
object reflectivity...) and the optics (lens, filters...) and β is the phase shift that contains depth
information. Usually o(t) is considered constant, as background illumination has a significantly
lower frequency than the one used by ToF cameras, and thus o(t) = O0.

From the phase shift β, the depth D is obtained as follows:

β = 2πfmod td = 2πfmod
2D
c
, (2.7)

where td is the time taken by the light to go and to return from the scene.

As the phase shift cannot be measured directly, ToF cameras implements correlation tech-
niques inside each element of the sensor (on-chip correlation). Each smart pixel performs the
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correlation between the received optical echo r(t) and a reference signal which is aligned in phase
with the emitted signal e(t). The correlation sample is obtain several times during an integration
time Tint. Hence, a ToF camera doesn’t provide neither a direct measure of the depth nor a
measure of the time-of-flight, but a measure of the correlation between the reference and the
received signals.

Let um(t) be the square periodic signal used as reference for the correlation process. Then,
we can define the correlation function ρτ between um(t) and r(t) and for a specific phase shift
τ , as:

ρτ = Kint
1
T

∫ T

0
um(t+ τ)r(t) dt = Kint

(
A0
π

cos (β + τ) + O0
2

)
(2.8)

where A0, β and O0 are the unknown. Kint takes into account the total number of signal periods
T integrated over the integration time of the sensor Tint, which is thousand times bigger than
T .

The correlation function contains information about the received signal: the amplitude of
the modulation, the intensity of the signal, the accumulated offset and the phase shift. Sampling
the correlation function in a few points, the parameters above mentioned are inferred.

Each PMD smart pixel contains 2 CMOS wells that accumulate voltage corresponding to
samples of the correlation function ρτ and ρτ+π. Let UAτ and UBτ be the voltage accumulated
in each well of the CMOS corresponding to ρτ and ρτ+π, respectively. Taking the difference, we
get:

ϕτ = UAτ − UBτ = G

(
Kint

2A0
π

cos (β + τ)
)

+O = A cos (β + τ) +O (2.9)

where G represents the systematic gain and O is the offset term. There are thus A, β and O as
unknowns, whereas only β contains depth information.

In Fig. 2.4 we show a cross-section of a PMD pixel where charges are balanced depending
on the reference signal used for modulation um(t).

Current PMD devices implement the 4 phase-shift architecture, which consists on a 4-stage
pipeline where ϕτ is computed at τ = {0, π/2, π, 3π/2} in 4 sequential stages. In Fig. 2.5 we show
a cross-section of a PMD-based smart pixel with the acquisition pipeline.

Provided that offset variations can be eliminated, we can observe from Eq. (2.9) that the
following relationships are satisfied: i) ϕ0 = −ϕπ and ii) ϕπ/2 = −ϕ3π/2. This temporal redun-
dancy between ϕ0-ϕπ and ϕπ/2-ϕ3π/2 is used in the 4 phase-shift algorithm to cancel the effect
of gain and offset variations in the captured signal (see Eq. 2.10a). Usually, the value of ϕτ is
accessible from the sensor instead of UAτ and UBτ .
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Figure 2.4: Cross-section of a PMD pixel architecture for different values of the reference
signal um(t). QA and QB are the accumulated charges in each well.

Depth D, amplitude A and offset O are then obtained:

D = c

4πfmod
arctan

(
ϕ3π/2 − ϕπ/2

ϕ0 − ϕπ

)
(2.10a)

A =

√(
ϕ3π/2 − ϕπ/2

)2
+ (ϕ0 − ϕπ)2

2 (2.10b)

O = 1
8
(
UA0 + UB0 + UAπ/2 + UBπ/2 + UAπ + UBπ + UA3π/2 + UB3π/2

)
. (2.10c)

To summarise, in Fig. 2.5 we show the pipeline in the generation of ToF measurements. We
first illuminate the scene using an IR illumination unit using CWM technique. The round-trip
signal is captured by the PMD sensor where the correlation with a reference signal is performed.
Sampling the correlation function at 4 different phase shifts, each sensing element is able to
compute depth while removing gain and offset variations.

Depth from Eq. (2.10a) doesn’t include several error sources present in ToF cameras and
that need to be taken into consideration to obtain accurate depth measurements. We review in
the next sections systematic and non-systematic errors in ToF cameras.
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Figure 2.5: General diagram of the ToF imaging process. A cross-section of the pixel
architecture is presented, where QA and QB are the accumulated charges in each of the two

well. Notice that the capture of every phase image is followed by a readout gap.

2.4 Systematic Errors in ToF cameras

Systematic errors in depth cameras have a strong impact regarding precision and reliability of
depth measurements. Hence, calibration of these errors has been extensively studied in the
scientific literature. Usually, ToF systematic errors are originated during the process of light
to signal conversion and sensor manufacturing. Each depth sensing technology suffers from
different systematic errors. This has motivated calibration methods that are exclusive to each
particular technology.

Among systematic errors in ToF cameras we highlight: i) wiggling error due to the use of
non-ideal sinusoidal signals, ii) pixel-related error arising from a Fixed Pattern Noise (FPN),
iii) amplitude-related errors due to the non-uniformity of the IR illumination and reflectivity
variations, iv) photon shot noise that influences the number of collected electrons during the
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integration time and v) temperature-related error due to its influence in the semiconductor’s
properties (see Fig. 2.6 for an overview). Nowadays, most of commercial cameras include
hardware compensation for many of these errors. From among all, we focus on the effect of
systematic depth distortion which is mainly caused by the assumption of idealistic sinusoidal
modulation that, in practice, is not perfect: the so-called wiggling error.

Figure 2.6: Systematic errors in CWM ToF cameras. An overview.

2.4.1 Calibration of Systematic Depth Distortion

Calibration of systematic depth distortion in ToF cameras has been extensively studied in the
literature [17]. Some methods require complex hardware to calibrate the camera. For instance,
Fuchs et al. [28,29] propose a method to compensate depth distortion using checker-boards and
a robotic arm that holds the camera at its tip. The robotic arm obtains the camera pose at each
time instant using internal sensors. Camera pose is then used during calibration. In addition,
checker-boards or LED array patterns, that are usual for calibration of intensity cameras, do not
lead to very accurate calibration in depth cameras [17], as accurate point correspondences are
difficult to obtain in depth sensors. This is mainly due to the low resolution of the sensor, its low
contrast and depth artifacts that usually appear around strong intensity edges. Other methods
require additional sensors, such as high accuracy track lines ([30,31]) or a colour camera ([32,33]),
which makes these methods difficult to apply for a wide range of applications. Kahlmann et
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al. [30] estimate the distortion function that relates systematic depth distortion with integration
times and depth. The distortion function is roughly represented by a Look-Up-Table. Lindner
et al. [31] use a B-Spline to accurately model depth distortion and in [32] the same author
improves the previous method using two-dimensional B-Splines to describe distance deviations
more accurately. Very recently, Hussmann et al. [34] propose a modulation method based on
sine waves that describes the effect of the wiggling error and significantly reduces the depth
distortion. However, it requires hardware modifications in the camera.

Recently, Belhedi et al. [35] propose to calibrate systematic depth errors without any prior
knowledge of the underlying physical model. This method is thus applicable for any depth
sensor and reduces the complexity of both the setting and the equipment. Provided that we
have multiple views of a plane within the sensor depth range, they propose to find the depth
correction function forcing the observations to be planes. An iterative process is proposed that
alternates between two optimisation steps: i) calculate the planes that best fit the estimated
data and ii) estimate the correction function from the measured surfaces to planes obtained
in i). The method iterates until no correction is needed (the error is below a threshold) or a
maximum number of iterations is achieved. The authors avoid the use of calibration patterns
that do not lead to precise calibration in depth cameras due to sensor’s limitations. However,
their method need a few correspondences to fix a 3D affine ambiguity. Despite the authors
report very accurate results comparing with the state of the art, the main limitation of [35] is
the need of solving a non-convex optimisation problem. The authors proposed a greedy solution
that does not guarantee one to reach a global minimum and is computationally expensive.

To conclude, most of previous approaches are not applicable to a general depth sensor and
some of them need additional sensors for obtaining ground truth data or calibration patterns
that are difficult to engineer [28–32]. On the other hand, the method proposed by Belhedi et al.
[35] has, as main limitation, that it requires to solve a non-convex optimisation problem whose
convergence is not guaranteed. We show in this thesis that this has an impact in the accuracy.

2.5 Non-Systematic Errors in ToF cameras

Several non-systematic errors have been studied in the literature. We highlight: i) flying pixels
at depth discontinuities, ii) depth ambiguity, when depth range involves more than one period
of the modulation signal, iii) light scattering within the lens and the sensor, iv) multipath
interference and v) motion artifacts (see Fig. 2.7 for an overview). In this thesis, we highlight
multipath interference and motion artifacts as the most challenging problems that have received
the attention of the research community.

2.5.1 The Multipath Interference

Multipath Interference (MpI) [36] appears due to multiple reflections of the light: a mixture
of incoherent light signals arrives at each pixel from different paths apart from the direct path.
This effect causes significant distortions in the estimation of depth, specially in the vicinity of
corners and convex areas of the scene (see Fig. 2.7).
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Figure 2.7: Non-systematic errors in CWM ToF cameras. An overview.

In the literature there are several studies which show the impact of MpI in scenes registered
by ToF cameras. In [36] Guomundsson et al. show how MpI severely distorts corner-like scenes.
In addition, May et al. [37] measure the impact of MpI when building maps using mobile robots
equipped with ToF cameras.

Several works in the literature propose hardware modifications in the ToF cameras to remove
multipath distortion. Falie and Buzuloiu [38,39] propose methods based on IR structured light.
Dorrington et al. [40] propose a method to correct MpI using light with two different wavelengths.
These works are not able to completely remove MpI and they require hardware modifications in
the camera, which are not available in commercial sensors.

Fuchs [41] proposes a method to automatically correct MpI from the camera measurements
that does not require hardware modifications. The author proposes a model that predicts the
multipath distortion given the information captured by a ToF camera (i.e. signal amplitude
and depth for each pixel). The main assumption of Fuchs [41] is that, despite the fact that
measurements are contaminated with MpI, the signal distortion can be accurately predicted
from them. The main drawback of Fuchs work is precisely the model used to predict MpI. It
is not demonstrated under which circumstances the predicted MpI is accurate. In fact, Fuchs
method fails in general scenes when the surfaces have different albedo. In addition, Fuchs’ work
requires the adjustment of scene-dependent parameters which is a serious limitation in practice.
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There are no hints about how to set these parameters and which is their influence in the solution.

To conclude, most of previous approaches, provide slight reduction of the multipath distor-
tion, while requiring hardware modifications or strong assumptions that limits its applicability.

The following recent works [42–47] appear after publication of our MpI correction method
proposed in this thesis. Most of them cite our proposal as a reference of the state of the art and
use some of our results.

The work of Fuchs et al. [42] is a generalisation of [41] to a spatially varying, unknown reflec-
tion coefficient that requires an iterative solution consisting on multiple passes. The remaining
approaches [43–47] are inspired by [40], regarding the idea of using several modulation frequen-
cies to separate the direct path of the signal from the contributions of indirect reflections. The
works of Godbaz et al. [43] and Kirmani et al. [44] model a two-bounce multipath, assuming
specular surfaces and requiring more than 3 modulation frequencies. Both methods work on a
per-pixel basis, using closed form solutions that are expected to run close to real-time. Bhandari
et al. [45] reduce MpI providing a general solution based on using several frequencies and holding
for any number of bounces. The approach of Freedman et al. [46] can handle limited amount
of diffuse bounces and it is limited to scenes where the dominant amount of global illumination
is due to only a small number of light paths. The approach presented in [47] show that it’s
possible to perform the separation of light signals by capturing 3 measurements at a single high
temporal frequency. They demonstrated their method by building a hardware prototype based
on a low cost CWM ToF sensor. In summary, all these methods [43–47] require several modu-
lation frequencies, that renders impracticable for most commercial ToF sensors. Despite newer
ToF cameras, such as the Kinect v2, allow to work with 3 modulation frequencies, the camera’s
frame ratio is penalised and methods requiring more than 3 frequencies are prohibitive.

2.5.2 Motion Artifacts

High motion dynamics in the scene causes significant distortion in depth estimation, specially
in the vicinity of depth discontinuities and points with strong texture changes. Motion artifacts
are particular of each technology. This thesis studies their effect in PMD cameras (see Fig. 2.7).

Several studies show the impact of motion artifacts in ToF imaging [48–50]. Some of them
propose methods to remove the artifacts. Lottner et al. [48] combine a ToF camera and a colour
camera to accurately detect the edges of the scene, removing motion artifacts. Schmidt [49]
analyses the origin and effects of motion artifacts in PMD-based ToF cameras and proposes a
method to detect pixels affected by motion. Schmidt [49] also proposes a new hardware architec-
ture to reduce motion artifacts that consists of a 4-well CMOS sensor that gets simultaneously
4 correlation samples. In that manner, the total integration time is reduced as it uses a sin-
gle stage. Schmidt’s [49] architecture is nowadays prohibitive and sensor manufacturers mainly
produce 2-well sensors. More recently, Lee et al. [51,52] study the physical phenomena that gen-
erates motion artifacts and propose some methods to detect them. Furthermore, they propose
a simple method to correct the artifacts that require user interaction.

Recent works [50–55] detect and remove automatically motion artifacts by exploiting con-
sistency between phase images in PMD-based architectures. These works can be separated into



2.5 Non-Systematic Errors in ToF cameras 23

single frame and multi frame approaches.

Single frame approaches exploit the fact that in existing PMD cameras phase images are
sequentially obtained, revealing motion. Hussmann et al. [50] detect motion artifacts from dis-
crepancies between phase images. Motion compensation is proposed only for lateral movements
in a conveyor belt. This method requires photometric calibration of the camera, is restricted to
a very close range (distances below 100 cm) and is vulnerable to intensity changes by different
pixels. Lindner et al. [53] distinguish between lateral and axial motion. In the former, artifacts
are compensated by computing dense optical flow between consecutive intensity phase images.
Intensity phase images are obtained from raw CMOS measurements of each pixel that need to be
accessible from the camera (e.g. phase images are computed from the differences of raw images).
Optical flow is then used to correct phase images, removing motion artifacts. To correct axial
motion, Lindner et al. [53] need two consecutive frames that are individually corrected from
lateral motion artifacts. This proposal is time demanding and it has to deal with the inher-
ent problems in optical flow estimation (normalisation of phase images, aperture problem...).
Lefloch et al.’s proposal [56] is an improvement of Lindner et al.’s [53] proposal that reduces the
number of flow calculations. As it is stated by the authors, optical flow computation is a very
time demanding process that requires GPU hardware to be real-time. Very recently Hoegg et al.
[55] present a flow like algorithm which uses particular parts of Lindner et al. [53] (flow field)
and Lefloch et al. [56] (binarization of the motion area with an experimental threshold). The
proposal simultaneously estimates the motion field in motion areas and corrects the artifacts
by applying the computed flow field directly to the raw phase values of each individual CMOS
channel. As in Lindner et al. [53] the approach does require a phase normalisation step in order
to apply the algorithm. The motion direction estimation is based in local consistency and it has
a time complexity of O(n2) that restricts the local neighbourhood radius search to achieve real
time. To overcome this problem, they propose to use a previous frame to initialise the search
direction assuming linear motion. A median filter is optionally applied to remove outliers during
flow field optimisation. All existing single frame methods have in common that they require to
have access to each individual channel of the ToF CMOS sensor.

In multiple frame methods, temporal consistency between frames is exploited to correct
motion artifacts. Schmidt [54] detects inconsistent motion events between the different stages of
the 4 phase-shift pipeline using two consecutive frames. The main assumption is that only one
motion event can occur within 2 consecutive frames. This assumption is violated easily in many
cases considering fast movements in the scene. In practice, this method has some limitations
and raises important issues about reading gaps between consecutive frames, that in many cases
can be much larger than the integration time.

To conclude, single frame approaches have specific design limitations: while they require
to have access to both channels of each individual PMD pixel, manufacturer’s trend is just to
provide the difference. Moreover, methods considered as single frame propose also to use previous
frames to improve efficiency [55] or to correct axial motion artifacts [53]. Contrary, multiple
frame approaches rely heavily on camera’s readout times or propose hardware modifications,
that are not feasible for commercially available ToF cameras.
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2.6 Conclusion

In this chapter we show the importance of correcting ToF-related error sources. As it is shown
in the previous sections, correction of errors in ToF cameras is still an open problem.

State of the art methods reduce the impact of systematic depth distortion from a calibration
perspective. In general, these methods need calibration patterns, that are difficult to engineer,
additional sensors to acquire precise ground truth measurements or do not have guarantees of
convergence. Thus, these methods show some practical limitations that must be solved for a
final user.

Regarding non-systematic errors, the literature counts with several solutions to detect and to
correct multipath interference and motion artifacts. Due to the complexity of these phenomena,
state of the art methods present several restrictions that limits its applicability. Most of them
require hardware modifications, specific equipment or special setups that are prohibitive for
most of the users. This thesis presents methods for the correction of the aforementioned errors
in CWM ToF cameras. The methods are conceived with the following criteria: i) to avoid
neither hardware modifications nor additional sensors, ii) to reduce software complexity, iii) to
avoid complex settings and iv) to find efficient implementations. The approaches shown in the
next chapters improve the state of the art methods in all or most of these aspects.



Chapter 3

A Closed-Form Solution based on
Local Planarity for the Calibration of
Depth Distortion in Depth Cameras

3.1 Introduction

In this work we propose a calibration method that corrects systematic depth distortion in depth
cameras based on showing the camera a plane in different positions and orientations. We call this
method CaDDiP: Calibration of Depth Distortion from Planes. This approach was first proposed
by Belhedi et al. [35], where they propose a solution based on non-convex optimisation. Our
main contribution is to show that finding the correction function can be cast of a convex problem.
Convexity is gained by reformulating the constraints on the correction function using differential
properties of planes, that we refer to as the local planarity constraint. This formulation allows us
to calibrate a depth camera with linear least-squares by representing the correction function with
a Linear Basis Expansion (LBE)1. In the proposed method, data is virtually free, as planes are
ubiquitous in man-made environments, providing a high amount of information. As opposed to
plane based camera calibration [57] or self-calibration [58], we do not need for correspondences.
We thus obtain the correction function very efficiently. Our method is very accurate. We tested
it with both simulated and real experiments using different depth sensing technologies. Our
method improves on [35], especially in the presence of noise.

3.2 Overview

Current depth cameras suffer from multiple error sources that notably degrade their accuracy.
Some of these errors are systematic and can be reduced with calibration. Unlike in colour
cameras, calibration patterns for depth cameras are difficult to engineer and usually require
special equipment. As a consequence, no standard calibration method is currently available. We
propose a calibration method based on showing planes to the camera. Our method does not

1Such as Thin Plate Spline, the tensor-product B-Spline, finite elements or finite differences.
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require a calibration pattern: the planes may be arbitrary, and their model is not required. In
addition to the planes this method needs a minimum of 2 anchor points2 to fix a scale ambiguity.
Depth distortion produces curved surfaces as measurements, instead of planes. Our calibration
procedure finds the depth correction that forces the observations to be planar. This problem has
been studied before using non-convex optimisation. Existing methods are sub-optimal and do not
ensure accurate calibration results. We show that this problem can be reformulated as a linear
least-squares (and thus convex) problem using differential planarity constraints. Our method
improves the state of the art in terms of accuracy, simplicity and computational complexity.
We validated our method using simulated and real experiments with three commercial depth
cameras (MESA SR4k, PMD CamCube 3 and Microsoft Kinect v1).

Figure 3.1 shows our method’s pipeline. First, we capture several plane views (by plane
view, we mean any image, or the part of an image, of a planar surface) covering the camera’s
workspace. Next, we compute a global correction function (ϕ) based on enforcing differential
constraints of planes.

Figure 3.1: Method pipeline for the calibration of systematic depth distortion in depth sensors.
We show in colours i) the distorted input (red curves) and ii) the corresponding ground truth

(blue lines).

This chapter is structured as follows. Notation is given in Section 3.2.1. A review on previ-
ous works regarding Structure Light Projection (SLiP) technology and that compliments Section
2.4.1 (previous works on ToF technology), is given in Section 3.3. The problem statement with
regards to plane-based calibration and existing approaches are given in Section 3.4. The mathe-
matical modelling of the proposed method is given in Section 3.5. A description of the algorithm
and the implementation details are given in Section 3.6. Simulated and real experiments are
given in Section 3.7. Finally, conclusions are discussed in Section 3.8.

3.2.1 Notation

Scalar real values are typeset in regular italics lowercase, e.g. d. Domains of functions are
typeset in calligraphic uppercase, e.g. D. Vectors are displayed with bold letters. In particular,
two-dimensional points are usually written m or p if they belong to the image plane. Points
∈ R3 are represented using q. Vectors of dimension Rl, l > 3, are represented using different

2Anchor points are measured points whose depth is known
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bold lowercase letters, e.g. v. Matrices are typeset in bold uppercase math, e.g. D.3 Hyper-
parameters are denoted by the Greek lowercase letters λ, e.g. λa. Functions are denoted by
different Greek letters, such as ϕ. Functional use brackets (e.g. εs[ϕ]). A bar over a vector
represents its homogeneous coordinates, e.g. p̄.

3.3 Previous Works on SLiP technology

In Chapter 2 we presented in Section 2.4.1 state of the art methods regarding systematic depth
distortion in Time of Flight (ToF) cameras. Nevertheless, the proposed approach is applicable
to other depth sensor technologies such as SLiP (see Section 2.2.2 for an overview). Resolution
and accuracy of these sensors increase every year, which makes them a promising hardware
alternative to stereo vision systems. However, there are several error sources that affect depth
measurements in SLiP technology. Some of these errors are systematic and can be reduced
with calibration. Systematic errors in SLiP cameras are usually generated due to geometric
misalignment between the projector and the sensor and the dependence of the pattern density to
depth. Unlike in colour cameras, calibration patterns for depth cameras are difficult to engineer
and usually require special equipment. As a consequence, no standard calibration method is
currently available.

SLiP cameras show the following systematic error sources: i) camera calibration errors (focal
length, principal point offsets and lens distortion coefficients), ii) geometric misalignment be-
tween the camera and the projector and iii) non constant depth resolution due to the decreasing
point density with the squared distance. Depth calibration in SLiP cameras has been addressed
in the literature by combining modelling of systematic depth distortion, lens calibration and
infrared-RGB image alignment. Khoshelham et al. [59] study error sources in the Kinect v1
sensor and analyse its accuracy, theoretically and experimentally. They also propose calibration
methods where lens and depth distortion calibration are treated separately. In [60] the same
authors include the effect of depth quantisation in the calibration. Herrera et al. [61] propose
a calibration method for depth distortion based on iterative refinement. Initially, the intrinsic
parameters of the camera and the plane pose are estimated. The authors reports very accurate
results but the optimisation step is very time demanding. Raposo et al. [62] improve [61] by
reducing its computational demand. Smisek et al. [26] minimise the residuals of a best fit plane
considering both the distortion in the projection and in the depth estimation. More recently,
Chow et al. [63] show a bundle adjustment method to fully calibrate Kinect v1 sensors including
the estimation of the intrinsic and the extrinsic parameters of both the infrared and the colour
cameras and, more importantly, the compensation of the systematic depth distortion.

The aforementioned previous works are technology-specific approaches that are not appli-
cable to both SLiP and ToF sensors. Moreover, they require calibration patterns or additional
sensors that are difficult to handle in depth images. This thesis proposes a calibration method
which is applicable to any depth sensor and is based on showing planar structures to the depth
camera.

3Each of the elements of vectors and matrices are represented using sub-indexes (e.g. q =
(
qx qy qz

)>).
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3.4 Plane-based Calibration: Problem Statement and Existing
Approaches

3.4.1 Problem Statement

We define a general depth sensor with a retinal plane S ⊂ R2 and a centre of projection. Depth
is measured along optical rays that intersect the retinal plane and originate at the centre of
projection. A depth image is defined theoretically as the scalar function D : S → R, where given
a point p ∈ S, D(p) denotes the depth measured in the direction of the optical ray corresponding
to p. We assume that the intrinsic parameters of the camera, including lens distortion, were
calibrated, and that the image coordinates are those of the retinal S that are undistorted and
normalised by the matrix of intrinsic parameters. The 3D coordinates q =

(
qx qy qz

)>
of

point p ∈ S are given by:
q = D(p) · p̄

‖p̄‖2
. (3.1)

For a 3D point q we have that D(p) = ‖q‖2 with p = Π(q), and Π the perspective projec-
tion function. In the presence of depth distortion the measured depth-map D̃ 6= D (including
additional noise).

We define the calibration function ϕ ∈ C∞(R3,R3) as a smooth function that takes any point
in 3D and returns its corrected coordinates:

D(p) · p̄

‖p̄‖22
= ϕ

(
D̃(p) · p̄

‖p̄‖22

)
. (3.2)

We highlight that ϕ has a 3D domain as systematic errors vary over depth.

Our objective is to obtain ϕ by observing collection of planes and selecting ϕ as the function
that makes the distorted observations planar. In Fig. 3.2 we show a cross-section of the input
data-set consisting of multiple planes views.

We assume that we show the sensor n 3D planes that are represented by the function Γi ∈
C∞(S,R3) with i ∈ {1, · · · , n}. For each plane we define as γi ∈ C∞(S,R3) the corresponding
3D surface recovered by the depth sensor under distortion:

γi =
{
D̃i(p) · p̄, p ∈ S

}
, (3.3)

where D̃i corresponds to the depth image of plane Γi.

Due to distortion γi is not planar but curved. We then have that ϕ◦γi = Γi for i ∈ {1, . . . , n}.
We propose to find ϕ as the solution of the following optimisation problem:

Find varphi such that

ϕ ◦ γi is a plane

Π ◦ ϕ ◦ γi = Π ◦ γi
i ∈ {1, · · · , n}. (3.4)

The condition Π ◦ ϕ ◦ γi = Π ◦ γi forces the correction to lie on the optical ray. In this way the
corrected points project in the same retinal points than their distorted counterparts.
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Figure 3.2: Initial setting cross-section example. We show in colours i) the distorted input (red
curves) and ii) the corresponding ground truth (blue lines).

3.4.2 Belhedi et al.’s Method

To solve Eq. (3.4) we define the planarity condition of each corrected plane. A way that is
explored in [35] is to include, jointly with ϕ, new variables for the unknown planes. The resulting
problem is:

Find ϕ,v1, · · · ,vn such that

v
>
i · (ϕ ◦ γi) = 0

Π ◦ ϕ ◦ γi = Π ◦ γi
i ∈ {1, · · · , n}, (3.5)

with vi =
(
vi,x vi,y vi,z di

)>
being the point-normal parameters of the i-th plane. As this

method assumes a discrete amount of planes in Eq. (3.5), its solution is under-constrained for
those points not belonging to the planes and it is non convex. The authors add to Eq. (3.5) the
fact that ϕ is a smooth function as:

min
ϕ,v1,··· ,vn

TVkd[ϕ] such that

v
>
i (ϕ ◦ γi) = 0

Π ◦ ϕ ◦ γi = Π ◦ γi
i ∈ {1, · · · , n}, (3.6)

where TVkd is a Total Variation functional that penalises k-th order derivatives:

TVkd[ϕ] =
∫
S
‖Dk[ϕ]‖2d dS, (3.7)

with Dk being the k-th order derivative operator of ϕ and d the norm type (e.g. d = 2 for
Euclidean distance, d = 1 for the L1 norm or d = F for the Frobenius matrix norm). It is used
TV2

F that is commonly known as the Bending Energy.

However, even with the smoothness constraint Eq. (3.6) is degenerate. For instance, the
following:
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ϕ = k

(
Π
1

)
with k ∈ R

vi =
(
vi,x vi,y vi,z 0

)>
i ∈ {1, . . . , n}, (3.8)

becomes a trivial solution of Eq. (3.6) by just taking k → 0 in Eq. (3.8). To fix degeneracy,
anchor points are added, which finally leads to the cost that represents our calibration problem:

Depth calibration from multiple planes:

min
ϕ,v1,··· ,vn

TVkj [ϕ] such that


v>i · (ϕ ◦ γi) = 0 i ∈ {1, · · · , n}

Π ◦ ϕ ◦ γi −Π ◦ γi = 0 i ∈ {1, · · · , n}

qj − ϕ(q̃j) = 0 j ∈ {1, . . . ,m},

(3.9)

where qj , i ∈ 1, . . . ,m are ground truth values and q̃j = D̃(pj)·
p̄j
‖p̄j‖22

with pj = Π(qj) represent

the estimation obtained with our correction.

Equation (3.9) is a non-convex problem that requires iterative constrained optimisation.
Local optimisation can be also cumbersome due to the growing number of unknowns with the
number of planes. Belhedi et al. [35] propose a solution based on iterative alternation, where
the planes and ϕ are obtained in turns. This method is guaranteed to converge and the possible
minimum found is not guaranteed to be global impact on accuracy as verified in practice.

3.5 CaDDiP Method

We show that problem (3.9) can be reformulated and it has a convex solution that does not
need to explicitly introduce the planes as latent variables. We derive a planarity constraint that
involves second derivatives. Before developing the new cost function we give definitions.

Definition 1. Affine parametrisation space. We define Ω ∈ R2 as a parametrisation space
and an embedding γ : Ω→ R3. We say that γ has an affine parametrisation space and that Ω is
such a space for γ if there exists an affine projection Πa such that:

Πa(γ(p)) = p ∀p ∈ Ω, (3.10)

with:
Πa(γ(p)) = Pa γ(p) with Pa ∈ R2×4 (3.11)

Definition 2. Projective parametrisation space. We define Ω a projective parametrisation
space of γ if there exists a perspective projection Πp where:

Πp(γ(p)) = p ∀p ∈ Ω, (3.12)
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with:
Πp(γ(p)) ∝ Pp γ(p) with Pp ∈ R3×4. (3.13)

As a consequence all affine parametrisation spaces are also projective. For example, given
p ∈ Ω and the embedding γ(p) = ρ(p) · p̄ with ρ : Ω→ R, then Ω is a projective parametrisation
space. It is easy to check that Eq. (3.12) holds for γ under canonical perspective projection.

We now present two theorems that allow one to define the differential condition for planarity.

Theorem 1. For an embedding γ : Ω→ R3, with Ω an affine parametrisation space, γ(Ω) is a
plane if and only if D2[γ] = 0

Proof. Given that Ω is an affine parametrisation space, by definition we can find an affine
projection matrix Pa =

(
A b

)
∈ R2×4 such that:

A · γ(p) + b = p ∀p ∈ Ω. (3.14)

Now, if γ is a plane there exist a vector v ∈ R3 and an scalar d ∈ R such that v>γ = d. We
then have the following linear system:(

A
v>

)
γ(p) =

(
p− b
d

)
∀p ∈ Ω, (3.15)

where v> is linearly independent of the two rows of A, since otherwise this would contradict
Eq. (3.14). We then have that:

γ(p) =
(

A
v>

)−1(
p− b
d

)
∀p ∈ Ω, (3.16)

which means that γ is a linear function and thus D2[γ] = 0.

To prove the sufficient condition we first assume that γ is a solution of D2[γ] = 0, which is
a second order homogeneous linear Partial Differential Equation (PDE) that only admits linear
functions as solutions (see [64] for comprehensive survey). We can then represent γ as

γ(p) = Mp+ t with M ∈ R3×2 and t ∈ R3×1 ∀p ∈ Ω. (3.17)

As a consequence of Eq. (3.17), γ is either a plane, a point or a line. By including the fact
that Ω is an affine parametrisation space we have:

A γ(p) = AMp+ At = p ∀p ∈ Ω. (3.18)

As A has full rank, from Eq. (3.18) we have that AM = I2×2, which makes M full rank and
Eq. (3.17) a plane equation.

Theorem 2. For an embedding γ : Ω→ R3, with Ω a projective parametrisation space D2[γ] = 0
is a sufficient but not necessary condition for γ(Ω) to be a plane.
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Proof. For the sufficient condition we have that D2[γ] = 0 has linear functions as solutions and
similarly to the affine case, if Ω is a perspective parametrisation space γ in fact represents a
plane. To prove that it is not a necessary condition we give a counter example. Let Ω ∈ R2 be
a projective parametrisation space of the embedding:

γ(p) = ρ(p) · p̄ ρ(p) = −d
v>p̄ v ∈ R3, d ∈ R, (3.19)

we can verify that Ω is a perspective parametrisation space by verifying that Π(γ(p)) = p for
any p ∈ Ω. Clearly, due to denominators we have that D2[γ] 6= 0 in general. We can also verify
that γ is a plane:

v>γ(p) + d = −d · v
>p

v>p + d = 0, (3.20)

which means that γ lies in the plane with parameters
(
v> d

)
.

3.5.1 A Linear Least-Squares Solution to Calibration

We use the definitions above to transform problem (3.9) into one where plane equations are
substituted by the planarity constraint D2[γ] = 0. From theorems 1 and 2, the planarity
condition only applies to affine parametrisation spaces. All surfaces represented by the function
γi with i ∈ {1, . . . , n} are defined from the retina which is indeed a projective parametrisation
space. We first define Ω ∈ R2 as a subset of the plane z = 0. We denote as γ̃i : Ω → R3 the
re-parametrisation of γi in Ω. We express γ̃i as follows:

γ̃i =
(
m γ̃i,z(m)

)>
m =

(
x y

)>
i ∈ {1, . . . , n}. (3.21)

From Eq. (3.21) we have that:(
I2×2 02×2

)
γ̃i(m) = m ∀m ∈ Ω̃ i ∈ {1, . . . , n}, (3.22)

which means that Ω̃ is an affine parametrisation space of γ̃i with i ∈ {1, . . . , n}.

We redefine the problem shown in Eq. (3.9) using Theorem 1:

min
ϕ

TV2
F [ϕ] such that


D2[ϕ ◦ γ̃i] = 0

Π ◦ ϕ ◦ γ̃i −Π ◦ γ̃i = 0 i ∈ {1, · · · , n}

qj − ϕ(q̃j) = 0 j ∈ {1, . . . ,m}.

(3.23)

Equation (3.23) is a convex constrained optimisation problem in ϕ. In practice we convert
(3.23) into an unconstrained cost using a Lagrangian relaxation of four functionals:

min
ϕ
εs[ϕ] + λd εd[ϕ] + λr εr[ϕ] + λa εa[ϕ], (3.24)

that impose:
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• Smoothness:
εs[ϕ] = TV2

F [ϕ], (3.25)

• Planarity:

εd[ϕ] =
n∑
i=1

∫
Ω
‖D2[ϕ ◦ γ̃i]‖2F dΩ =

n∑
i=1

TV2
F [ϕ ◦ γ̃i], (3.26)

• Re-projection:

εr[ϕ] =
n∑
i=1

∫
Ω
‖γ̃i × (ϕ ◦ γ̃i)‖22 dΩ, (3.27)

• Scale:
εa[ϕ] =

m∑
j=1

∫
Ω
‖(ϕ ◦ γ̃i)− qj‖22 dΩ. (3.28)

If ϕ is represented with a LBE model the cost (3.24) becomes a linear least-squares problem
that can be solved very efficiently. The value of the hyper-parameters λd, λr and λa is chosen
empirically.

3.6 CaDDiP: Algorithm and Implementation Details

3.6.1 Function Model

In this thesis we represent the correction function using a Linear Basis Expansion (LBE) para-
metric representation. These representations are linear in function of the parameters, which
allow one to solve many data fitting problems in closed form. Polynomial representations are
LBE where the parameters are the polynomial coefficients. Piece-wise polynomials such as the
B-Splines or Radial Basis Functions, such as Thin Plate Spline (TPS) [65] are very popular. We
describe the proposed approach using a general LBE to represent both ϕ and γi.

The parameters of the linear expansion are defined in matrix Lγi ∈ R3×l. The function is
then defined using Lγi and a non-linear lifting function ν : R2 → Rl:

γi(mj ,Lγi) = LTγiν(mj) i ∈ {1, . . . , n} with mj ∈ Ω. (3.29)

3.6.2 Surface Fitting

The first step in our algorithm is to estimate γi for every plane in the scene using a LBE
representation. We find the parameters Lγi as the minimum of the following cost:

min
Lγi

εm(Lγi) + λs1εs(Lγi), (3.30)

with εm penalising the approximation error:

εm(Lγi) =
∑
pj∈Ω

∥∥∥∥∥D̃(pj)
p̄j
‖p̄j‖22

− γi(pj ,Lγi)
∥∥∥∥∥

2

2
(3.31)
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and εs the bending energy smoother. We can rewrite both terms in Eq. (3.30) as:

εm(Lγi) = ‖DLγi −B‖2F

εs(Lγi) = ‖ZLγi‖2F

(3.32)

The compound cost function thus writes as:

min
Lγi

(
‖DLγi −B‖2F + λ2

s1‖ZLγi‖2F
)

(3.33)

and its Linear Least-Squares (LLS) solution is:

Lγi(µ) = (DTD + λ2
s1Z

TZ)−1DTB (3.34)

3.6.3 Correction Function Fitting

We demonstrate that, by expressing the global correction function ϕ using a LBE representation,
we can minimise the cost function of Eq. (3.24) with LLS:

min
Lϕ

(
ε2
d + λs2 ε

2
s + λr ε

2
r + λa ε

2
a

)
min
Lϕ

(
‖MLϕ‖2F + λs2‖ZLϕ‖2F + λr‖CLϕ‖2F + λa‖GLϕ −B‖2F

) (3.35)

Finally, the LLS solution for Lϕ is:

Lϕ(µ) = (MTM + λ2
s2Z

TZ + λ2
rCTC + λ2

aGTG)−1
(
GTB

)
(3.36)

Thus, we convert the calibration of the systematic depth distortion into a convex optimisation
problem with guarantee of convergence, providing a LLS solution that can be implemented
very efficiently. In practice, we use the TPS parametrisation (see [66]) as a model of LBE. In
Algorithm 1 we summarise the implementation details with pseudo-code.

3.7 Results

We validate our algorithm with simulated data and real data acquired from three different
commercial depth cameras: i) MESA-Imaging SR4k (ToF), ii) PMD CamCube 3.0 (ToF) and
iii) Kinect v1 (SLiP). The data-sets consist of a fixed number of plane views covering the
desired depth range. We compared our results with [35] using the implementation provided by
the author.
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Algorithm 1 CaDDiP. Implementation details.
Computation of the TPS LBE for every plane view:

Require: n plane views, hyper-parameter (λs1)

for every plane view: i = 1 · · ·n do

Generate the 2D TPS centres

Compute the TPS LBE γi using LLS (Eq. 3.34)

end for

Solving the Convex Unconstrained optimisation problem using LLS:

Require: n plane views, m ground truth correspondences, hyper-parameters (λs2 , λr, λa)

Generate the 3D TPS centres

Calculate each functional cost: {planarity, smoothness, re-projection, scale}

Compute ϕ using LLS (Eq. 3.36)

return ϕ

3.7.1 Experimental Setup

For the evaluation of our method we propose a pipeline consisting of two separate stages: i)
training and ii) validation. In the training stage we show the camera a fixed number of plane
views covering the whole operating depth range. This can be done easily using a flat surface with
no need of special patterns imprinted on it. Given the distortion smoothness assumption we can
omit a portion of the input samples in the training stage, highly reducing the computational
cost. Next, we check the estimated correction function using a validation set consisting of several
plane views into the depth range.

In Fig. 3.3 we show an example where the mesh of a synthetically generated scene in both
stages is shown.

As depicted from Eq. (3.24), we need to estimate a set of hyper-parameters. In practice, most
of them can be set to a certain fixed value with a minimum of expert knowledge. In fact, only
those corresponding to the re-projection and the scale constraints need to be roughly adjusted
(λr and λa). In this work we choose them empirically: we perform a coarse sweep of both terms
over a fixed interval looking for the values that maximise performance. The estimation of this
set of hyper-parameters must be obtained in a first step of the proposed calibration method for
an specific depth camera.

In our experiments we verified that the remaining parameters, related to: i) the TPS
smoothers (λs1 and λs2), ii) the number l of control points (TPS centres) and iii) the num-
ber m of reference points for the scale constraint, can be fixed for all the experiments such that
it doesn’t affect significantly to the overall performance of the algorithm. In practice, we fix
them to i) {λs1 , λs2} = {1e−6, 1e−3} in both simulated and real experiments, respectively, ii)
l = 5 centres for each input dimension and iii) m = 8 reference points distributed among the
centres of the planes.
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Figure 3.3: Meshing of the input data-set in the training and validation stages. Given the
smoothness assumption, training data-set is sub-sampled in a factor of 10. Black points enclose

the depth camera working space.

Let us define the error measurement as a function δ that works over two different sets: i) an
input data-set and ii) the corresponding points in the ground truth. For a particular scenario,
given an input set Q composed of n plane views captured with a depth sensor of resolution
resi, i = 1, · · · , n s.t. Q = {q(1,1), · · · ,q(n,resn)}, and given a set of ground truth planes
G = {Γ1, · · · ,Γn}, we define the error function as:

δ(Q,G) =

√√√√ 1
n ·
∑n
i=1 resi

n∑
i=1

resi∑
j=1
|d (qij ,Γi)|2 (3.37)

where d(x,y) computes the Euclidean distance between an input point x and its corresponding
ground truth value y in the direction of the plane normal.

Depending on the point to plane distance cases, we define the four error measurements
considered in our experiments:

i) ground truth error before correction: the distance between the measured set of points
distorted by systematic depth distortion

(
Q̃
)
and its corresponding ground truth value(

Ggth
)
is considered.

δinit
gth = δ

(
Q̃,Ggth

)
(3.38)
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ii) ground truth error after correction: the distance between the set of points obtained after
applying the estimated correction function (Q∗) and its corresponding ground truth value
is considered.

δend
gth = δ

(
Q∗,Ggth

)
(3.39)

iii) Co-planarity error before correction: the distance between the measured set of points
distorted by systematic depth distortion

(
Q̃
)
and its corresponding point value in the

best-fitted plane
(
Gbf
)
is considered.

δinit
bfp = δ

(
Q̃,Gbf

)
(3.40)

iv) Co-planarity error after correction: the distance between the set of points obtained af-
ter applying a correction function and the best-fitted plane to the points value

(
Gbf
)
is

considered.
δend

bfp = δ
(
Q∗,Gbf

)
(3.41)

3.7.2 Results with Synthetic Data

We evaluate our proposal over two different simulated experiments: i) A (provided by the authors
of [35]) and ii) B (proposed implementation), each one consisting of a fixed number of plane
views with randomly generated orientations covering the desired calibrated depth range and
comprising two different distortion functions for the generation of the measurements. We build
on the experiments in [35] where the authors apply a distortion function to every plane view
that varies accordingly to the distance and increases from the image centre to the boundaries.

The training set consists of 36 plane views distributed into the predefined depth range, while
the validation stage uses 10 arbitrary plane views. In this section we use δinit

gth and δend
gth as error

measurements.

In Fig. 3.4 we show the Root Mean Square (RMS) error for each combination of {λr, λa}
in both synthetically generated experiments. Table 3.1 shows the chosen hyper-parameters and
the experiment setup.
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Figure 3.4: Sweep on the hyper-parameters (λr, λa) for both simulated experiments.
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Experiment Resolution Range (m) {λr, λa}
A 204× 204 {0.75 - 2.8} {10, 5e5}
B 204× 204 {1.0 - 3.5} {200, 1e4}

Table 3.1: Estimated hyper-parameters for both simulated experiments.

In Table 3.2 we show the results comparing with one method from the state of the art under
ideal situations: no noise is added. The obtained results are as good as [35], which also reports
better results compared with [30] and [31].

Experiment δinit
gth [35] : δend

gth CaDDiP : δend
gth

A 29.17 2.748 2.213
B 18.2 1.152 1.279

Table 3.2: Error measurements, when no noise is applied, compared with one method from the
state of the art. Bold numbers represent the results after applying the proposed method.

In Fig. 3.5 we show a cross-section of the input data-set for both training and validation
stages. Red lines show the synthetically generated depth measurements of several flat surfaces,
while the blue lines represent the corresponding ground truth. Green lines are the estimated
smooth surfaces using the TPS parametrisation γi and cyan lines are the recovered depth after
applying the proposed correction function ϕ.

Depth cameras are noisy sensors. In [35], the authors evaluate the sensor noise (ToF cameras
as a particular case) taking 100 measurements of a wall for every pixel, reporting that the
standard deviation varies from 5 mm to 18 mm. We validate our results adding Gaussian noise
to the synthetically generated depth measurements. In Fig. 3.6 we show the RMS error

(
δend

gth

)
and the confidence interval compared with [35]. We evaluate the results for several additive
noise levels after iterating 5 times each experiment.

As depicted from Fig. 3.6 our method gets better results in terms of accuracy and dispersion
under high noise levels compared with the state of the art, getting similar accuracy when no
additive noise is incorporated.

In Figs. 3.7 and 3.8 we show the RMS error colour-map for two arbitrary flat surfaces in
the validation stage. We show the results in both experiments A and B under different levels of
additive noise.

3.7.3 Results with Real Data

We validate our method using two different ToF cameras: i) SR4k from Mesa-Imaging [67]
(commercially available device) and ii) PMD CamCube 3.0 [68] (research reference design but
currently discontinued) and one SLiP camera model: iii) Kinect v1. In these experiments we
also use 36 plane views into the calibrated depth range for the training set and 10 plane views
in the validation stage.

Unlike simulated experiments, we evaluate the accuracy of the proposed method in line with
the real experiments in [35] by using a measurement of co-planarity for every point in the scene.
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Figure 3.5: Data cross-section in the training and validation stages. We show in colours: i) the
input measurement (red lines), ii) the ground truth values (blue lines), iii) the TPS LBE γi
(green lines), iv) the proposed correction (cyan lines) and v) the TPS centres (black dots).
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Figure 3.6: We show the mean and the confidence interval of the RMS error for different values
of additive Gaussian noise.
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Figure 3.7: Experiment A. We show in columns a colour-map of the RMS error before(
δinit

gth : odd columns
)
and after

(
δend

gth : even columns
)
applying the proposed method for two

arbitrary planes in the validation stage. In each row, we show the results for different noise
levels; {0, 4, 8, 14} mm.
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Figure 3.8: Experiment B. We show in columns a colour-map of the RMS error before(
δinit

gth : odd columns
)
and after

(
δend

gth : even columns
)
applying the proposed method for two

arbitrary planes in the validation stage. In each row, we show the results for different noise
levels; {0, 4, 8, 14} mm.
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We use as reference points in the training stage, points belonging to the best fitted plane to the
input data-set, shifted towards the camera a distance corresponding to the maximum deviation
error. Hence, we use in this section δinit

bfp and δend
bfp as error measurements.

In Table 3.3 we show the setup and the estimated hyper-parameters (see Fig. 3.9) for each
camera.

Technology Camera Model Resolution Calibrated Range {λr, λa}
ToF MESA SR4k 176× 144 {0.5 - 3.7} m {1e4, 1e4}
ToF PMD CamCube 3.0 204× 204 {2.8 - 5.6} m {10, 100}
SLiP Kinect v1 640× 480 {0.58 - 2.3} m {1e3, 1e4}

Table 3.3: Depth cameras features and setup.
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Figure 3.9: Sweep on the hyper-parameters (λr, λa).

In Table 3.4 we show the RMS error compared with the state of the art method showing
slightly better results.

Technology Camera Model δinit
bfp [35] : δend

bfp CaDDiP : δend
bfp

ToF MESA SR4k 27.2 12.209 11.496
ToF PMD CamCube 3.0 34.6 8.705 8.646
SLiP Kinect v1 12.2 4.046 3.801

Table 3.4: Comparison with one approach from the state of the art. Bold numbers represent
the results after applying the proposed method.

In Figs. 3.10, 3.11 and 3.12 we show the RMS error colour-map for two arbitrary flat surfaces
in the validation stage for: i) MESA SR4k, ii) PMD CamCube 3 and iii) Kinect v1.

From simulated experiments it could be expected that the proposed method would out-
perform the state of the art under real noisy scenarios, on the contrary, we present reduced
improvements. This can be explained considering that we don’t measure the accuracy using
ground truth points but a measurement of co-planarity, avoiding a critical step in [35] proce-
dure: the affinity transformation under noisy environments.
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Figure 3.10: We show the RMS error of both the measurement (left) and the proposed
correction (right) using the ToF camera model MESA SR4k.
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Figure 3.11: We show the RMS error of both the measurement (left) and the proposed
correction (right) using the ToF camera model PMD CamCube 3.
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Figure 3.12: We show the RMS error of both the measurement (left) and the proposed
correction (right) using the SLiP camera model Kinect v1.

3.8 Conclusions

This work presents a method to correct systematic depth distortion for any depth sensor, one
of the most limiting systematic error in depth sensing. We propose a closed-form solution based
on local planarity from multiple planes that transforms a non-convex method into an convex
constrained optimisation. In practice, we convert it into an unconstrained cost using Lagrangian
relaxation of four functional that can be minimised with linear least-squares.

Given the smoothness assumption of the depth distortion we can sub-sample the input data-
set highly reducing the computational cost. The global correction function obtained at this
point (training stage) is stored for a particular depth sensor in order to be applied afterwards.

We show that we can recover depth from a scene affected with systematic depth distortion
with a critical reduction of ground truth reference points (8 points in all the experiments) and
with no need of special patterns (only flat surfaces are required). This makes the proposal to be
applied easily with no need for expensive additional systems to acquire accurate ground truth
for all the pixels. The provided LLS solution makes the proposal to be implemented efficiently
with predictable complexity.

We analyse the performance of the proposal under synthetically generated experiments,
showing that the method clearly corrects systematic depth distortion under a high level of
additive noise outperforming the state of art methods. We validate the proposal in real scenes
captured using two depth sensing technologies: i) Time of Flight cameras and ii) SLiP camera,
showing accurate results.

We show in our experiments that only two of the hyper-parameters needs to be roughly
adjusted to get proper results. In practice, we empirically choose them.



Chapter 4

Modelling and Correction of
Multipath Interference in Time of
Flight Cameras

4.1 Introduction

This approach proposes a method that removes multipath distortion from the measurements
of a Time of Flight (ToF) camera without any prior knowledge about the scene. We also do
not require hardware modifications in the camera. Our method optimises a cost function whose
global minimum represents the correction needed to obtain the real depth of each pixel, free from
multipath distortion. We use a radiometric generative model based on certain properties about
the radiometry of the camera and the scene. Unlike the proposal of Fuchs [41], our method is
accurate given that the required conditions about the scene are approximately met. The results
show that our approach is very accurate, even in complex scenes.

4.2 Overview

Multipath interference of light is the cause of important errors in Time of Flight (ToF) depth
estimation. This work proposes an algorithm that removes multipath distortion from a single
depth map obtained by a ToF camera. Our approach does not require information about the
scene, apart from ToF measurements. The method is based on fitting ToF measurements with
a radiometric model. Model inputs are depth values free from Multipath Interference (MpI)
whereas model outputs consist of synthesised ToF measurements. We propose an iterative
optimisation algorithm that obtains model parameters that best reproduce ToF measurements,
recovering the depth of the scene without distortion (see Fig. 4.1 for a graphical overview). We
show results with both synthetic and real scenes captured by commercial ToF sensors. In all
cases, our algorithm accurately corrects the multipath distortion, obtaining depth maps that
are very close to ground truth data.
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Figure 4.1: Graphical abstract of the proposed method. Λ is the set of fitting parameters to
optimise, γ a non-restrictive threshold and k the iteration number.

The chapter is structured as follows. Notation is given in Section 4.2.1. Section 4.3 details the
radiometric model used to predict ToF measurements of a known scene. The iterative correction
algorithm is given in Section 4.4. In Section 4.5, we show the results for both synthetically
generated and real scenes. Finally, conclusions are discussed in Section 4.6.

4.2.1 Notation

Scalar real values are represented in lowercase letters (e.g. a) and complex values, used to
define phasors, are denoted by uppercase letters (e.g. S). Bold typography indicates vectors
and matrices, using lowercase letters for vectors (e.g. p) and uppercase letters for matrices (e.g.
A). The vector norm ‖x‖ = (

∑
i x

2
i )1/2 is the Euclidean norm. Calligraphic fonts are reserved

to define sets or regions:

R(p, δ) = {q s.t. ‖p− q‖ < δ}

We use the ∧modifier in signals, scalar amplitudes or vectors, to represent real measurements
that may contain noise and distortions (e.g. Ŝ is the measured magnitude of S ). In the same
way, predicted magnitudes using generative models are represented by the superscript ∗. Thus,
the term Ŝ∗ would refer to the prediction of the magnitude Ŝ.

4.3 Radiometric Model

In this section we present a generative model capable of rendering realistic ToF measurements,
including MpI. We use general properties of light and surfaces to render realistic images as if
they were captured in a ToF camera. The radiometric model developed in this section takes
the scene geometry as an input (depth and point normals) and gives the depth map and the
intensity image measured in a ToF camera as an output. In Section 4.4 we use this generative
model to find the scene depth map without multipath distortion. We use a fitting algorithm
that obtains the scene depth so that the generative model renders a depth image that is as close
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as possible to the one measured in the ToF camera. The generative model presented in this
section is thus the core of our correction algorithm.

The way light propagates, reflects in the scene, and is then captured back in the camera is
a very complex phenomenon. It requires details about how surfaces and camera optics reflect
and scatter light. In practice, such information is never available. In this approach we propose
a radiometric model based on the following general assumptions (see [69] for more details):

• All the surfaces in the scene are perfect Lambertian reflectors.

• A single isotropic infrared light source illuminates the scene. This light source is located
at the projection centre of the camera. We consider that the distance between the light
source and any of the pixels is negligible.

• Camera response is linear and narrow band at the infrared wavelength of the light emitted.

• Camera optics corresponds to an ideal pin-hole lens model. Each pixel captures infrared
light along an unique line of sight that passes through the optical centre.

Despite these assumptions are approximations, they have been extensively used in other
areas of computer vision, such as colour research [70] or Shape-from-Shading methods [71].
With Lambertian surfaces we avoid the need to know the Bidirectional Reflectance Distribution
Function (BRDF) of each surface. Unlike the Lambertian model, real BRDFs are difficult
to model and require calibration of the surface response under different light conditions and
orientations. The assumptions about the camera response and optics are also usual in computer
vision [23] and photogrammetry [72]. If properly calibrated, including radial and tangential
distortion, a ToF camera fits the pin-hole model with high accuracy. In addition, considering
the light source as an isotropic light source at exactly the centre of the camera is a common
approximation that gives accurate results [41].

To illustrate the radiometric model, Fig. 4.2 shows a scene with two 3-dimensional points
pi and pj . These points belong to surfaces with local orientations defined by normal vectors
ni and nj and infinitesimal areas dAi and dAj . A ToF camera consisting of two pixels, with
indexes i and j, captures the scene. Pixels i and j capture the light reflected from points pi and
pj , respectively.

The ToF camera emits modulated infrared light and then computes the phase shift between
the signal emitted (e.g. signal emitted in the direction of pixel i) and the reflected signal in
the scene (e.g. signal received from pi). We can write the information taken at pixel i using a
complex number (i.e. phasorial signal):

Ŝi = âie
j∆ϕ(2‖p̂i‖), (4.1)

where âi is the signal amplitude and ∆ϕ(2‖p̂i‖) is the signal phase shift. This phase shift is a
linear function of the distance between p̂i and the sensor. In real scenarios, multipath of light
distorts phase and amplitude measurements and hence ‖p̂i‖ 6= ‖pi‖. The time varying cosine
representation of phasor (4.1) is:



48 Chapter 4. Modelling and Correction of MpI in ToF Cameras

Figure 4.2: ToF camera model of a scene consisting of two points pi and pj , associated with
two infinitesimal surfaces with orientations ni and nj , respectively. R(pi) is the

neighbourhood region of point pi; in this case, only pj .

ŝi(t) = âicos(wt+ ∆ϕ(2‖p̂i‖)), (4.2)

where w is the modulation frequency used for the infrared source.

To model the multipath effect, we decompose the signal Ŝi into the direct path signal (Si)
and the signal due to multipath (Sij), which in Fig. 4.2 comes only from point pj .

Ŝi = Si + Sij . (4.3)

In this model the light travels only once from point pj to pi. In general we can model a
higher order of light bounces between the two points. However, that would clearly increase the
complexity of the model. We study in Section 4.5 the impact in the results of considering only
the first bounce of the light.

The two components of Ŝi are detailed below:

• Direct path term (Si):

The direct path term of the signal decomposes into the following multiplicative complex
factors:

Si = S0 G0→i Gi→0 (4.4)

The term S0 = aout denotes the light emitted by each pixel. At emission, light is coherent
in phase and thus aout ∈ R.
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The complex number G0→i
1 models the amplitude decrease and phase shift suffered by

the light when travelling from the sensor and impacting with point pi:

G0→i = ρidAi cos (αi)
‖pi‖2

ej∆ϕ(‖pi‖) (4.5)

Point pi is embedded in a surface with differential area dAi and orientation αi relative
to the light source. The term cos (αi) accounts for the foreshortening effect between the
patch and the light source. The albedo factor ρi gives an idea of the amount of energy
absorbed by the surface. In fact, the product (S0 G0→i) can be seen as a new point light
source placed at pi.

The term Gi→0 models the gain and phase shift when the light at pi comes back to the
camera sensor and it is registered on pixel i:

Gi→0 = ρ0dA0 cos (α0)
‖pi‖2

ej∆ϕ(‖pi‖), (4.6)

where ρ0dA0 cos (α0) is the linear response of the camera. We assume that α0 = 0 and
dA0 are replaced by pixel area. Jointly with ρ0 they are considered unknown camera gain
factors.

• Multipath term (Sij):

The energy that hits point pj , apart from being irradiated towards pixel j (direct path Sj
in pixel j), also impacts on pixel i (travelling a distance dij = ‖pi − pj‖ and being added
to the light that reaches pixel i).

The multipath signal is factorised into the following terms:

Sij = S0 G0→j Gj→i Gi→0 (4.7)

where Gj→i is the amplitude decrease and phase shift of the light suffers when travelling
from pj to point pi:

Gj→i = ρidAi cos (αij)
d2
ij

ej∆ϕ(dij) (4.8)

and αij is the angle between the surface at pi and the vector pi − pj .

The term Ŝi (measured signal in pixel i) can be rewritten using Eqs. (4.4) and (4.7):

Ŝi = Si + Sij = S0 (G0→i +G0→j Gj→i)Gi→0 (4.9)

where the terms S0 and Gi→0 are common to both the direct path term and the multipath
term.

1Notation: sub-index x → y means light travelling from x to y, where x (same for y) means point px. p0 is
the camera centre of projection
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In a real scenario, the light reflects from a dense amount of points and arrives at point
pi. The equations must be integrated over all the geometry of the scene, removing surface
differentials. We assume that the scene is piecewise planar between the points measured
by the camera pixels. As a consequence, the scene geometry is approximated with planar
surface patches. These planar patches are assumed to be small enough to substitute surface
differentials for small areas.

The signal received at pixel i can be expressed as:

Ŝi = Si +
∑

pj∈R(pi)
Sij (4.10)

= S0

G0→i +
∑

pj∈R(pi))
G0→j Gj→i

Gi→0

where we define R(pi) as the set of point (patches) that are reflecting the light towards
point pi. This set can be found using surface orientations. A surface patch at point pj
with normal vector nj and n>i nj < 0 does not reflect light towards point pi, so it must
not be included in R(pi).

4.4 Multipath of Light Correction

In this section we propose a method that takes a single ToF image (amplitude and depth maps)
and gives as a result the depth of the scene without multipath distortion. Scene geometry is
not known a priory. Our method can be applied to any scene where the radiometric model
of Section 4.3 is capable of rendering accurate ToF measurements. Section 4.5 shows that this
model can be applied even to scenes containing non-Lambertian objects and high differences in
albedo.

The correction algorithm can be summarised as follows: If the true depth values for each
pixel are found, then the generative model presented in Section 4.3 is able to reproduce camera
measurements. Following this idea we propose an optimisation method that finds the scene
depth (free from MpI) that makes the generative model render the closest ToF depth map to
camera measurements.

Figure 4.3 graphically shows the signals involved during our correction algorithm. We display
a corner-like scene (blue curve) seen by a ToF camera. We denote as Sx the phasor corresponding
to the direct path of pixel x. The phase of Sx gives the sought-after true depth of pixel x. Sx
is not directly visible from the camera measurements due to noise and multipath. We denote as
Ŝx (red curve) the measurements obtained in the camera for pixel x. From Ŝx we can obtain a
distorted depth for pixel x, as it is clearly seen in the roundish shape of the red curve. We propose
a generative model that predicts ToF measurements Ŝ∗x (orange curve) given an estimation of
the direct path depths S∗x (green curve). The correction algorithm iteratively finds the values of
S∗x so that Ŝ∗x is as close as possible to the measurements Ŝx in terms of phase (we show arrows
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between both signals). If the model is accurate enough, we expect the phase of S∗x being also
as close as possible to that of Sx, thus obtaining a good estimation of the depth values without
MpI.

Figure 4.3: Diagram of the multipath interference effect and the correction process in a
simplified situation. We show the additive influence of a certain point pj in the measured

signal coming from pi due to the first bounce of the emitted illumination.

4.4.1 Generative Model

We describe the 3D point pi, measured at pixel i using a scalar depth correction λi:

pi = p̂i(1− λi), (4.11)

where p̂i is the noisy measurement of pi and λi is the correction in depth along the line of sight
of pixel i.

We first present the proposed model using the simplified two point scenario shown in Fig.
4.2. Let Ŝ∗i (λi, λj) defined as the signal in pixel i in function of depth corrections λi and λj for
points pi and pj respectively:

Ŝ∗i (λi, λj) = S∗i (λi) + S∗ij(λi, λj), (4.12)

where

S∗i (λi) = S0 G
∗
0→i G

∗
i→0

S∗ij(λi, λj) = S0 G
∗
0→j G

∗
j→i G

∗
i→0 (4.13)
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Following Eqs. (4.5),(4.6) and (4.8), the gain terms can be expressed as:

G∗0→i = ρ∗i dA
∗
i cos (α∗i )

‖p̂i‖2(1− λi)2 e
j∆ϕ(‖p̂i(1−λi)‖) (4.14)

G∗i→0 = ρ0dA0 cos (α0)
‖p̂i‖2(1− λi)2 e

j∆ϕ(‖p̂i(1−λi)‖) (4.15)

and

G∗j→i =
ρ∗i dA

∗
i cos (α∗ij)
(d∗ij)2 ej∆ϕ(d∗ij) (4.16)

where d∗ij = ‖p̂i(1− λi)− p̂j(1− λj)‖.

In this two-point example, given λi and λj , the proposed model predicts the signals measured
in the camera considering a scene with geometry given by p̂i · (1− λi) and p̂j · (1− λj). There
are some parameters that must be known to evaluate functions Ŝ∗i :

• Surface albedo factors ρ∗i , included in factors G∗i→j . These parameters are scene-dependent.
Their estimation is explained below.

• Camera response and gain, included in terms G∗i→0. In general, unless the camera response
is calibrated using light and surface patterns, those parameters are unknown. As it is
explained later, the way the generative model is matched to the measurements makes
unnecessary to obtain these parameters.

4.4.1.1 Estimation of Albedo Factors

Including surface albedos ρi in the model is mandatory as surfaces involved in a real scene have
very different albedos (e.g. black and white colours in a checker-board). In most cases, albedo
determination from images is a difficult task in computer vision, especially with uncontrolled
light scenarios (see [73], [74]).

In this case we propose a method to approximate the scene albedos using ToF measurements
and taking into account the radiometric model detailed in Section 4.3. Let ρi be the albedo
factor for the surface detected at pixel i. This factor can be expressed as the product between
a reflectivity term ρreli and a global scale factor ψ:

ρi = ψ · ρreli , ∀i (4.17)

4.4.1.1.1 Reflectivity term ρreli Depth and normals of each pixel are used to decouple fore-
shortening and amplitude fall-off to obtain a value of ρreli in terms of the amplitude detected at
pixel i, namely âi:

ρreli = âi
‖p̂i‖4

dAi cos (αi)kn
(4.18)
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where ρreli is indeed the amplitude of the signal arriving at pixel i in a common plane parallel to
the camera sensor (we use the plane in the coordinate origin). The scalar kn is chosen so that
ρreli ≤ 1.

4.4.1.1.2 Global scale factor ψ. The global scale factor depends on the camera and light
source used. ψ is a camera-dependent parameter and it can be calibrated. In Section 4.5 we
describe a calibration algorithm.

Finally, we show in Section 4.5 that despite the fact that albedos are computed using noisy
image amplitudes âi, they are fair enough to get accurate depth corrections.

4.4.2 Fitting Algorithm

In this section we present an optimisation approach that fits the generative method to ToF
measurements, obtaining as a consequence the scene without MpI.

4.4.2.1 Diagram

We show in Fig. 4.4 a flowchart that explains the fitting algorithm; note that we refer to the
involved signals using the same colour assignment as used in Fig. 4.3. The inputs are depth
and amplitude measurements taken from a single frame capture in the sensor (green box in
the diagram). We call Solution(k) in the diagram to the estimation of the depths without
MpI at iteration k of the algorithm. At k = 0, sensor measurements are used as initialisation.
Given Solution(k), we simulate the depths with MpI. This is called Solution(k)+MpI in the
diagram. We use the radiometric model explained before to simulate MpI, using amplitude
measurements to estimate albedos. The iterations stop when the differences in depth between
the measurements and Solution(k)+MpI are below some predefined threshold γ. After the
method stops, Solution(k) contains the depths for each pixel without multipath errors.

4.4.2.2 Cost Function

To have guarantees of convergence we implement diagram 4.4 using a cost function that is
optimised with iterative methods. The cost function involves the depth correction of all pixels
in the image:

Λ = (λ1, · · · , λN ), (4.19)

grouped in the column vector Λ for an image with N pixels. We propose the following sum of
squares cost function:

min︸︷︷︸
{Λ}

(
N∑
i=1
‖fi(Λ)‖2

)
(4.20)
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Figure 4.4: General diagram of the iterative algorithm for multipath interference correction.
The term k indicates the iteration number and Λ is the unknown vector (depth corrections).

where:

fi(Λ) = φ
(
Ŝi
)
− φ

(
Ŝ∗i (Λ)

)
(4.21)

= φ
(
Ŝi
)
− φ

S∗i (λi) +
∑
j∈Ri

S∗ij(λi, λj)

 ,
and φ(S) is the phase of the phasor S.

As is displayed in Fig. 4.5 the optimisation approach is forcing every two phasors Ŝi and Ŝ∗i
to be as parallel as possible.

The cost function (4.20) is non-linear and non-convex in terms of the unknown vector Λ. In
this study a numerical optimisation algorithm is used to reach a local minimum of the cost. In
particular the Levenberg-Marquardt algorithm is proposed, using as initialisation Λ = 0.

Although the global minimum of the cost is not ensured, in Section 4.5 we show with exper-
iments that the ToF measurements give a good initialisation so that only a few iterations are
needed to reach the sought-after local minimum.

4.5 Results

4.5.1 Implementation Details

In this section we give practical hints and methods to calibrate ψ from checker-board patterns
and the algorithm we propose to compute surface normals and areas.
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Figure 4.5: Phasorial diagram with the signals involved in the MpI model. Please note that in
this figure we use φ(Sx) = δx in order to improve its readability.

4.5.1.1 Calibration of Global Scale Factor ψ

The value of ψ depends on camera parameters (e.g. exposition time or camera response), and
the light intensity. The global scale factor ψ does not depend on the scene under consideration.
It is thus a parameter that we can calibrate independently in a calibration process that we
describe with the following steps:

1. We use calibration patterns to obtain a set of 3D points from which we know the ground
truth and the multipath distortion at every point. We use two planes with a chessboard
texture where we know distances dij between corner points (see Fig. 4.6). These planes
must show multipath effect so that the model can predict ψ. The best way is to create a
corner with the two planes.

Figure 4.6: Simulation of the experimental setup to calibrate the global scale factor ψ. We
establish two planes in a corner like configuration so that multipath interference appears in the
scene (any other setting would be possible). Both planes must be imprinted with a chessboard

pattern of known distances.
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Let p̂i be the measurements of the 3D coordinates of the 3D point corresponding to pixel
i and pi = p̂i(1− λi) the correction of that point. Using the fact that we know distances
in the pattern we can write:

dij = ‖p̂i(1− λi)− p̂j(1− λj)‖ (4.22)

We force every pair of points i and j detected from the patterns to meet condition (4.22).
We use the following cost function:

min︸︷︷︸
Λ


M∑
i=1

M∑
j = 1,
j 6= i

(
d2
ij − ‖p̂i(1− λi)− p̂j(1− λj)‖2

)2


(4.23)

where the vector

Λ = (λi)M×1 , ∀i ∈ [1, ...,M ]

corresponds to the depth corrections for theM detected points in the planes. The minimum
of Eq. (4.23) with respect to Λ is obtained easily with non linear refinement algorithm
such as Levenberg-Marquardt. We assume that Λ = 0 at the first iteration.

2. Knowing λi and ρreli , ∀i ∈ [1, ...,M ] values, the global scale factor ψ can be obtained by
minimising the following cost function in terms of ψ as the only unknown in the optimi-
sation process:

min︸︷︷︸
ψ

(
N∑
i=1
‖cfi‖22

)
/ cfi = ∆ϕ

(
Ŝi
)
−∆ϕ

(
Ŝ∗i

)
(4.24)

We use also non-linear refinement to obtain the value of ψ. We use ψ = 1 as initial value.

4.5.1.2 Computation of Areas

As commented in Section 4.3, each point of the scene integrates a small area that substitutes
the differential area terms included in the cost function. We employ as mask the 8 nearest
neighbours around the point of interest in the image to get an estimation of the area. If the
point is near a discontinuity we remove the neighbours at a distance greater than a predefined
threshold (e.g. we use a distance threshold of 80 mm in all experiments). Finally, the area of
a point in the scene corresponds to a quarter of the area covered by all 3D triangles formed by
the point and its neighbours (see Fig. 4.7).



4.5 Results 57

Figure 4.7: Differential area of a sampling point pi with its N neighbours inside the distance
threshold (general case: N = 8).

4.5.1.3 Computation of Surface Normals

We need surface normals for the radiometric equations. We compute normals from the sampled
depths using the method proposed in [75], which is based on fitting planes around each point,
using neighbour pixels. The number of neighbours depends on the distance to the point of
interest. In other words, the plane is fitted with points covering approximately the same area
regardless of the resolution of the device; for example, we fix a distance threshold between the
neighbours and the point of interest of 80 mm. In Fig. 4.8 we show the normals obtained for
two real examples of corner-like scenes.

Figure 4.8: Estimation of normal vectors in real scenes (we consider a distance threshold of 80
mm).

4.5.2 Results I: Synthetic Data

4.5.2.1 Noise and Influence of Global Gain for Albedos

Table 4.1 shows the results for two different synthetically generated scenes based on the radio-
metric model described in Section 4.3. Simulations were performed for ToF images with low
resolutions (e.g. 20× 20 pixels).

In order to measure the amount of correction performed by our method we compare, for
each pixel, the 3D positions of the ground truth points against the corresponding estimations
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obtained from: i) ToF measurements ( Ŝi ) without MpI correction. ii) Predicted value of the
direct path term ( S∗i ) after the optimisation algorithm reach a minimum.

The first two columns of Table 4.1 show the influence of additive noise in depth measurements,
while the last two columns show the influence of the global scale factor ψ used for the albedos. In
both cases we show two kinds of plots. In the first row we plot a view of the depth measurements,
ground truth and the proposed correction in the X-Z plane; in the second row we show the
corresponding rms error in function of the two parameters under study.
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Table 4.1: Synthetic data. The first two columns show the influence of additive noise in depth
measurements; we fix the global scale factor to ψ = 1. The last two columns show the influence

of the global scale factor ψ used for the albedos; we fix noise standard deviation to
σNOISE = 6mm. In all cases we use 30 random realisations of the same experiment.

There are two main aspects to highlight. First, the stability of the correction with respect
to the noise introduced in the depth signal, which remains close to the value of the noise added
and greatly corrects the MpI. Second, it must be noted that the performance of the proposal
is also highly independent of the reflectivity coefficient range (up to 30% of increment in global
energy absorption) introduced in the MpI generation model.

4.5.2.2 Validation of the First Bounce Model

Theoretically, MpI arises from multiple reflections in the scene of O-th order (see the example
in Fig. 4.9 for O = 2). Our first bounce assumption (O = 1) is based on the signal decrease
due to the foreshortening phenomena and the quadratic inverse dependency to the distance as
seen in Eq. (4.5). In this section, we validate our first bounce approach in synthetically gener-
ated scenarios by introducing the second bounce term in the generative model that simulates
multipath interference (see Eq. (4.25)).
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Figure 4.9: Conceptual representation of the signals involved in the multipath interference
considering a second bounce model. We show a simplified scenario consisting of 3 points and

the specific point-to-point ray tracing.

Ŝ
∗(2)
i = S∗i +

∑
j∈R(pi)

S∗ij +
∑

k∈R(pj)
S∗ikj


S∗ijk(λi, λj , λk) = S0 G

∗
0→j G

∗
j→k G

∗
k→i G

∗
i→0

(4.25)

In the same way as in the previous section, we present in Table 4.2 the influence of additive
noise and the calibrated constant ψ in the proposed correction. The results show that adding the
second bounce term does not incorporate significant error in the algorithm and the correction
maintains similar levels if we compare with first bounce model. Given that results, we can
theoretically validate our generative model.

4.5.3 Results II: Real Scenarios

4.5.3.1 State of the Art Comparison

In the first row of Table 4.3 we show the behaviour of the proposal for a commercial PMD
CamCube ToF camera (for more information visit [68]) of 200× 200 pixel resolution. The scene
consists of a homogeneous colour corner where we can easily appreciate the multipath effect.

The second row of Table 4.3 shows similar results using the MESA-Imaging ToF camera (for
more information visit [67]) of 176× 144 pixel resolution. We employ a 1:2 re-sampling ratio in
the following experiments, so a small error may be introduced due to normal vector computation.
Normal vectors have been computed with a 5-neighbourhood kernel and a distance threshold of
500 mm. In this case, the scene consists of a corner with a chessboard pattern.
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Legend

Table 4.2: Synthetic data. The first two columns show the influence of additive noise in depth
measurements; we fix the global scale factor to ψ = 0.75. The last two columns show the

influence of the global scale factor ψ used for the albedos; we fix noise standard deviation to
σNOISE = 6. All the experiments employ 30 iterations for each sweep iteration.

In Table 4.3 we can see that the amount of multipath present in the scene taken by the MESA-
Imaging device is significantly smaller than the one seen in the PMD CamCube experiment. This
is due to the fact that the checker-board does not reflect as much light as the uniform surface
reflector.

In both scenes of Table 4.3 we compare our approach with the method proposed in [41]. As
it is clear in Table 4.3, our proposal is able to correct MpI accurately, clearly surpassing the
method proposed in [41]. In the second row of Table 4.3 it can be observed that Fuch’s method
is not able to correct the scene, due to albedo differences of the checker-board.

Legend
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Table 4.3: Comparative results of real corners captured with 2 different ToF cameras. We
provide a lateral view of the 3D reconstruction and the average error for each method.
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4.5.3.2 Complex Scenarios

In Tables 4.4 and 4.5 we show the reconstructed scenes after applying the proposed method
using a commercial time of flight camera (see [67]). In the first column we show the point clouds
of the measured (in red) and the corrected scene (in green). On these scenes our baseline is
obtained using a range laser sensor, with distance accuracy of ±10mm, attached to a servo
motor. With this device we can reconstruct the scene with minimal presence of MpI as each
measurement of the laser is made independently. In columns 3 and 4 we show the initial error
from the measurement and the remaining error after our correction, respectively. We represent
the value of the error for each point with a different colour following the colour-map of the
attached bar (values are given in mm). In the last column we show the error mean and the
standard deviation for different values of the general scale factor ψ. Error mean is computed as
the mean of the euclidean distance between each measured point and its corresponding point
from the baseline.

We can observe that in most cases the correction keeps stable after a value of ψ close to 1 or
reduces their slope significantly. Calibrated values close to that constant provides good results
(in our case ψ = 1.45 for experiments 1-13 and ψ = 1.12 for experiments 14-15). The outcomes
are validated in different scenarios in various ranges up to the maximum range of the employed
laser to elaborate the ground truth (4 m). We provide values of the error mean, Tables 4.6 and
4.7, with two different sub-sampling ratios (sr = 4 and sr = 8, respectively). The similarity
between both remaining errors demonstrate the viability of future efficient implementations that
consider homogeneous patches of higher size to speed up the computation of multipath terms.
This assumption could reduce the computation complexity of the algorithm and allow real time
processing.

4.5.3.3 Large Environment

Finally, in Table 4.8 we validate our algorithm in a complex scene (lab room view). With this
purpose, we have developed the correspondence between a high-resolution RGB camera and our
ToF device so we can texturise the scene. In this experiment the ground truth is not available.
However, it can be observed in the second row of Table 4.8, by simple visual inspection of the
texturised mesh, the way our proposal corrects the deformed geometry of the scene captured by
the ToF camera.

4.5.3.4 Evaluation of the Proposal with a Scene at Different Distances

In ToF cameras the error usually increases with depth (see [76], [17] for a comprehensive survey of
systematic errors in ToF cameras). In order to show if this error affects the proposed algorithm,
in Table 4.9 we validate our proposal for the same scene placed at different distances to the
camera. We show that correction error keeps stable in all the cases even if the initial error and
the amount of multipath increase with the distance to the camera.
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Table 4.4: Real scenes captured with ToF cameras (1-8). We compare point clouds taken with
the camera, our MpI correction and the ground truth. We also show 3D meshes with raw and

corrected depth values.
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Amplitude Point Clouds Measurement
Error Correction Error ψ Sweep
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Table 4.5: Real scenes captured with ToF cameras (9-15). We compare point clouds taken
with the camera, our MpI correction and the ground truth. We also show 3D meshes with raw

and corrected depth values.
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Computed Error Mean (mm)
Example Measurement Correctionsr=4 Correctionsr=8

1 14.2452 6.4415 6.1768
2 14.1558 6.6981 6.2914
3 13.3690 6.3741 6.6369
4 11.8133 7.0452 6.9401
5 15.1268 6.8601 6.9102
6 31.3108 7.4176 7.7069
7 28.0717 8.3186 8.6161
8 26.9024 9.2494 9.9066

Table 4.6: Comparison between the error mean of the raw measurement and the proposed
correction with two different sample ratios ({sr = 4, sr = 8}) in scenes 1-8.

Computed Error Mean (mm)
Example Measurement Correctionsr=4 Correctionsr=8

9 24.7013 9.8669 10.2845
10 26.4332 9.9391 10.1186
11 31.7162 12.0318 11.8846
12 49.7808 12.6716 11.8345
13 43.1849 12.5636 11.3301
14 51.7631 18.7637 22.0355
15 43.8015 19.3512 22.4829

Table 4.7: Comparison between the error mean of the raw measurement and the proposed
correction with two different sample ratio ({sr = 4, sr = 8}) in scenes 9-15.

4.6 Conclusion

This work presents a method to correct the distortion due to multipath interference (MpI) in
ToF cameras. We propose a radiometric model able to synthesise ToF measurements, including
the MpI phenomenon. Using the radiometric model, we propose a method to remove multipath
distortion, recovering the original depth of the scene. The solution we propose is based on
unconstrained nonlinear optimisation. We obtain the scene depth from which the radiometric
model renders the closest ToF depth map to the one actually measured by the camera. We show
in the Results section that the method clearly corrects complex scenes captured with different
ToF cameras. In all experiments we also show that our approach obtains better results when
compared to the state of the art techniques.

At the moment, computational cost is high (taking several minutes for a small scene). How-
ever, we have several research lines opened that establish different methods to push the approach
to future real time implementations.
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(a) RGB Image (b) Mesh MpI (Red) vs Corrected
Mesh (Green)

(c) Mesh MpI (Red) vs Corrected
Mesh (Green)

(d) Top view with MpI (e) Top view after
correction (f) Side view with MpI (g) Side view after

correction

Table 4.8: Complex scenario captured with MESA ToF camera (lab room). We provide
different views of the 3D meshing where the geometry distortion caused by MpI becomes more

significant.
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Computed Error Mean of the Same Scene for Several Depths
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8.0408 13.0536 26.1183 41.4046
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3.3268 3.5322 3.6077 5.4879

Table 4.9: Real scene captured with a commercial ToF camera. We compare point clouds
taken with the camera, our MpI correction and the ground truth. We also show the error mean

before and after the proposed correction.



Chapter 5

Single Frame Correction of Motion
Artifacts in PMD-based Time of
Flight Cameras

5.1 Introduction

High motion dynamics in the scene causes significant distortion in depth estimation, specially in
the vicinity of depth discontinuities and points with strong texture changes. If motion happens
during the integration time Tint (30-2000 µs in commercial cameras), a pixel integrates incoherent
signals, which leads to remarkable artifacts in the depth image. To illustrate the problem, we
show in Fig. 5.1 an example of both the effect of motion artifacts and our correction. Left column
shows depth and amplitude images of a moving planar object, registered with a commercial Time
of Flight (ToF) camera, while right column shows the result of our algorithm, where the correct
shape is recovered.

This work proposes a method that removes motion artifacts from a single frame captured by
a Photonic Mixer Device (PMD) ToF camera without altering current hardware. Our method
exploits spatial and temporal redundancy present in current PMD pixel pipeline to correct depth
measurements caused by the motion. We show in this chapter that as a result of the proposed
correction method, a single PMD ToF image can be used to measure motion vectors along
occluding contours of the scene in the image. Our method is very accurate, recovering depth in
very challenging scenarios under high dynamics. It outperforms the state of the art based on
using several frames for correction. In addition, our method runs in real time in a single core
CPU processor, does not require high amount of memory and can be integrated in camera’s
hardware.

5.2 Overview

One of the leading Time of Flight imaging technologies for depth sensing is based on Photonic
Mixer Devices (PMD). In PMD sensors each pixel samples the correlation between emitted and
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Figure 5.1: Planar object moving in a perpendicular direction in front of the camera. On the
left column we show the captured depth and amplitude images, respectively. On the right

column we show the proposed correction.

received light signals. Current PMD cameras compute eight correlation samples per pixel in four
sequential stages to obtain depth with invariance to signal amplitude and offset variations. With
motion, PMD pixels capture different depths at each stage. As a result, correlation samples are
not coherent with a single depth, producing artifacts. We propose to detect and remove motion
artifacts from a single frame taken by a PMD camera. The algorithm we propose is very fast,
simple and can be easily included in camera’s hardware. We recover depth of each pixel by
exploiting consistency of the correlation samples and local neighbourhood. In addition, our
method obtains the motion flow of occluding contours in the image from a single frame. The
system has been validated in real scenes using a commercial low-cost PMD camera and high
speed dynamics. In all cases our method produces accurate results and it highly reduces motion
artifacts.

Figure 5.2: Graphical abstract of the proposed method.

This chapter is structured as follows. A description of Time of Flight fundamentals and
motion artifacts phenomena is given in Sections 5.3 and 5.4, respectively. Our single frame



5.3 Preliminary Concepts 69

approach and the motion estimation algorithm are given in Sections 5.5 and Section 5.6, respec-
tively. Quantitative and qualitative results obtained using a commercially available PMD-based
ToF camera are shown in Section 5.7. Finally, conclusions are discussed in Section 5.8.

5.3 Preliminary Concepts

ToF technology obtains depth from the phase difference between the emitted and the received
signal after colliding with the scene. We define um(t) as the T periodic square signal used to
modulate light:

um(t) =
{

1, if 0 ≤ t− n · T ≤ T/2

0, if T/2 ≤ t− n · T ≤ T

n = 0, 1, 2, ...

. (5.1)

The received signal r(t), reflected from the scene, is represented with the following continuous
wave function:

r(t) = a0 · sin (ωt+ β) +O, (5.2)

where ao is the signal amplitude, ω = 2π/T and β = ω · TL is the phase shift caused by the
time-of-flight TL. Depth is then computed as d = c·TL

2 , with c the speed of light in the medium
(i.e. vacuum). The offset O is composed of two additive terms:

O = Obg +Odc, (5.3)

where Obg is due to background illumination and Odc appears as the DC component of the
modulated infrared (IR) light source.

PMD technology is based on sampling the correlation function between r(t) and um(t) to
obtain depth:

ρτ = Kint ·
1
T

∫ T

0
um(t+ τ) · r(t) dt = Kint ·

(
a0
π
· cos(β + τ) + O

2

)
, (5.4)

where a0, β and O are the unknown. Kint takes into account the total number of periods T
integrated over the integration time of the sensor Tint, which is thousand times bigger than T .

Each PMD smart pixel contains 2 CMOS wells that accumulate voltage that corresponds to
samples of the correlation function ρτ and ρτ+π (see [77] for further details). We refer to the
voltage accumulated on each well as UAτ and UBτ . Their relationship with ρτ can be approximated
by the following linear function:

UAτ = GA · ρτ +OA UBτ = GB · ρτ+π +OB, (5.5)
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where GA and GB are the conversion gains that translate optical energy into voltage and OA

and OB are the offsets. In general GA 6= GB and OA 6= OB due to non-isotropic material
properties that appear during sensor manufacturing. Lindner [78] gives a detailed description
of these variations called Fixed Pattern Noise (FPN). Despite being considered as noise, it is a
systematic error that can be calibrated.

Taking the difference UAτ − UBτ we get:

ϕτ = UAτ − UBτ = GFPN ·
(
Kint ·

2 · a0
π
· cos(β + τ)

)
+Ocal

= a · cos(β + τ) +Ocal

(5.6)

where GFPN is the FPN gain and Ocal is the offset term which depends on the background
illumination O and can be calibrated:

GFPN = GA +GB

2 (5.7a)

Ocal = O

2 ·Kint · (GA −GB) + (OA −OB). (5.7b)

There are thus a, β, GFPN and Ocal as unknowns, whereas only β contains depth information.

Current PMD devices implement the 4 phase-shift architecture, which consists on a 4-stage
pipeline where ϕτ is computed at τ = {0, π/2, π, 3π/2} in 4 sequential stages. In Fig. 5.3 we show a
summarised cross-section of a PMD-based smart pixel with the acquisition pipeline (notice that
the capture of every phase image is followed by a readout gap). QA and QB are the accumulated
charges in each of the two well.

Figure 5.3: In-pixel representation of the sequential 4-stage pipeline in PMD-based smart
pixels.

Provided that offset variations can be elliminated, we can observe from Eq. (5.6) that the
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following relationships are satisfied:

ϕ0 = −ϕπ
ϕπ/2 = −ϕ3π/2.

(5.8)

This temporal redundancy between ϕ0 − ϕπ and ϕπ/2 − ϕ3π/2 is used in the 4 phase-shift
algorithm to cancel the effect of FPN. Usually the value of ϕτ is accessible from the sensor
instead of UAτ and UBτ .

Depth d and amplitude a are then obtained irrespective of FPN gain and offset variations:

d = c

2 · ω · arctan
(
ϕ3π/2 − ϕπ/2

ϕ0 − ϕπ

)
(5.9a)

a =

√(
ϕ3π/2 − ϕπ/2

)2
+ (ϕ0 − ϕπ)2

2 . (5.9b)

State of the art methods propose calibration techniques of the terms GA, GB, OA, OB which
can reduce the number of phase images (ϕτ ) from the initial 4 samples to 2 or even 1 sample
(see [79] and [80], respectively). Calibration of FPN usually requires special lighting conditions
(see [79]) or patterns. We show next that only calibration of Ocal is needed to get depth from
only two phase images. We present a calibration method without patterns or special lighting
conditions, just by taking a short sequence of images from a static scene in complete darkness.

5.3.1 Calibration Method

Based on Hussmann et al. [79], if the offset Ocal is known, the depth and amplitude values can
be obtained with only two samples of ϕτ :

d = c

2 · ω · arctan
(
ϕτ2 −Ocal

ϕτ1 −Ocal

)
(5.10a)

a =
√

(ϕτ1 −Ocal)
2 + (ϕτ2 −Ocal)

2
, (5.10b)

where τ2 = τ1 + π/2 with τ1 ∈ {0, π} (note that in Eq. (5.10a) the sign of ϕτ{1,2} changes
accordingly to the sign of the corresponding correlation sample). Equation (5.10a) shows that
we can use only two consecutive steps (ϕτ1 and ϕτ1+π

2
) of the 4 phase-shift pipeline to get depth.

We propose a calibration method that requires a number NF of views from a static scene
(i.e. camera is still with respect to the scene and objects in the scene are not moving). For every
frame in the sequence we get 4 raw channel measurements of a single pixel:
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{
ϕi0, ϕiπ/2, ϕiπ, ϕi3π/2

}NF
i=1

. (5.11)

We sample Ocal from every two channels separated by π:

Ocali = 1
2 ·
(
ϕiτ + ϕiτ+π

)
. (5.12)

Based on Mufti et al. [81] and the recent work of Hussmann et al. [82], we can assume
that, if enough photons are collected, Ocal follows a Gaussian distribution N

(
Ôcal, σO

)
, that

we estimate from the samples obtained with Eq. (5.12).

We show in Fig. 5.4 the computed normal distribution of Ocal for two random pixels in an
image taken by a commercial ToF camera.

Figure 5.4: Normal distribution of O of two isolated pixels {p1, p2} using 100 samples.

From Eq. (5.7b), Ocal is composed of two terms. We assume in practice that (GA−GB) ≈ 0,
being the second term (OA−OB) the leading factor in Ocal. Unlike the first term, that depends
on O andKint, the offset term (OA−OB) does not vary with depth, integration time, background
illumination or light source offset. Calibration of Ocal can thus be performed offline and stored.
We validate this assumption experimentally in Section 5.7.

5.4 Motion Artifacts

When the scene moves with respect to the camera, each stage of the 4 phase-shift pipeline
captures different depths, producing errors when they are combined to get depth. We exploit
the fact that in PMD cameras the 4 stages of the pipeline are run sequentially to detect motion
inconsistency at every pixel. As each stage is run at a fraction of Tint, we consider in the study
that the motion inside each stage is very small.
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In Fig. 5.5 we represent the sampled phase images in a pixel that belongs to the left occluding
contour of the object. On that pixel we show that while ϕ0 and ϕπ/2 are properly obtained from
the foreground, at ϕπ there is a sudden change of depth from foreground to background. In last
stage (ϕ3π/2), only background depth is detected.

Figure 5.5: Example of the motion inconsistency for a particular pixel.

If we use Eqs. (5.9a) and (5.9b), the resulting depth appears distorted due to the incon-
sistency of the different samples (distorted image in Fig. 5.1). We propose to detect motion
artifacts in a single pixel with the following criterion:

A pixel is said to be affected by motion artifacts if :

|(ϕ0 + ϕπ)− (ϕπ/2 + ϕ3π/2)| > γ, (5.13)

where γ is a fixed threshold obtained by the following calibration process.

5.4.1 Calibration of the Inconsistency Threshold

To establish a threshold γ we model statistically the distribution of:

η = (ϕ0 + ϕπ)− (ϕπ/2 + ϕ3π/2) (5.14)

in the case of images where the scene is static with respect to the camera. We assume that η
follows a Gaussian distribution N (η̄, ση) that can be estimated by sampling. We then propose
γ = 3.326 ·ση, that contains the 99.97% of the distribution when no motion artifacts are present.
In Section 5.7.1 we show the estimation of the inconsistency threshold for several values of Tint
in a commercial PMD camera.
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5.5 Correction of Motion Artifacts

We propose a method that removes motion artifacts from a single frame (i.e. 4 phase images).
Our method is based on two basic assumptions: i) after calibration of the offset, depth can
reliably be obtained from two consecutive phase images and ii) neighbouring pixels are a strong
cue to complete information that is lost due to motion artifacts.

We can distinguish 3 main steps in our proposal:

1. Calibration: is the responsible for performing the offset calibration (see Section 5.3.1) and
determining the inconsistency threshold (see Section 5.4.1) automatically with no user
interaction. After these two steps we can detect pixels affected with motion artifacts and
we can obtain depth using the pseudo 4 phase-shift algorithm.

2. Event Detection: in this step we characterise the event in terms of: i) the phase image
where the event appears and ii) the direction of the event (rising or falling edge). Hence,
we have a discrete label for each pixel affected by motion that includes both temporal and
depth change information.

3. Depth Correction: in this stage we correct the depth value of every pixel affected by motion
artifacts. We combine the information available in the phase images with neighbour pixels.

5.5.1 Calibration

As explained in Section 5.3 we remove the influence of Fixed Pattern Noise in order to compute
depth measurements using only two of the four phase images provided by the sensor (the so
called pseudo 4 phase-shift algorithm explained in [79]). In addition, we apply a statistical
method to find threshold γ, explained in Section 5.4.1. Both processes are done only once at
the beginning. Calibration requires to show the camera a static scene during several seconds.
During calibration we avoid regions of the image with strong depth discontinuities, saturation
and low reflective surfaces.

5.5.2 Event Detection

When a pixel is affected by motion it receives light from multiple depths during Tint. In occluding
contours, motion produces abrupt depth transitions, mainly affecting a single phase of the pixel.
We detect events by monitoring sudden changes between the 4 phase images labelling them
accordingly.

We use a discrete labelling cel (coarse event location) that represents the phase image con-
taining the event and the direction (i.e. rising edge or falling edge) of the depth change caused
by the motion. We use the following set of 9 labels:

cel ∈ {−4,−3,−2,−1, 0,+1,+2,+3,+4}, (5.15)
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where |cel| represents the phase image affected by a depth transition and its sign characterises
the depth gradient (e.g. cel = +1 means a rising edge event in ϕ0 and cel = −2 means a falling
edge event in ϕπ/2). The absence of events is represented by cel = 0.

Event labelling is divided into two steps:

1. Detection of the event location: in this step we localise the phase image that is distorted
due to motion, i.e. |cel|.

2. Detection of the event direction: we characterise depth transitions with two classes: {rising,
falling} events, i.e. sign of cel.

5.5.2.1 Detection of the Event Location

Our method for detecting the phase affected by a motion event is based on the following two
main assumptions:

• An event is generated by the transition of two depths ({β1, β2}).

• There is only one depth transition affecting a single phase image during integration time.

From Eq. (5.13), if there is no event in the current pixel (|cel| = 0) the following inequalities
hold: i) |ϕ0 + ϕπ| < γ and ii) |ϕπ/2 + ϕ3π/2| < γ, where γ is a small threshold that has been
previously calibrated. Otherwise, we detect the position of the events by checking the following
tests in sequential order:

a) |cel| = 1 ⇔ |ϕ0 + ϕπ| > γ AND |ϕπ/2 + ϕ3π/2| < γ

b) |cel| = 4 ⇔ |ϕ0 + ϕπ| < γ AND |ϕπ/2 + ϕ3π/2| > γ

c) |cel| = 2 or |cel| = 3 ⇔ |ϕ0 + ϕπ| > γ AND |ϕπ/2 + ϕ3π/2| > γ

(5.16)

To distinguish between events in |cel| = 2 or |cel| = 3 , we first write the equations of all
phases from Eq. (5.6), once we have calibrated the offset term Ocal (see Section 5.3.1):

ϕ0 = +Kint · a′ · cosβ
ϕπ/2 = −Kint · a′ · sin β
ϕπ = −Kint · a′ · cosβ
ϕ3π/2 = +Kint · a′ · sin β

(5.17)

where a′ = GFPN · 2 · a0
π

.

If an event appears in |cel| = 2, ϕπ/2 contains the mixture of two phase shifts {β1, β2}. Hence,
we can express Eqs. (5.17) considering the phase mixture as:
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ϕ0 = +Kint · a′1 · cosβ1

ϕπ/2 = −K1 · a′1 · sin β1 −K2 · a′2 · sin β2

ϕπ = −Kint · a′2 · cosβ2

ϕ3π/2 = +Kint · a′2 · sin β2

(5.18)

where a′1, a′2 are the corresponding amplitude values of the two depths involved in the generation
of the artifact and Kint = K1 +K2.

We use Eq. (5.18) to express ϕ0 + ϕπ and ϕπ/2 + ϕ3π/2 as follows:

ϕ0 + ϕπ = Kint · (a′1 · cosβ1 − a′2 · cosβ2)
ϕπ/2 + ϕ3π/2 = K1 · (a′2 · sin β2 − a′1 · sin β1).

(5.19)

We propose to detect events in the second interval (|cel| = 2) by checking the following
condition:

|ϕ0 + ϕπ| > |ϕπ/2 + ϕ3π/2|. (5.20)

Finally, the identification of an event in ϕπ (|cel| = 3) is defined as the event that does
not satisfy the statements of |cel| = {1, 4, 2}, in that order. As a consequence of following the
sequential pipeline described in Eqs. (5.16) to detect the event location, the labelling error is
determined by the detection of |cel| = 2. To test when inequality (5.20) holds, in Fig. 5.6a we
plot the number of incorrectly labelled events depending on the value of K1 for every possible
combination of {β1, β2} (sweeping both terms over the (0, 2π) interval) in the depth range 0-5
m. In Fig. 5.6b we fix β1 to be in a specific depth quadrant Qi (see Eq. (5.21)), sweeping β2

over all possible values. To create Fig. 5.6 we use Eq. (5.18), assuming that amplitudes a′1 and
a′2 are inversely proportional to the square of the corresponding depth.
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Figure 5.6: Labelling error percentage for several combination of {β1, β2} and all the values of
K1.
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We observe in Fig. 5.6 that the percentage of erroneous event classification increases with
the factor K1. However, when K1 ≈ Kint, the event is closer to be happening in the transition
between |cel| = 2 and |cel| = 3. Those mistakes are thus not very relevant as there is no practical
difference between considering the event to be classified as |cel| = 2 or |cel| = 3 . As shown
in Fig. 5.6, if we only consider those classification errors committed when K1/Kint < 0.66, the
detection of events in |cel| = 2 remains in average below 35% of error. This corresponds with the
results we obtain in real sequences (see Section 5.7), where despite these classification errors, the
event detection allows us to effectively detect and compensate motion artifacts. The complete
event detection pipeline is resumed in Algorithm 2 (A.1).

5.5.2.2 Detection of the Event Direction

Given that we know the phase image affected by a motion artifact, we identify the direction of
the event as follows:

• Falling Edge: when there’s a transition from foreground to background (β2 > β1).

• Rising Edge: when there’s a transition from background to foreground (β2 < β1).

so that we can make a proper substitution (using local neighbourhood) of the erroneous mea-
surements and correct the artifacts.

We divide the maximum depth range of the camera into its corresponding depth quadrants
Qi s.t.

Qi = i ⇔ β ∈
{

(i− 1) · π2 , i ·
π

2

}
, i ∈ {1, 2, 3, 4}. (5.21)

Then, for each pixel affected by motion we can easily obtain the involved depth quadrants
(Qbg, Qfg) by clustering the depths of each pixel in a local neighbourhood (we use the 2 depths
per pixel using the pseudo four-phase shift algorithm).

The direction of an event is detected by simply checking the sign of the phase image difference
shifted by π, according to the involved phase quadrants. The whole labelling method is detailed
in A.1 and A.2. In Fig. 5.7 we show the detection of the event direction in several cases where
multiple depth quadrants are involved. In the experiments of Fig. 5.7 the background depth
varies along the whole range while the foreground varies from motion in Q1 (first two columns)
to motion in Q2 (last two columns). Note that, due to the weak illumination power, uncertainty
is high for depths above 1.5 m approximately (Q2 and higher), generating undesirable effects.

Finally, in Fig. 5.8 we show the events detected in the example shown in Fig. 5.1, using
a colour palette that represents the value of cel. We codify every pixel of the object with a
colour (i.e. from dark blue to light pink) that represents the stage {ϕ0, ϕπ/2, ϕπ, ϕ3π/2} in the
4 phase shift pipeline which is affected by the transition from foreground to background (i.e.
blue colours) and from background to foreground (i.e. red colours). Fig. 5.9 illustrates the
detection of a rising edge event in ϕπ/2. We define {ϕbg, ϕfg} as the phase images associated
with background (low charge) and foreground (high charge) depths, respectively.
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Figure 5.7: Detection of the event direction in a multiple-quadrant scenario. The first row
shows depth measurements captured by the ToF camera. The second row shows the
corresponding depth quadrants in gray-scale (brightest colours denotes higher depth
quadrants) and the last row shows the proposed coarse event labelling (i.e. cel).

Figure 5.8: Coarse event location in a real scene.
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Figure 5.9: Characterisation of a pixel affected by motion: falling edge event in the second
phase image (cel = −2).

5.5.3 Depth Correction

Our depth correction algorithm is based on two basic rules: i) we reconstruct the depth de-
tected at the beginning of the integration time and ii) we reconstruct depth using two previous
consecutive phases to the phase affected by the motion event. If less than two consecutive phase
images are available we search in neighbouring pixels to complete data.

According to rule i), we obtain local foreground depth on falling edge events (from foreground
to background) and the local background depth on rising edge events (from background to
foreground).

From rule ii), events in ϕπ or ϕ3π/2 allow us to recover depth directly from the phases ϕ0

or ϕπ/2 using Eq. (5.10a). If the event is detected in any of the first two phases, we search in
the local neighbourhood to recover depth. We show in Table 5.1 the case studies depending the
position of the detected event. We also point out the required phase images needed to recover
the corresponding depth and the cel labelling we look for in the neighbours to get a replacement.
As depicted from Table 5.1, we need to search for neighbours in half of the cases.

The strategy to find neighbours involves two methodologies: i) to look for the closest pixels
that have the same event type (rising or falling edge) but complementary stable phase images
and ii) to look for the nearest points that have no motion artifact and compatible stable phase
images. In Fig. 5.10 we show an example of our proposal to replace missing data with spatial
information of a pixel affected by motion characterised with a falling edge in the second phase
image (ϕπ/2).

Once we have found the most suitable neighbours, we sort them, identifying the median
phase value. It’s well known in the literature that the median filter is a robust and effective
method for outlier removal. In a compromise between robustness and computational efficiency,
we replace the corresponding phase images with the mean of the 3 closest candidates around
the median. ToF measurements are then recovered using only 2 phase images. In the example
shown in Fig. 5.10, where only one phase image is needed for substitution, the replacement
would be computed in the following 2-step procedure:
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Detected Event Objective
Depth

Required
Substitution

Spatial Search
Substitution

cel = −1
foreground ϕfg0 and ϕfgπ/2

cel =
−3 or − 4 or 0(∗)

cel = −2
foreground ϕfgπ/2

cel =
−3 or − 4 or 0(∗)

cel = −3
foreground (not

required) (not required)

cel = −4
foreground (not

required) (not required)

cel = 1
background ϕbg0 and ϕbgπ/2 cel = 3 or 4 or 0(∗)

cel = 2
background ϕbgπ/2 cel = 3 or 4 or 0(∗)

cel = 3
background (not

required) (not required)

cel = 4
background (not

required) (not required)

(*) No motion artifact is detected but it has compatible stable phase images.

Table 5.1: Case studies for the event location in depth correction.

1. Find the most suitable neighbours within the neighbour set Ri as the closest points to the
pixel of interest with stable phase images in the required intervals. We search neighbours
in a spiral loop until enough pixels are found (i.e. a minimum of Nn = 7 is required to
increase accuracy) or we exceed a reasonable distance (we fix this internal parameter with
a radius distance of 20 pixels). In practice a 20 pixel radius distance can be in fact very
conservative. We found that a radius distance between {2.5 and 4.9} pixel is enough in our
camera after averaging the radius needed over several frames in a wide variety of dynamic
scenarios.

2. Sort the previous data set and identify the median value. Finally, we compute the mean
of the 3 closest points to the median:

ϕfg(i,π/2) = 1
3

medi+1∑
j={medi−1}

ϕ̂fg(j,π/2), (5.22)

where ϕz(i,τ) refers to the phase image ϕτ at pixel i, identified as background or foreground
(i.e. z = {bg, fg}) and medi is the median value index for the neighbours data set of pixel
i ordered in the previous step (ϕ̂fg(j,π/2)).
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Figure 5.10: In-pixel substitution of a phase image affected by motion (cel = −2). We found
Nn proper neighbours with reliable data in the affected sample (ϕerrπ/2 ).

Additional post-processing of depth and amplitude measurements (like outliers removal,
bilateral filtering...), as it is done in [53] and [55], could improve the results.

5.6 Motion Estimation

We show that, as a consequence of our depth correction algorithm, we can actually measure
motion flow near occluding contours of the scene using a single ToF frame. We first define a
method to accurately obtain the instant where a motion event is detected on each pixel, that we
call pel (precise event location). We then use the gradient of pel image to obtain motion flow.

5.6.1 Precise Event Location

Let assume that we find an event in phase τ of current pixel using the proposed coarse event
detection. We define ϕerrτ as the erroneous value of the phase image in phase τ . We model the
event as a change between two depth values (e.g. background and foreground). We define ϕfgτ
and ϕbgτ as the foreground and background phase images corresponding to τ . We assume that
photon generation in the CMOS photo gates is proportional to exposure time and we define that
ϕerrτ as a linear combination of ϕfgτ and ϕbgτ . Depending the direction of the event we define:

ϕerrτ =


α · ϕfgτ + (1− α) · ϕbgτ , if cel < 0

α · ϕbgτ + (1− α) · ϕfgτ , if cel > 0
, (5.23)
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where α is the fraction of the integration time in phase τ before the event appears (see Fig.
5.11). Using the algorithm from Section 5.5.3, we can obtain ϕfgτ and ϕbgτ from neighbour pixels
and from phase images not affected by the event in the pixel. In Table 5.2 we show all possible
cases to get ϕfgτ and ϕbgτ .

Figure 5.11: Example of the extrapolation of the event location (cel = −2).

Event ϕfgτ ϕbgτ α

cel = −1
ϕfg0 →

neighbours ϕbg0 = −ϕbgπ α = ϕerr0 + ϕbgπ

ϕfg0 + ϕbgπ

cel = −2
ϕfgπ/2 →

neighbours
ϕbgπ/2 = −ϕbg3π/2 α =

ϕerrπ/2 + ϕbg3π/2

ϕfgπ/2 + ϕbg3π/2

cel = −3
ϕfgπ = −ϕfg0

ϕbgπ →
neighbours α = ϕerrπ − ϕbgπ

−ϕfg0 − ϕ
bg
π

cel = −4
ϕfg3π/2 = −ϕfgπ/2

ϕbg3π/2 →
neighbours α =

ϕerrπ − ϕ
bg
3π/2

−ϕfgπ/2 − ϕ
bg
3π/2

cel = 1
ϕfg0 = −ϕfgπ

ϕbg0 →
neighbours

α = ϕerr0 + ϕfgπ

ϕbg0 + ϕfgπ

cel = 2
ϕfgπ/2 = −ϕfg3π/2

ϕbgπ/2 →
neighbours α =

ϕerrπ/2 + ϕfg3π/2

ϕbgπ/2 − ϕ
fg
3π/2

cel = 3
ϕfgπ →

neighbours ϕbgπ = −ϕbg0 α = ϕerrπ − ϕfgπ
−ϕbg0 − ϕ

fg
π

cel = 4
ϕfg3π/2 →

neighbours
ϕbg3π/2 = −ϕbgπ/2 α =

ϕerr3π/2 − ϕ
fg
3π/2

−ϕbgπ/2 − ϕ
fg
3π/2

Table 5.2: All possible cases for obtaining α
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Using Eq. (5.23) we obtain α:

α =



ϕerrτ − ϕbgτ
ϕfgτ − ϕbgτ

, if cel < 0

ϕerrτ − ϕfgτ
ϕbgτ − ϕfgτ

, if cel > 0

. (5.24)

We define pel as the fraction of Tint where the motion event takes place:

pel = (|cel| − 1) + α

4 , (5.25)

where we assume that the integration time of each phase image is Tint/4.

We show in Fig. 5.12 pel computation for the running example used in Fig. 5.1.

Figure 5.12: From discrete to extrapolated precise event location.

5.6.2 Motion Flow Estimation

During motion, neighbouring pixels near occluding contours are affected by the motion event at
different pel values. The spatial (i.e. image coordinates) distribution of pel values depends on
magnitude and direction of motion. We denote as Ipel the image arrangement of pel values (see
right part of Fig. 5.12). The image gradient of ∇Ipel gives the distribution of time differences
between pixels. The magnitude of ∇Ipel is proportional to the inverse of motion flow:

‖∇Ipel‖ ∝
1
v
, (5.26)

where v is the speed magnitude. The direction of ∇Ipel gives the direction of speed in the image.
Fig. 5.13 shows Ipel and its gradient for an object following horizontal motion in the image.

Equation (5.26) is only valid when either we detect an event in the pixel (pel 6= 0) or the
speed of the object produces events in neighbouring pixels that are separated by less than the
integration time.



84Chapter 5. Single Frame Correction of Motion Artifacts in PMD-ToF Cameras

Figure 5.13: Motion field estimation using the gradient of the precise event location (pel)
image.

Axial motion is corrected properly as movements along the viewing direction also generate
phase image displacement in occluding contours. However, our motion field estimator doesn’t
provide information about this kind of movement.

5.7 Results

Our proposal has been implemented into C++ using a commercial PC (Intel(R) Core(TM)2 Quad
CPU Q9550@2.83 GHz). We must highlight that we don’t require any GPU implementation to
achieve real time processing. In fact, we believe that our algorithm can be easily implemented
in camera’s hardware as it only requires basic arithmetic operations and limited memory.

We use a low cost commercial ToF camera (PMDtec CamBoard Nano) for our experiments.
This device only has 1 Light Emitting Diode (LED) emitter located next to the image sensor
(see Fig. 5.14), specially design for short range applications.

The CamBoard Nano has some specific limitations: i) non-visible areas when objects are
close to the ToF camera due to the baseline between the sensor and the LED emitter (see green
ellipses in Fig. 5.14), ii) low power emission/SNR (see red ellipses in Fig. 5.14).

Figure 5.14: PMDtec Camboard Nano pointing at a scene composed of two foreground planes
(50 cm and 60 cm, respectively) and a foreground object at 40 cm. We show the errors in

amplitude (left) and depth (right) due to the sensor baseline (green ellipses) and the low power
emission (red ellipses).

Our method has been validated in real scenarios providing quantitative and qualitative re-
sults. In all experiments we use the following challenging scenario: i) maximum integration
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time (2000 µs)1, ii) high motion dynamics, iii) objects moving close to the camera and iv) low
power emission (only one LED is emitting the signal). Depth images have been converted to a
colour-map to appreciate subtle depth changes.

5.7.1 Calibration of the Inconsistency Threshold for Different Exposure
Times

In Fig. 5.15 we show the values of the inconsistency threshold after applying the on-line cali-
bration proposed in Section 5.4.1 for several values of the integration time. Probabilistic distri-
butions are shown to validate our assumption.

Figure 5.15: Estimation of the inconsistency threshold. On the left side we show the estimated
inconsistency threshold (γ) for different integration times (Tint). On the right side we show the

histogram of η (see Section 5.4.1) for some particular Tint = {800, 1800}(µs).

5.7.2 Quantitative Results

To measure accuracy of our method we use a scene of known geometry moving at a controlled
speed. We use a planar target at a fixed distance of the camera that is rotating using a motor.
We place the target perpendicularly to the line of sight of the camera and we manually label the
region of interest in the image where the target appears when no motion is applied. We compute
the mean and the standard deviation of depth measurements in the labelled area. Depth mean
and standard deviation (µ(dGT) and σ(dGT), respectively) obtained by hand-labelling the scene
are used as ground truth measurements.

In Table 5.3 we show the region we have used to compute the ground truth (notice that no
motion should be applied).

1The frame-rate of the CamBoard considering the maximum integration time (2000 µs) is 60 fps, approximately.
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Static Scene Labelled Scene Area
Measured Depth

(Mean /
Std-Dev)

563 pix (47.6 cm / 0.035)

Table 5.3: Rotating target when no motion is applied used as ground truth.

In Table 5.4 we show quantitative results for several angular velocities of the rotating target,
including depth deviation, inliers/outliers deviation and processing time. The associated depth
and motion field2 images are presented in Figs. 5.16 and 5.17. We compare our results with one
of the state of the art methods proposed in [54], where multiple frames are considered.

Depth deviation is computed with respect to the mean depth in the ground truth (dGT) such
that:

σ(d∗) = 1
Nl

∑
∀i∈Al

(
d∗i − µ(dGT)

)
(5.27)

where Nl is the number of pixels inside the hand labelled area Al, di is the measured depth at
pixel i, d∗ is the corrected depth after applying any of the correction algorithms and µ(dGT) is
the depth mean we use as ground truth.

The inlier percentage is computed with respect to the hand-labelled area (Al) for each scene
as

%Inliers = A
∗

Al
∗ 100 (5.28)

where

A∗ =
∑
∀i∈Al

Γi (5.29)

Γi =
{

1, if (µ(dGT)− σ(dGT)) < d∗i < (µ(dGT) + σ(dGT))
0, others

The percentage of outliers is computed such that:

%Outliers = A
∗

Al
∗ 100 (5.30)

where
2We use HSV colour-map to represent motion direction (best viewed in the lower right corner of motion field

images).
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A∗ =
∑
∀i∈d∗

Γi (5.31)

Γi =



1, if i ∈ Al AND
(d∗i > µ(dGT) + σ(dGT)) OR d∗i < (µ(dGT)− σ(dGT))

1, if i /∈ Al AND
(µ(dGT)− σ(dGT)) < d∗i < (µ(dGT) + σ(dGT))

0, others

Processing time is shown in the last column.

Rotation
Speed (rps)

σ - Depth
Deviation (cm) Inliers (%) Outliers (%) Processing

Time (ms)
1.5 11.5 / 1.6 69.2 / 92.1 32.8 / 16.3 13.4
3 11.9 / 2.4 57.3 / 91.2 50.3 / 18.5 14.7

5.9 13.1 / 2.6 48.3 / 87.9 54.7 / 19.1 15.3
8.8 14.3 / 3.3 48.7 / 87.2 62.4 / 27.2 17.1
10.3 15.2 / 3.5 45.2 / 87.1 67.0 / 30.6 17.5
13.2 18.4 / 3.0 40.0 / 82.8 69.2 / 34.6 18.4
16.1 15.0 / 3.4 43.2 / 82.4 73.7 / 33.2 18.9
17.6 14.9 / 3.2 47.1 / 80.3 75.3 / 37.2 18.7
20.5 17.8 / 3.8 37.2 / 80.0 79.8 / 35.7 18.8

Table 5.4: Quantitative results for several rotation velocities. In brackets we show the
corresponding values for the proposed standard correction by Schmidt et al. [54] and our

proposal; i.e. (Schmidt2011 / Our Proposal). Bold numbers represent the values obtained with
our proposal.

From left to right, we show in Figs. 5.16 and 5.17 the corresponding results for different
angular velocities. From top to bottom, we show i) ToF measurements, ii) Schmidt et al. [54]
standard depth correction, iii) our proposed depth correction with the hand labelled area and
iv) our motion field estimation, respectively.

Figs. 5.16, 5.17 and Table 5.4 show that our method clearly improves with respect to Schmidt
et al. [54]. The correction we achieved is remarkable, recovering most of the object boundaries,
even at high rotation speed. Motion flow estimation is stable in all cases. Processing time reveals
that we achieve more than 55 fps with a low-end computer.
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1.5 rps 3 rps 5.9 rps 8.8 rps 10.3 rps

Figure 5.16: Comparative results for different rotation velocities (from 1.5 to 10.3 rps). From
top to bottom, we show i) ToF measurements, ii) Schmidt et al. [54] depth correction, iii) our
proposed depth correction with the hand labelled area and iv) our motion field estimation.

13.2 rps 16.1 rps 17.6 rps 20.5 rps

Figure 5.17: Comparative results for different rotation velocities (from 13.2 to 20.5 rps). From
top to bottom, we show i) ToF measurements, ii) Schmidt et al. [54] depth correction, iii) our
proposed depth correction with the hand labelled area and iv) our motion field estimation.

5.7.3 Qualitative Results

In Figs. 5.18 and 5.19 we show qualitative results for several scenes. Each column shows the
results for a particular scene under the challenging conditions we defined at the beginning of
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the section. In rows 1 and 3 we show depth and amplitude measurements and the proposed
correction in rows 2 and 4. We show in rows 5 and 6 the coarse3 and the precise event location
images. Finally, we show in the last row the estimated motion flow. We use the colour-map
displayed in the lower right corner to codify motion magnitude and direction.

The first three columns of Fig. 5.18 show a stick moving very fast close to the camera in three
different movements: vertical, horizontal and diagonal, respectively. The fourth column shows
the behaviour of the algorithm using very thin objects. Finally, in the fifth column we consider
an object moving towards the camera and rotating at the same time, showing the results when
different kinds of motion are applied to the same object.

In the first two columns of Fig. 5.19 we show high motion dynamics where phase images
overlap each other. In the next two experiments we show the results when motion artifacts of
multiple objects occlude each other. In the last column we show the results when the camera
moves.

5.8 Conclusion

This work presents a method to correct motion artifacts in ToF cameras using a single frame
with very low processing time (13 ms in a low-end computer without GPU). Motion artifacts
in PMD ToF cameras appear when the received optical energy change significantly during the
integration time (i.e. multiple depths are considered for a single pixel) and the accumulated
charges within a certain smart pixel reveal inconsistencies within the 4 stage pipeline. The
solution we propose to correct motion artifacts is based on exploiting redundancy of the PMD
4-phase shift architecture in line with the pseudo 4 phase-shift algorithm. We exploit the fact
that the 4 sequential stages must be coherent if the pixel captures the same depth during the
integration time. We show that we can recover depth of a pixel affected by motion with minimum
calibration and information found in neighbours.

Even though the assumption that phases are linear mixtures is not exact for real ToF cameras,
we demonstrate in our experiments that this assumption provides good results in terms of
correction and motion estimation. We consider that more precise models could improve the
interpolation of the event location and thus the motion field estimation, providing an interesting
research line in the future.

We show in the Results section that the method clearly corrects complex scenes captured
with a low cost commercial ToF camera. The camera we use has some specific limitations due
to its small fill factor. Using better cameras will only improve the results of our proposal. In all
experiments we also show that our approach obtains better results when compared to multiple
frame state of the art techniques, specially with high dynamics.

The proposal is implemented in C++ without the need of any hardware implementations to
achieve real time processing (around 55 fps). Nevertheless, the algorithm could be implemented
easily in a GPU if needed.

3Coarse events colour-map can be seen in Fig. 5.13.
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Figure 5.18: Qualitative results 1. Each column shows the results for a particular capture. In
rows 1 and 3 we show depth and amplitude measurements and the proposed correction in rows
2 and 4. We show in rows 5 and 6 the coarse and the extrapolated event location. Motion flow

is shown in the last row.
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Figure 5.19: Qualitative results 2. Each column shows the results for a particular capture. In
rows 1 and 3 we show depth and amplitude measurements and the proposed correction in rows
2 and 4. We show in rows 5 and 6 the coarse and the extrapolated event location. Motion flow

is shown in the last row.





Chapter 6

Conclusions

6.1 Introduction

This chapter presents the conclusions derived from the thesis through a summary of the main
contributions. Finally, a discussion about limitations and future lines of work is presented.

6.2 Conclusions and Contributions

In this thesis we have justified the importance of the correction of errors in Continuous Wave
Modulation (CWM) Time of Flight (ToF) cameras for obtaining accurate reliable and repeatable
depth measurements. During the thesis we made a clear distinction between i) systematic and
ii) non-systematic errors. Each category of errors requires very different approaches. While
systematic allows calibrations, in non-systematic the correction requires to process the data. In
particular, this thesis has addressed three main kind of errors: i) systematic depth distortion
and ii.a) Multipath Interference (MpI) and ii.b) motion artifacts, respectively for systematic and
non-systematic error sources.

Additionally, we also presented in this thesis a new geometric primitive, called *) Linear
Plane Border (LPB), which is specially adapted to depth images.

i) In this thesis we have presented a calibration method for correcting systematic depth dis-
tortion, which is caused mainly due to the use of non-ideal sinusoidal signals for light
modulation. We have shown that calibration of depth cameras does not follow the same
rules that made geometric calibration of colour cameras a standard procedure. In depth
sensors, checker-board patterns are not specially accurate and usually calibration methods
use very special equipment. We thus have proposed in this thesis a calibration method
that does not require correspondences and that uses planes as the support for calibration.
These planes can be natural planes from the scene which makes this method ideal for cal-
ibration in man-made environments. Our calibration procedure finds the depth correction
that forces the observations to be planar. This problem has been studied before using
non-convex optimisation. Existing methods are sub-optimal and do not ensure accurate
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calibration results. We showed that this problem can be reformulated as a linear least-
squares (and thus convex) problem using differential planarity constraints. Our method
improves the state of the art in terms of accuracy, simplicity and computational complex-
ity. Our validation includes simulated and real experiments with three commercial depth
cameras (MESA SR4k [67], PMD CamCube 3 [68] and Microsoft Kinect v1).

ii.a) In this thesis we proposed an algorithm that removes multipath distortion from a single
depth map obtained by a ToF camera. Correction of MpI from ToF measurements is a very
challenging problem as the amount of distortion depends on the scene’s geometry, which
is unknown. We have faced this challenge by using a generative model fitting approach.
We have proposed a generative model of depth measurements based on simple radiometric
properties. Then, we use this generative model to obtain the scene’s geometry that, used
as an input of our model, reproduce the distorted measurements seen by the camera. We
showed results of this idea with both synthetic and real scenes captured by commercial
ToF sensors. In all cases, our algorithm accurately corrected the multipath distortion,
obtaining depth maps that are very close to ground truth data.

ii.b) Motion artifacts in ToF imaging generates strong distortion in moving parts of the scene.
We proposed to detect and remove motion artifacts from a single frame taken by a Photonic
Mixer Device (PMD) ToF camera. Unlike in other depth sensors, PMD pixels divide the
integration time in four stages where the correlation function between modulation signal
and incoming signal is sampled at different phase shifts. Therefore, the main idea is to
detect at which stage of the pipeline motion artifacts are creating the distortion. After
this detection we have shown how to reconstruct the depth by exploiting consistency of
the correlation samples and local neighbours of the pixel. In addition, our method obtains
the motion flow of occluding contours in the image from a single frame. The algorithm
we proposed is very fast, simple and can be easily included in camera’s hardware. Our
correction algorithm has been validated in real scenes using a commercial low-cost PMD
camera and high speed dynamics. In all cases, our method produced accurate results and
it highly reduced motion artifacts.

*) In this work, we proposed a new primitive specially formulated for depth cameras, that
combines properties of planes and lines: LPB. These are planar stripes of a certain width
that are delineated at one side by a linear edge (i.e. depth discontinuity). The design of
this primitive is motivated by the contours of many man-made objects. We extend the
J-Linkage algorithm to robustly detect multiple LPBs in range images from noisy sensors.
We validated our method using qualitative and quantitative experiments with real scenes.
Results showed that LPBs are able to capture rich information about the objects in the
scene compared to looking only for planar structures. It also behaves reasonably well in
curved objects.
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6.3 Future Work

We present in this section some hints about future research lines that could follow the work
presented in this thesis.

i) The proposed calibration procedure for the correction of systematic depth distortion re-
quires some parameter tuning. We showed in our experiments that only two of the hyper-
parameters needed to be roughly adjusted to get proper results. In practice, we empirically
chose them. Future works could handle an automatic selection of these values, possible
because of how affordable is to get a big amount of plane views.

ii.a) At the moment, the computational cost of the proposed method for the correction of MpI
distortion is high (taking several minutes for a small scene). However, we found some
opportunities to speed it up. For example, we can substitute the pixel-based approach
by a path-based approach. By replacing individual pixels with super-pixels that share
properties, time-demanding routines could be implemented very efficiently. We have also
considered to introduce a more realistic radiometric model, however, computational cost
would be penalised and there are no hints about great improvements.

ii.b) We proposed a method to correct motion artifacts in current PMD-based ToF cameras.
Commercially available ToF cameras do not provide information of each of the CMOS
channels of a PMD pixels, but its difference. This limitation introduces some uncertainty
to the proposed method. If manufacturers trend suddenly changed and future ToF cameras
provide such information, further improvements would be made in order to avoid these
errors.

*) Currently, the detection of LPB primitives in depth images is restricted to depth edges.
We consider that, extending the proposed method to detect edges due to changes in plane
orientations (that are not detected now as jump edges), will increase the number of LPBs
that can be obtained from a geometric object. We also believe that LPBs can be extended
to curved objects, using curved stripes attached to jump edges.
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Appendix A

Single Frame Correction of Motion
Artifacts in PMD-based ToF
Cameras

A.1 Single Frame Coarse Event Location

Algorithm 2 How to detect the event location in a single PMD ToF capture.
Require: ϕ{0,π/2,π,3π/2}, Qbg, Qfg
for every pixel do

compute inconsistency value; incons =
∣∣∣ϕ0 + ϕπ − ϕπ/2 − ϕ3π/2

∣∣∣
if (incons > γ) then

if
(
|ϕ0 − ϕπ| > γ &&

∣∣∣ϕπ/2 − ϕ3π/2

∣∣∣ < γ
)
then

Event at ϕ0 → E = 1
Detect Event Direction (see Table A.1 and Table A.2)

else if
(
|ϕ0 − ϕπ| < γ &&

∣∣∣ϕπ/2 − ϕ3π/2

∣∣∣ > γ
)
then

Event at ϕ3π/2 → E = 4
Detect Event Direction (see Table A.1 and Table A.2)

else
if
(
|ϕ0 − ϕπ| >

∣∣∣ϕπ/2 − ϕ3π/2

∣∣∣) then
Event at ϕπ/2 → E = 2
Detect Event Direction (see Table A.1 and Table A.2)

else
Event at ϕπ → E = 3
Detect Event Direction (see Table A.1 and Table A.2)

end if
end if

end if
end for
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A.2 Characterisation of the Event Direction

Condition summary:

If |cel| = 1 then
{
ϕ0 + ϕπ = K1 · (a′1 · cosβ1 − a′2 · cosβ2)
ϕπ/2 + ϕ3π/2 = 0

If |cel| = 2 then
{
ϕ0 + ϕπ = Kint · (a′1 · cosβ1 − a′2 · cosβ2)
ϕπ/2 + ϕ3π/2 = K1 · (a′2 · sin β2 − a′1 · sin β1)

If |cel| = 3 then
{
ϕ0 + ϕπ = K2 · (a′1 · cosβ1 − a′2 · cosβ2)
ϕπ/2 + ϕ3π/2 = Kint · (a′2 · sin β2 − a′1 · sin β1)

If |cel| = 4 then
{
ϕ0 + ϕπ = 0
ϕπ/2 + ϕ3π/2 = K2 · (a′2 · sin β2 − a′1 · sin β1)

Initially, if we observe Tables A.1 and A.2 it seems that in (∗)ij , with i ∈ {1, 2, 3, 4} and
j ∈ {a, b}, cases we don’t have enough information to detect the event direction. Nevertheless,
as the amplitude decay is inversely proportional to the squared distance (a′ ∝ 1/d2 and thus,
a′ ∝ 1/β2), we can detect the event direction from the complementary trigonometric function.
That is, if we analyse the case (∗)1a where there is an event in |cel| = 4 with β1 ∈ Q1 and
β2 ∈ Q2. In this situation, only cosine function seems to provide us relevant information about
the sign. However, if we look at the equation below:

ϕπ/2 + ϕ3π/2 = K2 ·
(
a′2 · sin β2 − a′1 · sin β1

)
(A.1)

if β2 ∈ Q2 and β1 ∈ Q1 (β2 > β1) we can identify the event direction using the “sine”
function relationship given by the sum ϕπ/2 + ϕ3π/2 :

ϕπ/2 + ϕ3π/2 < 0 (A.2)

The remaining (∗)i{a,b} cases have been solved in the same way.
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Appendix B

Related Contributions

B.1 Linear Plane Border: A Primitive for Range
Images Combining Depth Edges and Surface Points

B.1.1 Introduction

Detecting primitives, like lines and planes, is a popular first step for the interpretation of range
images. Real scenes are, however, often cluttered and range measurements are noisy, such that
the detection of pure lines and planes is unreliable. In this work, we propose a new primitive that
combines properties of planes and lines: Linear Plane Border (LPB). These are planar stripes of
a certain width that are delineated at one side by a linear edge (i.e. depth discontinuity). The
design of this primitive is motivated by the contours of many man-made objects. We extend the
J-Linkage algorithm to robustly detect multiple LPBs in range images from noisy sensors. We
validated our method using qualitative and quantitative experiments with real scenes.

B.1.2 Overview

Currently, depth cameras are experiencing an exponential growth, thanks to emerging mass
market applications, that, without a doubt, have stimulated the industry to create cheap devices.
At the moment, Time of Flight technology [1] and Kinect [26] sensor technology are leading the
market. High resolution and high frame rates are becoming available, which make these sensors
a good hardware alternative to many complex stereo video systems.

Depth sensors have had a remarkable impact in many computer vision tasks. Disciplines
such as object recognition [15], SLAM [5] and human pose estimation [9] have received multiple,
in many case outstanding, scientific contributions based on depth sensing.

As in other image sensing technologies, depth images contain rich and complex information.
Therefore, a considerable number of methods and algorithms have focused on detecting basic
geometric primitives in depth images. These methods are important and necessary as a building
block for high level interpretation and recognition algorithms.
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Simplifying a scene as a grouping of multiple piecewise planar models is demonstrated to
be an efficient and stable representation of most man-made structures [83]. Depth sensors give
powerful 3D information that can be used to find planar structures, providing accurate object and
environment detection. However, in complex scenes, fitting planar structures can be challenging
and time consuming ( i.e. a table crowded with small objects). Moreover, depth sensors produce
many errors, such as Multipath Interference (MpI) in Time of Flight (ToF) cameras [20], that
can affect full plane representations.

This work defines a new geometric primitive called Linear Plane Border (LPB). It is defined
as a planar stripe of a given width that can be detected in the vicinity of linear silhouette edges
of geometric objects. LPBs give a compact but rich representation to detect regular objects in
depth images. The main clue to find them is by looking at depth discontinuities. The benefit of
using LPBs instead of full plane representations is demonstrated in this appendix, in particular
in complex scenes.

The use of 2D edge information in conjunction with 3D plane information used for the
construction of these primitives provides a simplified but robust representation of planar objects
in a scene. That such a combination of 2D edge information and 3D surface information is useful,
has been demonstrated recently by the design of 3D interest point detectors and descriptors
[84,85] and by the design of pair features for voting-based object detection [86]. Here, we utilise
this insight for a primitive-based object representation.

Detecting multiple LPBs in depth images requires a method able to find multiple instances of
a geometrical model from noisy data. Many such methods have been proposed in the literature
with remarkable success. Among the most commonly used methods are Hough transforms [87],
MeanShift [88] and those based on random sampling such as RANSAC [89,90].

The proposed method finds multiple LPB hypotheses using the very recent J-Linkage [91]
algorithm, based on tailored agglomerative clustering, first proposed by Zhang et al. [92]. This
method is able to robustly detect multiple models without prior specification of its number and
has shown remarkable detection performance. Recently, there exist some approaches that use
J-Linkage to obtain piecewise-planar representation of point clouds. Fouhey et al. [93] present a
method for the detection and matching of multiple planes in pairs of images. They use J-Linkage
to generate multiple local homography hypothesis. Feng et al. [94] use J-Linkage to minimise
the user input compared with traditional Single View Reconstruction approaches. Schwarz et al.
[95] suggest some adaptation of the original algorithm for the detection and tracking of multiple
planes in sequences of ToF depth images.

Taking as starting point the core of the fast J-Linkage implementation [96], we extend in
this work the original algorithm to the detection of LPBs in depth images of ToF cameras. The
main contribution of this work is to show that LPBs can be effectively detected in depth images
using our modified version of J-Linkage. The experimental results show that this approach
outperforms the most common case of searching for planar structures in terms of computational
time and accuracy. We strongly believe that LPBs can be very useful in object recognition tasks
and object pose computation using depth images.

This chapter is organised as follows. In Section B.1.3 a general diagram of the proposal
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is given and we briefly explain each step of the proposed method. We evaluate our method
qualitatively and quantitatively using real scenes. These results are summarised in Section B.1.4.
In Section B.1.5 we describe the conclusions.

B.1.3 Detection of Linear Plane Borders

We represent a depth image as a scalar function D, where D(p) represents the depth mea-
sured at pixel position p = (u, v)>. Due to optics, depth values are computed along optical
rays. We suppose that the camera optics are properly calibrated so that metric 3-dimensional
coordinates are available for each image position p. We denote as Q(p) = (Qx, Qy, Qz)> the
three-dimensional coordinates of the point p.

Given a depth image D, the main problem to solve is how to find all LPB candidates,
grouping together all pixels belonging to the same LPB. We propose a pipeline consisting of
three stages, illustrated in Fig. B.1.

Figure B.1: General diagram of the proposed detection of Linear Plane Borders. {e1, e2, p3}
represent the sampled points needed to calculate a LPB hypothesis: two edge points and one

point in the correct face of the linear edge.
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1. Jump Edge Detector: This stage detects depth discontinuities which are the clue of
finding edges of geometrical objects. The process is carefully designed to deal with noise
and depth artifacts that usually appear around such discontinuities.

2. Modified J-Linkage: J-Linkage is an algorithm that groups together points based on the
consistency with randomly sampled model hypotheses. In our case, each LPB hypothesis
is created by sampling two jump edge points likely belonging to the same plane border
and a third point that is far enough from the edge but at a distance limited by the LPB
width.

3. Construction of LPBs: After running J-Linkage, points in the depth image are grouped
in different LPBs hypotheses. This stage refines the LPBs using linear least squares fit
producing an accurate estimation of the three points used to parametrise each LPB.

B.1.4 Experiments and Results

This section tests the detection of LPBs in real scenes captured with a commercial ToF camera.
We compare LPB detection, as it is proposed in this section against a state-of-art plane fitting
using J-Linkage.

In Fig. B.2, we show 7 different scenes composed of planar structures and the result of each
step of the algorithm. We also add the result of detecting planes with J-Linkage where input
data have been re-sampled in a 1:4 ratio (one of each two columns and rows), so that the
number of input data is comparable in both approaches. In these experiments, the number
of J-Linkage random samples are around {5000-7000} for LPB and almost ten times more for
planes.

As quantitative results we show the accuracy of LPB detection in Table B.1. Ground-truth
data are obtained by manual annotation over the depth images so that the different planes it
is composed of are clearly identified. Error is measured as the mean of the Euclidean distance
between points projected onto the ground-truth plane and the projection onto the plane obtained
in LPBs detection.

Plane Detection Accuracy
Example Proposal

1 0.00123253
2 0.00176433
3 0.00192681
4 0.00280092
5 0.00795743
6 0.00384587
7 0.00461953

Table B.1: Plane detection accuracy using LPB.

It is clearly shown that LPB detection is very accurate, capturing very useful geometric
information. It is also faster than detecting only planes as it is shown in Table B.2.
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Figure B.2: Comparison between the detection of planes using the original J-Linkage method
and the main stages of the LPB detection algorithm.

Achieved Speed-Up
Example 1 2 3 4 5 6 7
Random
Sampling x124.5 x103.5 x101.2 x78.3 x48.2 x85.6 x74.5

Clustering x8.8 x23.1 x6.1 x4.7 x1.8 x9.1 x5.4

Table B.2: Achieved speed-up for the main consuming processes.



114 Appendix B. Related Contributions

In a qualitative manner we show in Fig. B.3 the results with curved objects (non-planar
objects can also be approximated as an arrangement of LPBs). While these scenes are not
piece-wise planar, LPB detection is giving useful and stable information.

Jump Edges
(2D)

Jump Edges
(3D)

J-Linkage for
LPBs

LPB
Construction

Figure B.3: Qualitative results for curved objects in more complex scenarios.

B.1.5 Conclusions

This work shows that LPBs can be efficiently detected in depth images, taken with a commercial
depth sensor of real man-made scenes composed of planar structures.

The proposed semi-deterministic sampling method for LPBs allows to perform J-Linkage
with ten times less hypothesis than general plane fitting methods. This reduction has a critical
impact on the algorithm’s speed.

As it can be seen in the results, LPBs are able to capture rich information about the objects
in the scene compared to looking only for planar structures. It also behaves reasonably well in
curved objects.
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