4,364 research outputs found

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Topology Considerations in Hybrid Electric Vehicle Powertrain Architecture Design.

    Full text link
    Optimal system architecture (topology or configuration) design has been a challenging design problem because of its combinatorial nature. Parametric optimization studies make design decisions assuming a given architecture but there has been no general methodology that addresses design decisions on the system architecture itself. Hybrid Electric Vehicle (HEV) powertrains allow various architecture alternatives created by connecting the engine, motor/generators and the output shaft in different ways through planetary gear systems. Addition of clutches to HEV powertrains allows changing the connection arrangement (configuration) among the powertrain components during the vehicle operation. Architectures with this capability are referred to as multi-mode architectures while architectures with fixed configurations are referred to as single-mode architectures. HEV architecture optimization requires designing the powertrain’s configuration and its sizing simultaneously. Additionally, evaluation of an HEV architecture design depends on a power management (control) strategy that distributes the power demand to the engine and motor/generators. Including this control problem increases the complexity of the HEV architecture design problem. This dissertation focuses on a general methodology to make design decisions on HEV powertrain architecture and component sizes. The representation of the architecture design problem is critical to solving this problem. A new general representation capable of describing all architecture alternatives is introduced. Using the representation, all feasible configurations are generated where these feasible configurations are used to create single- and multi-mode HEV architectures. Single-mode and multi-mode architecture design problems considering fuel economy, vehicle performance and architecture complexity are formulated separately and solution strategies are developed. The high complexity of the resulting optimization problem does not allow us to claim true optimality rigorously; therefore, the terms ``promising" or ``near-optimal" are more accurate in characterizing our results. The results show that different architectures must be designed for different applications. The case studies designing architectures for some available vehicles from the market find the architectures already implemented in these vehicles under some design constraints. Alternative architectures that improve these designs under different design constraints are also demonstrated. Architectures for a new application that is not available in the market are also designed.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111412/1/bayrak_1.pd

    Design and Analysis of Novel Actuation Mechanism with Controllable Stiffness

    Get PDF
    Actuators intended for human–machine interaction systems are usually designed to be mechanically compliant. Conventional actuators are not suitable for this purpose due to typically high stiffness. Advanced powered prosthetic and orthotic devices can vary their stiffness during a motion cycle and are power-efficient. This paper proposes a novel actuator design that modulates stiffness by means of a flexible beam. A motorized drive system varies the active length of the cantilever beam, thus achieving stiffness modulation. New large deflection formulation for cantilever beams with rolling contact constraints is used to determine the moment produced by the actuator. To validate the proposed solution method, an experiment was performed to measure large static deformations of a cantilever beam with the same boundary conditions as in the actuator design. The experiments indicate excellent agreement between measured and calculated contact forces between beam and roller, from which the actuator moment is determined

    Actuators and sensors for application in agricultural robots: A review

    Get PDF
    In recent years, with the rapid development of science and technology, agricultural robots have gradually begun to replace humans, to complete various agricultural operations, changing traditional agricultural production methods. Not only is the labor input reduced, but also the production efficiency can be improved, which invariably contributes to the development of smart agriculture. This paper reviews the core technologies used for agricultural robots in non-structural environments. In addition, we review the technological progress of drive systems, control strategies, end-effectors, robotic arms, environmental perception, and other related systems. This research shows that in a non-structured agricultural environment, using cameras and light detection and ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing, transmission, control, and operation, different types of actuators can be innovatively designed and developed to drive the advance of agricultural robots, to meet the delicate and complex requirements of agricultural products as operational objects, such that better productivity and standardization of agriculture can be achieved. In summary, agricultural production is developing toward a data-driven, standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based agricultural robots. This paper concludes with a summary of the main existing technologies and challenges in the development of actuators for applications in agricultural robots, and the outlook regarding the primary development directions of agricultural robots in the near future

    Lightweight positioning : design and optimization of an actuator with two controlled degrees of freedom

    Get PDF
    It is known that internal vibrations decrease the performance characteristics and life time of mechanisms, and in some cases they even may lead to mechanical failures. In motion systems used in precision technology (wafer scanners, scanners, pick-and-place machines for production of PCBs, wire-bonders etc.), internal vibrations limit the performance parameters. The vibrations are still a challenge for the generally accepted design approach at present time, which is heading towards higher system accuracy, speed and throughput. Currently, the design approach to precision positioning applications places the dominant vibration frequencies of the mechanical parts several times higher than the required control bandwidth. However, these high mechanical frequencies are reached by constructing the mechanical parts with high stiffness, often at the cost of relatively high mass. To eliminate the negative consequences of the classical methodology, another design philosophy is used in this thesis. A three-disciplinary lightweight positioning approach (control, mechanics and electromechanics) focuses on mass reduction of the moving parts of motion systems. For this purpose, a principle based on over-actuation is used, which allows designing a lighter overall kinematical structure (force-path). In order to evaluate this approach on a general level, benchmarks for classical and lightweight positioning systems are proposed, namely, a so-called stiff beam system and a flexible beam system. The main focus of the thesis is on the design and optimization of a novel Lorentz force actuator for a lightweight positioning system that can also be applied in other precision technology applications. The objective is to reach the maximum mass reduction of the flexible beam system. In order to evaluate and design the novel actuator, a comprehensive static electromagnetic analysis of the actuator is elaborated. The resulting analytical model is based on a magnetic equivalent circuit, which has been identified by means of preliminary finite element calculations. The analytical model plays an essential role in the complete design. It is later used for the optimal dimensioning of the actuator for required performance specifications. Then, a numerical finite element model is built and the results are used to evaluate the accuracy of the analytical model and to identify parasitic forces and torques of the actuator. Another important aspect that determines the operating conditions is the thermal behavior of the actuator. It is also described analytically by a thermal lumped parameter model. The suggested description of the heat transfer captures the static as well as the dynamic behavior. To determine the optimal dimensions of the actuator an optimization approach, which uses the magnetic equivalent circuit and the thermal analytical model, is proposed. In terms of nonlinear programming, the problem statement consists of finding the dimensions of the actuator with minimal mass, where given force and torque are used as constraints. Because of the nonlinear nature of the problem the optimal solution is found numerically. The resulting optimal actuator incorporating two degrees of freedom (DoF) has 22.2% less mass than two equivalent 1-DoF actuators. It may be concluded, based on simulation and measurement results, that the proposed actuator can be analyzed with sufficient accuracy by the presented methods. The invented short-stroke actuator uniquely combines two controlled degrees of freedom: translational and rotational. This combination ensures that the mass of the actuators used in the flexible beam system has been reduced compared to that in the stiff beam system. The actuators support the flexible beam system in a way that introduces less disturbances. Meanwhile, the controllability of higher order vibration modes and, consequently, the global performance are improved. Two lightweight positioning systems were built, one with three 1-DoF actuators and the other with two novel Lorentz force actuators. In both setups the flexible beam has its mass reduced to 38.6% of that of the stiff beam. The total mass of the actuators in both cases is almost the same, but the setup with the innovative actuators allows to control the beam with two forces and two torques, while the setup with three 1-DoF actuators produces only three controlled force

    Phase 1 of the near term hybrid passenger vehicle development program

    Get PDF
    In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year

    Design and control of a loader mechanism for the NMBU agricultural robot

    Get PDF
    Despite the development of new technologies, manual labour still continuous to play a large role within most modern agricultural operations, especially during harvest. Consequently, there is an increasing demand for new machines to reduce labour as a mean to limit costs, while increasing efficiency in a sustainable manner. This thesis concern itself with the design of a mechanism and control system for a robot arm that can substitute workers in logistical operations during strawberry harvest. More specifically, by lifting berry crates onto a robot platform and transporting them from the fields and to the packaging facilities. The robot arm is to be mounted on the platform composing a vehicle- manipulator system. As this thesis is connected to a general research project on agricultural robotics at the Norwegian University of Life Sciences, the chosen platform is the associated field robot Thorvald II. The thesis is divided into two parts, where Part I concerns the mechanical design of the robot arm, while Part II propose a system for controlling the mechanism. The design development process has involved assessments of available solutions before selecting components on the basis of controllability, mechanical properties and costs. The process of selection in Part II is however, based on finding solutions that are compatible with the robot platform’s network (Controller Area Network) and operating system (Robotic Operating System). Part I: Design and Mechanics The design of the robot arm presented in this thesis begun with a preliminary feasibility study conducted by Bjurbeck in September 2016. Following the assessment of this study, the robot arm is designed to have two degrees of freedom operating in the xz-plane. When mounted on the platform, the arm will be free to operate in a 3-dimensional space, as the platform moves in x and y-direction, and rotates around the z-axis. The arm is assembled from two parallel link pairs made from rectangular aluminium tubes, and a revolute and prismatic joint. Both joints are actuated by LinAk LA36 linear electric actuators. The end effector of the arm is a gripper head designed to grasp the handles of the strawberry crate. The gripper head is self-aligning with the crate’s orientation in order to reduce the precision of control needed to envelop and grasp the crate. The frame of the gripper head is made from aluminium angle profiles and sheet metal. A worm drive DC motor actuate the gripper claws via a double link mechanism. Part II: Modeling and Control The geometry of the design presented in Part I is modelled mathematically and the inverse kinematics solved analytically. The kinematics will be used in future implementation of a position control system. Two RoboteQ SDC2160 dual-channel controllers are chosen to control all four actuator mo- tors. The linear actuators are controlled in closed loop position tracking mode with absolute feedback. The gripper motor is controlled in open loop mode with end stop switches detecting the position of the claws. Experiments was conducted to match the controllers with the actuator motors. The experiments revealed firmware issues with the controller. The experiments also affirmed the controller need a script to operate the actuators efficiently. The thesis provides the foundations to build a prototype and write an operating script to test the mechanical design and control system.Til tross for den stadige utviklingen av ny teknologi spiller manuelt arbeid fortsatt en stor rolle i moderne landbruk, særlig i innhøsting. På grunn av den store arbeidkraften som trengs er det en stadig større etterspørsel etter nye maskiner som kan redusere behovet for manuelt arbeid for å redusere utgifter og effektivisere gårdsbruk på en bærekraftig måte. Denne masteroppgaven omhandler det mekaniske designet og reguleringssystemet til en robotarm laget for å kunne erstatte arbeidere i oppgaver tilknyttet logistikk ved innhøsting av jordbær. Dette gjøres ved at armen løfter kasser med bær opp på en robotplattform som transporterer kassene fra jordet og til et pakkeri. Robotarmen er da montert oppå plattformen. Siden oppgaven er tilknyttet et forskningsprosjekt i landbruksrobotikk ved Norges miljø- og biovitenskapelige universitet, var det naturlig å velge den universitetets robot Thorvald II som plattform.submittedVersionM-MP

    Minimum-lap-time optimisation and simulation

    Get PDF
    The paper begins with a survey of advances in state-of-the-art minimum-time simulation for road vehicles. The techniques covered include both quasi-steady-state and transient vehicle models, which are combined with trajectories that are either pre-assigned or free to be optimised. The fundamentals of nonlinear optimal control are summarised. These fundamentals are the basis of most of the vehicular optimal control methodologies and solution procedures reported in the literature. The key features of three-dimensional road modelling, vehicle positioning and vehicle modelling are also summarised with a focus on recent developments. Both cars and motorcycles are considered
    • …
    corecore