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Abstract: In recent years, with the rapid development of science and technology, agricultural robots
have gradually begun to replace humans, to complete various agricultural operations, changing
traditional agricultural production methods. Not only is the labor input reduced, but also the
production efficiency can be improved, which invariably contributes to the development of smart
agriculture. This paper reviews the core technologies used for agricultural robots in non-structural
environments. In addition, we review the technological progress of drive systems, control strategies,
end-effectors, robotic arms, environmental perception, and other related systems. This research
shows that in a non-structured agricultural environment, using cameras and light detection and
ranging (LiDAR), as well as ultrasonic and satellite navigation equipment, and by integrating sensing,
transmission, control, and operation, different types of actuators can be innovatively designed and
developed to drive the advance of agricultural robots, to meet the delicate and complex requirements
of agricultural products as operational objects, such that better productivity and standardization of
agriculture can be achieved. In summary, agricultural production is developing toward a data-driven,
standardized, and unmanned approach, with smart agriculture supported by actuator-driven-based
agricultural robots. This paper concludes with a summary of the main existing technologies and
challenges in the development of actuators for applications in agricultural robots, and the outlook
regarding the primary development directions of agricultural robots in the near future.

Keywords: agricultural robots; actuator; smart agriculture; environmental perception; end-effectors

1. Introduction

In the last two decades, with the advent of the information age and unmanned farms,
agricultural production methods have changed dramatically [1–3]. The development of
science and technology has combined agricultural production technology with internet
of things (IoT) technology more closely, making smart agriculture one of the mainstream
modes of agricultural production [4–6]. In particular, the wide use of agricultural robots has
revolutionized the traditional agricultural labor mode, reduced labor intensity, enhanced
agricultural production efficiency, and improved agricultural products’ production quality,
promoting modern agriculture’s development [7–9]. Agricultural robots are special robots
applied in agricultural production operations and a new type of intelligent agricultural
machinery, which can use multi-sensor fusion, automatic control, and other technologies to
realize automatic and intelligent production of agricultural equipment, operating in the
natural environment [10–12]. Nowadays, agricultural robots are being widely used in many
aspects of agricultural production, completely or partially replacing or assisting people
in agricultural production, improving agricultural production efficiency, and enhancing
production safety performance [13–15]. According to the robot’s working space, they can
be divided into indoor and outdoor robots. On the one hand, indoor robots are mainly
used in greenhouses and other similar scenarios, including indoor harvesting robots, fruit

Machines 2022, 10, 913. https://doi.org/10.3390/machines10100913 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10100913
https://doi.org/10.3390/machines10100913
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-8631-0397
https://orcid.org/0000-0003-2482-0866
https://orcid.org/0000-0003-2789-9530
https://doi.org/10.3390/machines10100913
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10100913?type=check_update&version=1


Machines 2022, 10, 913 2 of 31

and vegetable grafting robots, flower cutting robots, transplanting robots, and greenhouse
automation control systems. On the other hand, outdoor robots can be applied in large-
scale farmland, pasture, and other environments, mainly unmanned aerial vehicle (UAV),
harvesting and tractors, nursery work robots, spraying and weeding robots, and fruit
harvesting robots [16–20]. In terms of the agricultural production process, the agricultural
robots include seeding, planting, harvesting, weeding, and pesticide application-based
robots. Moreover, in the agricultural management category, they can be divided into har-
vesting, collection, and management robots; field mapping robots; dairy farm management
robots; soil management robots; irrigation management robots; trimming and management
robots; weather tracking and forecast management platforms; and inventory management
platforms [21–25].

Agricultural robots have actuation components (drive systems, controller, robotic
arm, end-effector), environmental perception (radar, camera), and other auxiliary com-
ponents [26]. The working performance of agricultural robots depends not only on the
working performance of the components, but also on the coordination ability between
the systems. As shown in Figure 1, this paper uses a picking robot in agriculture as an
example, introduces the hardware components of the robot, and explains its composition
and logical architecture. This paper first classifies actuator systems, according to their drive
components, control systems, and environmental perception, and second analyzes their ap-
plication in agricultural production, taking into account different operating environments.
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The drive system, as the main component of the robot, can be classified into electric, hy-
draulic, and pneumatic types, based on the different applications of agricultural robots [27].
With the use of specialized sensors, including machine vision, laser-based devices, and
inertial devices, actuators (hydraulic cylinders, linear and rotary motors, etc.) play an
essential role in enabling the agricultural robots to execute different tasks via the help of
electronic devices (embedded computers, industrial computers, and programmable logic
controller) [28–30]. An agricultural robot end-effector’s most important function is the flexi-
bility to handle the work object, comparably to human arms and fingers [31,32]. At present,
a wide variety of end devices have been developed, with fingers, attractors, needles, spray
nozzles, scissors, and robotic arms, to grip, cut, attach, or press into crops to effectively
perform all biological production processes, which include picking, harvesting, spraying,
sowing, transplanting, shaping, primary processing, shearing, and milking [33–35]. In
addition, the mechanical part of the end-effector is determined by both the biological prop-
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erties and the operation of the target object. For the end-effector to perform such flexible
operations, it is necessary to determine the characteristics of the target object, including
the basic physical characteristics, such as the size, mass, and shape of the target object;
mechanical characteristics, such as compression characteristics, friction characteristics, and
cutting resistance; and to measure the acoustic characteristics and electrical characteristics,
if necessary. In addition, mastering biological growth is also an indispensable element in
the design of end-effectors [36–38]. Research results show that, as the selection of materials,
the size of the end device, the control algorithm, and the accuracy have been significantly
improved, the end execution has exhibited better flexibility and higher controllability.

With the development of automatic navigation and sensor monitoring technology,
more and more actuator-based agricultural robots use navigation and intelligent moni-
toring technology as important auxiliary technologies in their design [39,40]. However,
Hiremath et al. [41] pointed out that the global navigation satellite system (GNSS) is not ac-
curate enough for some tasks, and navigation may fail when the signal is interrupted [42–46].
Therefore, machine vision, as the most widespread information source for agricultural robots,
has the characteristics of rich perception information, complete information acquisition, and
direct information recognition. However, the accuracy and reliability of the information
perceived by machine vision are susceptible to environmental factors, such as natural light
and the randomness and diversity of operating objects, which restrict the development
of agricultural robots [47]. In recent years, LiDAR has been increasingly used in mobile
robot navigation, because of its advantages, such as a high measurement accuracy and the
ability to provide a large amount of distance information at a high frequency. During the
operation of agricultural robots, LiDAR is mainly used for obstacle avoidance, e.g., in the
orchard environment, the positional information of fruit trees obtained by LiDAR scan-
ning can be used as navigation information to realize the navigation of mobile robots [48].
Nowadays, agricultural robots mainly use machine vision, spectral imaging, structured light
localization, auxiliary light source, and other related technologies, integrated to improve
their recognition, localization accuracy, and precision. However, limited by the traditional
agricultural cultivation modes, information recognition is still ineffective for features such
as target occlusion, variable posture, and similar color schemes. Therefore, at this stage,
operational information acquisition, analysis, and sensing, as well as the servo control of
actuators and end-effectors of agricultural robots, will be future research hotspots in the
field of intelligent agricultural robots.

This paper provides an overview of the application of actuators and sensors in agri-
cultural robots. The paper is organized as follows. Section 2 provides a comprehensive
review of the core technologies of actuation components, including various actuator-based
drive systems and control strategies. Section 3 summarizes the application of end-effectors
in agricultural robots, based on different application scenarios. Section 4 introduces the
sensors, auxiliary technologies, and systems of agricultural robots, such as environmental
awareness and information fusion. Section 5 provides a general discussion of the review.
Finally, there are the conclusions and outlooks of the paper.

2. Executive Components

As agricultural robots mostly operate in agricultural fields or greenhouses, many
uncontrollable natural factors exist, and the growth of crops is constantly changing. In
such a complex environment, agricultural robots need to realize mobile operation and
precise control actions, such as fertilization and spraying, which correspondingly entail
high technical requirements for developing agricultural robots [49]. In addition to fully con-
sidering the working requirements of the robot, such as the working speed, drive stability,
drive torque, maximum handling weight, accuracy requirements, etc., it is also necessary
to consider whether sufficient acceleration can be provided to meet the operational re-
quirements under large load conditions of inertia. Generally, agricultural robots’ drive
systems can be divided into the following parts, according to the energy conversion mode:
electric, hydraulic, pneumatic, and new drive devices, as shown in Figure 2. Therefore,
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research on drive control methods is key to the stable operation of agricultural robots
in non-structured environments. Collating the appropriate hardware and matching an
appropriate control strategy will become essential in implementing reliable drive control,
against the uncertainties of field operations. Currently, the main control technologies
commonly used in agricultural robots are classical control, fuzzy control, variable structure
control method, feedback linearization and back-stepping control designs, chaos control,
and wavelet theory-based control.
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In the subsequent sections, various actuator-based motion systems in agricultural
robots are described, and the related control techniques are discussed.

2.1. Drive System
2.1.1. Electrical Transmission Systems

In the non-structured farmland environment, the road conditions for agricultural vehi-
cles are complex, and vehicle stability control has become a vital issue for intelligent driving.
The most commonly used driving system in agricultural robots is an electrical transmission
system, characterized by easy realization of high-precision computer control, good envi-
ronmental adaptability, easy maintenance, and good reliability. Electrical drives generate
forces and moments using various electric motors to drive actuators, directly or through
mechanical transmission, to obtain different robot motions [54]. As the intermediate energy
conversion process is eliminated, a higher efficiency, ease of use, and less consumption can
be achieved, compared to hydraulic and pneumatic drives. Based on the characteristics of
the independent control torque response of a distributed electric four-wheel-drive agricul-
tural vehicle, Zhou et al. [55] proposed a coordinated and stable control using an improved
adaptive predictive model, to realize the intelligentization of agricultural logistics. In agri-
cultural robot mobile platform design, direct current (DC) motor motion is preferably used,
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because of its good starting and speed regulation characteristics, smooth speed regulation
range, strong overload capacity, and the low effect of electromagnetic interference. Control
of a DC motor is limited by the control method and pulse width modulation (PWM) control
method. Chen et al. [56,57] designed a self-propelled crawler plant protection robot based
on a DC brushless motor and a DC brushless motor driver bottom control board, as shown
in the c component of Table 1. The plant protection machinery comprised five parts: a
bottom drive system, communication system, self-propelled system, pesticide application
system, and monitoring system. The whole robot was compactly designed to meet the
space requirements of operating in the middle of the narrow spacing of the maize canopy of
600 mm. Zhang et al. [58] designed a crawler-type intelligent gum-cutting mobile platform
based on DC motors with sensors including LiDAR and a gyroscope, which had a good
capability in woods with different plant and row spacings. To quickly and accurately fit
the navigation path of a greenhouse cucumber picking robot, Chen et al. [50] developed a
greenhouse cucumber picking robot based on the characteristics of a servo motor combined
with a machine vision system. It is worth noting that alternating current (AC) motors are
often used in agricultural robots due to their low cost, high reliability, and simple motor
speed control, resulting in better applications in agricultural engineering. For example,
Jones et al. [59] used brushless AC motors to control the front wheel steering of a kiwi
mobile robot platform based on the Ackermann steering system. Guevara et al. [60] used
two AC motors to drive two rubber tracks in the design of an autonomous mobile robot for
scanning agricultural environments. In contrast to the continuous rotation of a DC motor,
when the current is turned on, a stepper motor rotates one angle forward for each electrical
pulse signal input. Therefore, the stepper motor can be rotated to the desired angle by
inputting an electrical pulse signal equivalent to the desired angle, and positional control
can be achieved by combining this with an angle sensor; thus, stepper motors are also
widely used in the field of agricultural robots. For example, Xiong et al. [34] developed a
low-cost dual-arm system for autonomous strawberry harvesting robots based on stepper
motors. To improve the adaptability of a transplanting device to different transplanting
trays, Shao et al. [61] developed an adaptive transplanting device for transplanting rice
seedlings, which achieved a continuous transplanting action by driving the seedling con-
veying device with a stepper motor, to improve its transplanting efficiency. This research
outcome provided a new method for transplanting rice seedlings.

2.1.2. Hydraulic Drive Systems

The application of hydraulic technology has effectively increased the degree of au-
tomation and enhanced the popularization of agricultural machinery. The application
of hydraulic technology is multifaceted, providing various types of technical support
for agricultural machinery, such as adjustment, power, and assistance. The hydraulic
drive converts hydraulic energy into mechanical energy, such as linear motion, rotation,
and shaking. Compared to pneumatic drive systems, hydraulic devices can provide a
higher pressure value and a larger torque force output; therefore, the device’s size can
be smaller and more suitable for agricultural robots. Hydraulic drives include hydraulic
cylinders for linear motion, hydraulic motors for rotary motion, and rocking motors for
rocking motion, which form a hydraulic control system, together with oil tanks, oil pumps,
control valves, and control circuits [51]. Wang et al. [62] expounded and analyzed the
development of electro-hydraulic suspension control technology from the two aspects of
an electro-hydraulic control strategy and a sliding mode control strategy. More impor-
tantly, a new concept of integrating cutting-edge technologies, such as big data, fusion
control, and artificial intelligence, was proposed, to develop hydraulic-based automated
tractors. Li et al. [63] designed a hydraulically driven remote-controlled orbital mobile
transport robot for mountain orchards, to solve the problems of inflexible steering, a com-
plex structure, and poor stability of traditional transport vehicles in mountain orchards
without grid coverage, as shown in Figure 3. Agricultural robots are also used to lift heavy
agricultural products such as watermelons or cabbage [64]. Yang et al. [65] designed an
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electro-hydraulic servo controller, based on a hydraulic drive auxiliary wheel structure
for the problem of complex turning at the front of an unmanned tractor. The designed
electro-hydraulic system can realize auxiliary wheel automatic steering, lifting, and driving,
as shown in Figure 4. However, agricultural robots often work outdoors and are vulnerable
to vibration, sunshine, rainfall, and other factors [66]. Therefore, daily maintenance of
hydraulic systems for agricultural robots is essential. Common faults of hydraulic system
include four aspects: insufficient power of the hydraulic system, an unstable hydraulic
driving process, leakage of the hydraulic system or damage to components, and too high
temperature of the hydraulic system.
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2.1.3. Pneumatic Actuator

A pneumatic actuator converts air pressure energy into mechanical energy such as
linear work, ash transfer, and shaking. Pneumatic actuators include pneumatic motors
and shaking pneumatic actuators, which form a pneumatic control system with air tanks,
air compressors, or vacuum pumps, as well as control valves and control circuits. In
agricultural robots, pneumatic actuators are used for grasping light crops or opening
and closing manipulators. In the arm of a tomato harvesting robot, a pneumatic driver
similar to an artificial muscle is used to form a pneumatic control system with an air
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tank, air compressor or vacuum pump, control valve, and control circuit, which is used
to convert the air pressure energy into mechanical energy, such as linear motion, rotation,
and shaking. Chen et al. [67] designed a pneumatic suction clamp integrated spherical
fruit lossless picking manipulator, as shown in Figure 5. Not only were the two actions of
the suction cup (pulling back and clamping claw closing) realized, sequential movement
driven by a single active cylinder was completed, and the relevant structural parameters
of the manipulator were obtained. Mata et al. [68] developed an underactuated multi-
finger flexible manipulator, where the bending joint adopted an asymmetric-bellow flexible
pneumatic actuator, to realize the smart grasping of various geometries. Using air has the
advantages of being clean and safe, small machine size, and simple maintenance, but it is
challenging to achieve accurate position and speed control, due to the compressibility of air.
Jiang et al. [69] developed a needle-like end-effector for transplanting plant seedlings based
on pneumatic actuation, tested its effectiveness, and determined the damage to the root
ball. Gao et al. [70] proposed a pneumatic finger end-effector for a cherry tomato picking
robot that was pneumatically controlled and capable of continuously and stably harvesting
tomato fruit by combining clamping and rotation, with excellent adaptability to intensive
operating environments, and which was field tested in a commercial greenhouse, as shown
in Figure 6. The results indicated that determining the position of the fruit bunches relative
to the stem plays a vital role in harvesting success. Enhancing the end-effector’s adaptability,
recognizing the fruit bunches’ attitude, and improving the positioning accuracy are key
research directions to improve robot harvesting performance.
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2.1.4. New Driving Device

With the development of robotics technology, new types of actuators using new work-
ing principles have emerged, such as magnetostrictive actuators, piezoelectric actuators,
electrostatic actuators, shape memory alloy actuators, ultrasonic actuators, artificial mus-
cles, and optical actuators [71,72]. To realize the automatic harvesting of strawberries,
Xiong et al. [53] developed a non-contact gripper based on a cable drive and perception
ability, where the actuator could store multiple strawberries simultaneously, reducing the
manipulator’s driving time. However, the harvest success rate of the gripper was not high
when it picked in dense or occluded areas of strawberries. Tawk et al. [73] designed a 3D
tendon-driven soft gripper, producing linear travel upon activation, which included soft
fingers and suction cups that can be operated individually or simultaneously, to grasp
specific objects. Elmoughni et al. [74] used advanced computerized knitting to manufac-
ture seamless pneumatic knitting actuators with a combination of weaving parameters to
achieve an anisotropic, fully knitted actuator structure. This actuator can also be used to
assist in the gripping motion of agricultural robots. In addition, although a titanium-nickel
memory alloy flexible clamping mechanism was developed for the flexible clamping of
seedlings, this clamping mechanism has not been widely used, because of its complicated
structure, delicate manufacturing requirements, high cost, and poor reliability.

Among the drive methods for agricultural robots, a motor drive can achieve precise
control according to the set parameters, and with the support of high-precision sensors and
computer technology, the control accuracy can far exceed other control methods. However,
with a DC servo motor drive, the brushes wear quickly and can form sparks; while stepper
motor drives are mostly open-loop control, but they are mostly connected to the reduction
device, and a direct drive is more complicated. A hydraulic drive can easily achieve load
control, speed control, direction control, centralized control, remote control, and automatic
control, but the need for an additional hydraulic source in flexible operations necessitates
constant attention to the temperature of the hydraulic pump and solenoid valve, to avoid
liquid leakage, causing pollution of the agricultural environment. A pneumatic drive
has a simple structure and good adaptability, but they have a low output force, poor
stability, low control accuracy, layout difficulties in controlling the speed and accuracy, and
other defects. In an unstructured environment, there are significant differences in weather
conditions, plant locations, and production methods, and this essential uncertainty puts
higher demands on the flexibility and adaptability of agricultural robots. The robustness
of the drive systems is essential in the working process of agricultural robots. Therefore,
future drive systems of agricultural robots should focus on the following: (1) Drive mode
diversification, with the integration of electromechanical and drive-control technology,
with one drive mode as the main and other drive modes as auxiliaries, to overcome the
problem of the insufficient reliability of work with a single drive mode. (2) With the
help of sensors, artificial intelligence and other technologies, drive mode intelligence will
be changed from manually operated or semi-automatic, to fully autonomous intelligent
drives. (3) Energy-saving drive modes, with the help of new materials and new principles
for new drives, such as magnetostriction drives, piezoelectric drives, etc., to reduce the
energy consumption of agricultural robots, and to enhance the safety attributes of green
agriculture. In addition, agricultural robots also need to combine the specificity of their
operating environment and the complexity of the operating object, to choose an appropriate
drive method, and at the same time need to use more effective control strategies to make
up for the defects of the drive system.

2.2. Control Strategy

High-performance control strategies are necessary, to ensure an excellent operational
performance of agricultural robots, including actuators and end-effectors (to be introduced
later). The whole control process can generally be described as follows: the movement path
is planned according to the desired trajectory, the actuators of the robots are controlled
to avoid obstacles and to reach the target position, and finally, the end-effectors are ma-
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nipulated to complete the flexible operation, with the help of sensors. In addition, due to
the complex and changeable operation environments of agricultural robots, the precise
navigation and control of agricultural robots’ motion has become very important [75].
The automatic navigation of agricultural robots refers to the deviation between the actual
position of the robot and the expected path (including lateral deviation and heading angle),
to determine the steering angle of the chassis, so that the robot can move according to a
predetermined route. Automatic navigation technology mainly includes environmental
perception, path planning, vehicle model establishment, and steering control. The current
agricultural vehicle models include kinematics and vehicle dynamics [76–78]. The major
control methodologies adopted in agricultural robots consist of classical control, intelligent
control, including fuzzy control, and nonlinear control, as shown in Table 1.

Table 1. Comparison of control strategies.

Control Strategy Advantage Disadvantage Application Situation

Proportional, integral,
differential (PID) control

method

Simple to use, flexible, and
easy to adjust

The adjustment accuracy is
not high, and not precise

enough
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Sliding mode control
method

Fast response, excellent
tracking, strong robustness

against external
disturbances and parametric

uncertainties

The discontinuous
switching characteristics can

cause chattering in the
system.
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2.2.1. PID Control

PID control, as the typical classic control method, is widely used in process control and
motion control because of its simple algorithm, good robustness, and high reliability, and it
has also been widely used in autonomous vehicles [81,82]. The PID algorithm constitutes
the control deviation according to the given value and the actual output value of the system.
PID control is performed using a linear combination of three components to control the
controlled object. However, when disturbances and measurement noises exist in the control
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system, the control performance will be affected, such as poor system accuracy, long re-
sponse time, and low stability, resulting in the control system not realizing the ideal control
accuracy. Thus, various improved PID control methods have emerged, including fuzzy
PID combined with intelligent control, neural network PID, etc. For example, Jia et al. [83]
proposed an intelligent PID controller to solve the problem of controller oversaturation,
where an improved adaptive Kalman filter algorithm was developed to explore a reliable
navigation system for agricultural robots in complex agricultural operating environments.
Mousakazemi et al. [84] introduced a genetic algorithm in the PID parameter adjustment
by obtaining the optimized values of three control gains via different objective functions.

2.2.2. Fuzzy Control

When farmland operating machinery (i.e., agricultural robot) is operating in a field
environment, due to the poor ground conditions of the farmland, the interaction process
between tires and the ground is complicated. Moreover, considering that different moving
speeds have a great effect on models of the frequency domain, the direct use of robot models
should be avoided in the control, since it is difficult to establish a reasonable and accurate
model [85]. Thus, many experts and scholars have designed fuzzy control techniques to
analyze the collected fuzzy signals, to select the commands, and achieve the corresponding
control target. Fuzzy reasoning makes correct decisions about the real-time state of the
system, as it does not require an accurate mathematical model of the system and can be
robust and adaptive to changes in the system parameters. Moreover, fuzzy control not
only simplifies the work of the system designer and the computer, but also gives correct
information about how the system operates in the real world; thus, it is often used for the
path planning of mobile agricultural robots [86]. In the navigation area, the fuzzy control
technique is primarily used for collecting and analyzing information, which can ensure
the stable operation of robots, mainly when the received signals are incomplete or weak.
Currently, fuzzy control has been combined with sensor-based navigation, to improve
the incremental learning of new environments, to minimize the angular uncertainty and
radial uncertainty in the environment, such that, not only can an optimal perception of the
environment be obtained, but also the robot is able to manage certain dead-angle situations.
For example, Zavlangas et al. [87] used the distance and angle between a mobile robot and
an obstacle to establish fuzzy logic rules for real-time path planning. Pradhan et al. [88]
proposed a rule-based neuro-fuzzy hybrid control technique in an unknown environment,
which combined the repulsive influence related to the distance between the robot and a
nearby obstacle and the robot’s interaction with the target, to determine the steering angle
of the robot. Thus, a fuzzy controller can detect obstacles around the robot and make the
correct obstacle avoidance decisions.

2.2.3. Nonlinear Control

With the rapid development of robotics, agricultural robots are carrying out more con-
siderable and heavy tasks, which has prompted the development of agricultural wheeled
robotic multi-body systems, towards flexible robots with a higher complexity and de-
gree of freedom. This requires optimizing the modeling methods of complex agricultural
wheeled robots, to improve their efficiency and accuracy [89]. In the path tracking control
of agricultural robots, the modeling accuracy can be affected by strong coupling and non-
linearity, and traditional inverse kinematic algorithms can no longer meet the requirements
of high-precision operations. Therefore, nonlinear controllers have also been introduced to
solve the inherent unmodeled dynamics, uncertainty, and disturbances [90]. To address
these problems, controllers operating in uncertain environments must constantly adapt to
changing conditions, to avoid steady-state errors, output oscillations, and even instability
of closed-loop systems. The authors of [91] proposed a moving horizon estimation (MHE)-
based nonlinear model predictive control (NMPC) framework for the control of agricultural
robots. In addition, sliding mode variable structure control has been widely used, due to its
insensitivity to disturbances [92]. To address the problem whereby tracked plant protection
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robots can significantly deviate from the expected path when operating in soft, sticky soil
and complex environments (e.g., mid to late corn cultivation), Li et al. [56] developed a
sliding mode variable structure algorithm-based path tracking control for tracked robots.
Tu et al. [54] developed a four-wheel steering (4WS) and four-wheel-drive (4WD) agri-
cultural robot mobility platform, based on a robust controller with back-stepping sliding
mode control. The research results demonstrated the strong capability and robustness of
the sliding mode controller in controlling a non-holonomic system with high degrees of
freedom.

3. Application Scenarios in Agriculture

In the face of complex working scenarios, agricultural robots cannot accomplish their
tasks by relying solely on drive systems and control strategies. Therefore, combining
dexterous end-effectors and robotic arms is necessary to achieve precise operation. The
end-effector, the other crucial actuating component, plays an essential role in the gentle
handling of the operating objects. An actuator mechanism designed to enable this gentle
operation of the end-effector is shown in Table 2. It is necessary to master the biological
growth conditions, which is an indispensable element when designing an end-effector.
First of all, it is necessary to determine the characteristics of the object, including the basic
physical characteristics, such as the size, weight, and shape of the object, as well as the
mechanical characteristics, such as the compression characteristics, friction characteristics,
and cutting resistance [93]. In addition, an end-effector is greatly affected by machine vision
and robotic arms. Since the position detected using machine vision has a certain error,
the expansion and rotation of the robot arm will have a deflection or gap, such that the
end-effector cannot reach the correct position due to this effect. Therefore, the end-effector
needs to have the function of absorbing these errors. In addition, the end-effector, mainly
driven by a motor or air pressure, can have other drawbacks, such as a poor stability of
output force, low control accuracy, and complex layout, which are unsuitable for picking
fruit with while maintaining quality. However, a hydraulic-driven end-effector exhibits
the advantages of a large power/mass ratio, compact structure, high stability, and fast
response. A hydraulic drive system based on force perception can accurately output an
appropriate operating force, according to the working environment, and is especially
suitable for picking fruits with a large volume and high quality. In short, the end-effector
of agricultural robots must not only deal with the individual differences of organisms, but
also have robustness against the errors of other mechanisms [94].

3.1. End-Effector Applications in Agricultural Robots

An end-effector equivalent to a human hand is a robotic part that can directly act
on the work object. It is generally installed at the front end of a robotic arm, to perform
various tasks. Tools are first installed on the end-effector of agricultural robots, such that
different tasks can be completed by changing the end-effector, according to the type of
work [100]. When designing and manufacturing the end-effector for an agricultural robot, it
is necessary to fully grasp the object’s physical properties and explore how to complete the
task. The end-effector does not need to imitate hands for the operation, as long as the same
effect is obtained. According to different operational objects, this paper gives examples of
a clamping mechanism, cutting mechanism, absorbing mechanism, pressing mechanism,
and disc weeding knife, to describe the application of end-effectors in agricultural robots,
as shown in Table 3.
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Table 2. Examples of end-effector applications in the field of agricultural robotics.

Actuator Mobile
Platform

Detection
Sensor Job Object Degree of

Freedom Schematic Diagram References

Grippers / A pair of
color cameras Kiwifruit 4-bar linkage
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Table 3. Examples of dexterous end-effectors and robotic arms.
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3.1.1. Clamping Mechanism

Agricultural robots have various application characteristics, such as the season of
operation, the complexity of the operating environment, the delicacy and complexity of
the operating objects, and the specificity of the objects, that entail various demands for
application in agriculture. A clamping mechanism is usually flexible according to the
sequence of clamping and separating actions, characterized by the gripper grabbing the
fruit and then disconnecting the fruit from the stem through a corresponding mechanism
or action. According to the harvesting operational requirements, a reaper must achieve a
certain weight, shape, center of gravity, size tolerance, and surface condition, as well as
function in a small harvesting space or when part of the fruit obscured by branches and
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leaves [104]. The main purpose of the design is to improve the fruit picking success rate
and reduce the fruit damage, such as with holding, cutting, twisting, and so on. In addition,
for delicate, small bunches of fruits (i.e., grapes), for which direct clamping is very difficult
and may cause damage to the fruit, clamping of the fruit stalk can be used, but this method
is not suitable for fruits and vegetables with a weak connection between the fruit and the
stalk. However, to provide a stable and efficient picking process, the end-effector can be
equipped with some ancillary mechanisms, such as suction cups, putts, and sensors, to
provide accurate pick-and-roll and damage reduction.

To control the gripping force of agricultural robots, Russo et al. [101] proposed a
new horticultural product gripper that firmly grips medium-sized horticultural products
without damage, based on the requirements and characteristics of horticultural product
gripping. Tian et al. [105] designed a sliding sensor with piezoelectric resistance, using
an adaptive neuro-fuzzy inference system controller to adjust the gripping force of the
agricultural robot in real-time, and a subtractive clustering method to simplify the fuzzy
rules. The experimental results showed that the sliding signal could be effectively extracted,
regardless of the variation of the normal gripping force, and the gripping pressure of
tomatoes and apples was successfully controlled. Roshanianfard et al. [106] developed an
end-effector with a unique harvesting method, based on the characteristics of pumpkins.
The end-effector was a five-fingered anthropomorphic hand that used an electric drive and
internal impact to achieve the grasping function. Hou et al. [36] designed a bionic human
finger soft grasping mechanism for a tomato picking robot, using computed tomography
(CT) to obtain the internal structure of the finger and defining smooth contact mechanic
indices to characterize the softness of the finger region during the light grasping of tomatoes.
The research results provided evidence for how the mechanics and structure of human
fingers quantitatively affect the soft contact mechanics behavior during light grasping,
which in turn can be used to develop robotic fingers with different degrees of softness, to
meet different fruit picking requirements.

3.1.2. Cut-Off Mechanism

Among the operations performed by agricultural robots, a cut-off mechanism is
required for harvesting, pruning, fruit picking, weeding, and shearing. Agricultural robots
in cut-off operations need to control their cut-off force. Note that too small a cut-off
force cannot cut off the work object, while an overlarge force can have a large margin for
operation, but will increase the weight and size at the end of the actuator. Moreover, it will
become a burden on the robot arm and mobile mechanism. To select the best cutting force,
it is necessary to fully investigate the cutting characteristics of the work object, i.e., shape,
size, etc. Reliable and robust systems for detecting and harvesting fruits and vegetables in
non-structural environments are essential for harvesting robots. Zhang et al. [78] designed
a novel gripper that can simultaneously grip and cut the peduncle of a crop, without
touching the flesh. Experiments on a robot were conducted to evaluate the effectiveness of
the proposed harvesting system.

3.1.3. Absorption Mechanism

A robot must hold the fruit or stalk for operation when it harvests large fruits. When
the fruit is too small or the surface is too soft to be held, it is brought to the end-effector using
attractive force. Agricultural robots often need to use soft material absorption mechanisms
to hold the work object. Typical absorption mechanisms include suction cups, which use
a vacuum pump to adsorb the object. One feature of these absorption cups is that the
absorption force can be changed by simply adjusting the pressure of the vacuum pump,
and the number of absorption cups can be changed to correspond to various situations,
regardless of the size and shape of the object; as long as the work object has a flat part.
Kurpaska et al. [107] developed a strawberry harvesting robot end-effector based on an
integrated pneumatic suction cup structure for strawberry fruit harvesting. Experiments
were conducted using three suction cup structures and three suction cup surface positions
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on the strawberry surface, which showed that a pneumatic suction cup scheme is feasible
for strawberry harvesting. Moreover, negative pressure suction requires a smooth fruit
surface, and vacuum suction nozzle absorption functions with fixed fruit, such as in sweet
pepper vacuum absorption [108]. Cavity nesting is a commonly used absorption method
for absorption-type end-effectors, which uses a semi-closed cavity with a fixed shape to
contain and restrict the fruit. The general cavity nesting method has no driving components,
and is usually combined with the separation of fruit without a fixed link. For example,
robots that adopt a vacuum absorption end-effector to harvest apples can not only greatly
shorten the time required for apple harvest sub-processes, but also have no direct contact
with the apple components, such that the mechanical damage caused by apple harvesting
can be effectively avoided.

3.1.4. Press-In Mechanism

A press-in mechanism is mainly used as the end-effector for seedling transplanta-
tion [109]. During transplanting, the general method is to clamp, enter the pushrod from
the drainage hole at the bottom of the tray, and clamp the culture soil with shovels sim-
ilar to mechanical fingers, and then the robot inserts two needles into the culture soil to
transport the seedlings. The front end of the end-effector is equipped with two inclined
opposite needles, which are driven by the cylinder to slide instantaneously. The front end
is crossed when the needle is inserted into the culture soil at the maximum depth. When
the end-effector is lifted in this state, it can be transported together with the entire piece of
culture soil and without contacting the seedlings. The culture soil will not spread and fall if
the seedlings form a silver bowl. In addition, the end actuator is equipped with a proximity
sensor to detect units with insufficient seedlings, without needing contact. Shao et al. [61]
developed a multi-adaptive rice transplanting supply device to improve the adaptability of
a transplanting supply device to different transplanting trays. The designed end-effector
consisted of a cylindrical claw and a U-shaped auxiliary grip, which was used for picking
up and dropping the seedlings of various seedling planting devices. The research results
could provide a new concept for the mechanized transplanting of vegetables and flowers,
but it is not easy to achieve the practical application of high-speed transplanting at this
stage.

3.1.5. Other Mechanisms for End-Effectors

Due to the diverse types of agricultural production and complex processes, which
lead to a large family of agricultural robots, agricultural robots have various end-effectors
to accomplish their operational tasks [110]. To address the problems of the difficulty
in using large sprayers in hilly orchards, mechanical damage to fruit trees, and a low
deposition rate within the canopy of fruit trees, Bao et al. [111] designed a new remote-
controlled cable-driven target spray robot based on a concentric tubular manipulator with
six degrees of freedom and using a spring-hinged structure. For weeding problems in the
field, mechanical weeding is the most promising weeding method for weed management in
organic agriculture. Quan et al. [103] develop a deep learning-based intelligent agricultural
robotic weeding system for detecting weeds between crop rows. This intelligent inter-plant
mechanical weeding device with a disc-type rotating mechanism operated in the inter-
monopoly with an average weeding rate of 85.91%. Pérez-Ruírez et al. [112] designed a
weeding component with an end-weeder that was distributed on both sides of the plant and
used machine vision to detect the seedlings’ position and control the weeder’s movement
for weeding purposes. Langenkamp et al. [113] developed a weed control device called
“ tube stamp”, which was mounted on a BoniRob robot to eliminate detected weeds. In
addition, with the widespread use of information technology, artificial intelligence, and
sensing technology in animal husbandry, Yang et al. [114] developed a milking robotic
arm suitable for milking robots to realize the cleaning, massaging, and milking of cows,
using components such as an integrated image recognition ranging system, milking cluster,
milking cleaning line, cluster removal device, and teat cleaning brush. A three-degree-
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of-freedom motion mechanism enabled the milking robotic arm to complete the milking
trajectory within the minimum range of motion, and improve the efficiency of milking.

3.2. Robot Arms Applied in Agricultural Robots

The main role of a robotic arm is to manipulate the end-effector to the target position.
There are many types of human-robotic arms for industrial robots, such as the horizontal
multi-joint type used in assembly line product assembly operations, the vertical multi-joint
type in welding and painting, and the cylindrical coordinate type in crating operations.
Similarly, many kinds of robotic arms also exist for agricultural robots, as shown in Fig-
ure 7, and where the object’s size, quality, and cultivation method are the main factors
affecting the robotic arm construction. For example, Liu et al. [115] designed a wolfberry
harvesting robot that used dual arms with branch grasping end-effectors to work in con-
cert. The TrimBot 2020 robot platform, based on a commercial Bosch Indigo mower, was
developed and fitted with a six-degree-of-freedom robotic arm for shrub pruning and
rose pruning [116]. Mohamed et al. [117] implemented a flexible robotic arm that used
agonist-antagonist actuators connected to a joint by a flexible tendon for tomato harvesting.
By acquiring the scenario RGB map and depth map through Kinect V2 fixed on the side
of the robotic arm, Wang et al. [118] performed image segmentation and 3D localization
of the fruit stems of litchi, planned an obstacle avoidance harvesting path online based
on the RRT (rapidly-exploring random trees) algorithm, and implemented fruit branch
shearing and clamping using a cylinder-driven end, to achieve efficient and stable litchi
bunch harvesting. In pest control, Obert et al. [119] developed a robot that detected the
onset area for target spraying, and an online disease assessment model based on machine
vision ensured that the spot spraying area was minimized. You et al. [120] designed a
branch skeleton analysis algorithm for a cherry pruning robot, and the correct rate of branch
reconstruction based on semantic guidance exceeded 70%, which could effectively support
the robot pruning decisions. To improve harvesting speed, many selective harvesting robot
design solutions chose multi-arm parallel technology [121]. Zhao et al. [122] proposed
a modular dual-arm robot concept for tomato harvesting, to improve the efficiency of
tomato harvesting robots in unstructured environments, and tested a dual-arm frame
for tomato harvesting, consisting of two three-degree-of-freedom manipulators and two
different types of end-effector. Spanish AGROBOT Robotics [123] developed a strawberry
harvesting robot for high-monopoly and rack cultivation that employed 24 robotic arms
arranged on six linear module units, each with a short-view integrated color and infrared
depth sensor and image processing unit, to determine the ripeness of the strawberries to be
harvested, and which used stem-breaking clamping to harvest the strawberries to avoid
damage. However, since a dual-arm cooperative mode imposes higher requirements on the
manipulator configuration, canopy space, and collaborative control [124,125], further ex-
ploration is needed of whether dual-arm harvesting robots are the optimal future direction
of harvesting robotics development.

Agricultural robots require the end-effector and the robot arm to be able to replicate
each other entirely when they perform flexible operations. In short, the end-effector of
agricultural robots should be able to not only cope with the individual differences of
organisms, but also have the robustness to cope with the errors of other mechanisms. Thus,
in the future, the research on end-effectors and robotic arms of agricultural robots will focus
on the following: (3) addressing the complexity of the operation object and the problem
of flexible operation, by studying the damage mechanism of crops, using new materials,
developing efficient control strategies, and planning the motion path of the end-effector
and robotic arm, and eventually achieving efficient and flexible operation. (2) Based on the
structure of the mobile chassis of agricultural robots, according to the operation range of
the mobile platform, end-effectors and robotic arms will be developed to adjust to their
operational environment. (3) establishing a universal end-effector and robotic arm, and
adjusting the operation path and the size of the driving force adaptively, according to the
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different operation objects detected by the vision sensor, to realize low-loss operation of the
end-effector and robotic arm.
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Figure 7. Robotic arms in an agricultural robot. (a) Mechanical arm structure of a mowing robot [116].
(b) Spot spraying robot with disease area detection [119]. (c) Cherry pruning robot [120]. (d) Straw-
berry harvesting robot [123]. (e) Dual-arm manipulator harvesting eggplants [121]. (f) Dual-arm
tomato harvesting robots [122].

4. Assistive Technologies and Systems

Although actuators are the major driving components of agricultural robots, some
assistive systems are also necessary, to ensure the robots operate appropriately, with high
performance, i.e., environmental perception. To solve the problems of the autonomous
walking of actuator-based agricultural robots and the sensing of environmental information
to drive end-effectors, agricultural robots use depth cameras, LiDAR, and ultrasonic and
other sensors to obtain various data about the soil, crops, climate and other agricultural
environment factors, and cooperate with autonomous positioning and path planning
technologies to realize autonomous map building, positioning, and navigation functions.
However, it is essential for agricultural robots to recognize subtle differences in color,
shape, and size of similar products [126], as the objects of work are crops with different
shapes and types during field operations. Machine vision technology is more objective
and standardized than human eyes in recognizing crops or other agricultural products.
Therefore, machine vision is often used in the navigation of agricultural robots, in addition
to in the grading of agricultural product’s quality, and the detection and control of pests,
diseases, and weeds in agricultural fields, as well as in automatic agricultural harvesting
systems [127,128]. Thus, machine vision has become the main external sensing technique
for the front-end sensing components of agricultural robots to obtain external information
sources.

Below, we will discuss environmental perception and information fusion.

4.1. Environmental Perception

Agricultural robots are susceptible to the climate, time, agronomic measures, operating
conditions, and other factors. Therefore, exploring environmental perception and path
planning is of great importance in improving the autonomy and intelligence of agricultural
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robots. Environmental perception is essential for agricultural robots, ensuring the safe
interaction between robots and people, and between target objects and the surrounding
environment [129,130]. Environmental perception collects point clouds or image data
through various visual sensors, followed by the analysis and processing using a computer,
so that the robot system can obtain different information about objects in the environment.
Figure 8 shows an agricultural planting robot with machine vision.
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As an external sensor of intelligent agricultural robots, machine vision is the eye
of the operating equipment for agricultural robots and the most prominent information
source, which has the advantages of rich perceptual information and complete information
collection [131]. The first step for agricultural robot operation is to achieve autonomous
obstacle avoidance, and the prerequisite for obstacle avoidance is to enable robots to
perceive their surrounding environment [132]. In general, various sensors need to be
installed to monitor the required field information, which also provide the parameters of the
surrounding environment for robots, such as the size, shape, and position of obstacles and
targets. At present, there are various obstacle avoidance sensors used in agricultural robots.
According to their principles and characteristics, their application scopes in agricultural
environments are also different [133]. Cameras and radars are commonly used and will be
discussed further below.

4.1.1. Cameras

The visual recognition system of agricultural robots usually includes one or two
cameras. Cameras are widely used in agricultural robots because of their low price, easy
installation, rich data information, and relatively mature processing algorithms. The main
steps include image acquisition, image preprocessing, and obstacle detection. In terms of
types, cameras can be divided into monocular, binocular, and RGB-D cameras.

Monocular Camera

In agricultural robots, the information obtained by a single camera is minimal, so it is
necessary to add an algorithm to assist in obtaining information [134–136], to determine
the distance relationship between each object in the scene and the lens. The commonly
used monocular cameras can be divided into the charge-coupled device (CCD) and comple-
mentary metal-oxide-semiconductor (CMOS) cameras. Therefore, both cameras are widely
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used in agricultural robots in different environments [137]. Similarly to machine vision, and
based on CMOS image sensor (CIS) cameras, Lyu et al. [138] proposed a free-space recogni-
tion technique in an orchard environment, for a developed small agricultural unmanned
ground vehicle (UGV), and using a low-cost, lightweight processor. Cubero et al. [139]
developed a remote-controlled field robot, RobHortic, equipped with color, multispectral,
and hyperspectral cameras, to detect the presence of pests and diseases in gardening.
Lei et al. [140] proposed a kernel fuzzy C-means clustering algorithm, to segment the
pomegranate fruit images collected by a CCD camera, to improve the applicability and
work efficiency of a picking robot. Zhou et al. [141], based on the pinhole imaging principle,
established a CCD camera-based testbed, for the automatic sorting of agricultural products,
with target classification, localization, and capture.

Binocular Camera

Compared with monocular cameras, binocular cameras are widely used in agricul-
tural robots, due to their low price, high-ranking accuracy, and more mature technology.
An intelligent binocular vision system combined with an intelligent algorithm software
system can realize image processing, binocular stereo positioning, deep learning algo-
rithms, and visual servoing in a non-structural environment, providing perfect eyes and
brains for agricultural robots [118]. To adapt to the complexity and diversity of the envi-
ronment, binocular cameras are selected as the visual perception sensor of agricultural
robots, and convolutional neural networks are used to perceive the surrounding envi-
ronment [142]. Aiming at cotton field operation management low-speed linear driving
conditions, Zhang et al. [143] established a tractor path tracking control system based on
binocular vision, using a crop row identification and path planning method. The control
system realizes the automatic track tracking control of cotton line operations and meets
the agriculture requirements for cotton field operational management. To achieve accurate
grape picking in non-structural environments, Yin et al. [144] proposed a method of grape
detection and pose estimation based on the Mask-RCNN (regions with CNN features)
algorithm, and using low-cost binocular stereo. To improve the applicability of their tomato
clustering recognition method, Xiang et al. [145] proposed a tomato clustering recognition
algorithm based on binocular stereo vision, which ensured a good real-time performance,
to meet the requirements of harvesting robots. The study findings showed that the adaptive
vision navigation algorithm for agricultural robots based on binocular vision, originally
designed for automatic agricultural robot navigation, could be extended to agricultural IoT
systems.

Depth Camera

Depth cameras are also called RGB-D cameras. A depth camera can obtain ordinary
2D RGB images and the depth information of objects in the shooting scene, so it has a wide
range of applications in the field of agricultural robots, in the face of the needs of different
scenarios. The most commonly used RGB-D camera in the field of agricultural robots is the
Kinect V2 depth camera produced by Microsoft, which consists of an infrared (IR) light
source, an infrared camera, and an RGB camera [146]. For example, Gu et al. [147] used
a convolutional neural network method and a Kinect camera to identify corn rootstocks.
After detecting and identifying the obstacle targets, the driving path was obtained, to
achieve autonomous obstacle avoidance for a corn interrow collection robot. To improve
the picking efficiency of apple picking robots, Tian et al. [105] proposed an optimized image
recognition algorithm based on image depth information. The Kinect V2 camera obtains
a depth contour map of the target image and gradient field information. The gradient
information is projected onto a two-dimensional plane, and the vorticity is formed in a
uniform and orderly area, by rotating the gradient vector, the central projection of the
target fruit, to achieve rapid positioning of the target fruit. Quan et al. [148] developed a
YOLO-V4 model based on the Kinect V2 camera, to locate weeds with a detection speed of
up to 17.8 fps. This research result could be used to determine the type and fresh weight of
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weeds, to match an appropriate dosage of herbicides for real-time spraying, which provides
a new concept for optimizing weeding strategies and to reduce the use of herbicides. In
addition, the proposed method could be widely applied to the prediction of the fresh
weight of crops, which would facilitate the variable and precise operation of herbicide
robots in spraying herbicides, for the purpose of supporting crop genetic breeding and
improving soil health.

In precision agriculture, another application of deep cameras is to obtain the pheno-
types of crops under natural conditions and use them to analyze crop trait information [149].
Machine vision algorithms are combined with image processing functions to eliminate un-
wanted crop data or information from the image, while retaining only relevant information
about the precise measurement [150]. Deep estimation, color enhancement, identification,
and segmentation of regions of interest are techniques that offer reliable results for further
analysis of the information obtained. This information significantly improves crop vari-
eties and provides solutions and a theoretical basis for research in the field of precision
agriculture.

4.1.2. Radar

In the non-structured farmland environment, the autonomous navigation of agricul-
tural robots is difficult because of the inherent uncertainty in the operating environment.
Many agricultural robots use computer vision and other sensors to supplement their GPS
data for navigation, but the method based on machine vision is sensitive to the surrounding
light conditions. When the working environment of the agricultural robot is high-stalk
crops, the blades will block the GPS antenna, and the problem of positioning loss is very
likely to occur. At the same time, the variable light intensity will affect the camera’s image
collection and other factors. The accuracy can be higher with advanced vision systems
(including depth perception, LiDAR, other scanning sensors, and artificial intelligence for
decision-making and classification). Therefore, radar navigation technology can be used to
realize autonomous navigation between rows of agricultural robots [89].

For the autonomous navigation of agricultural robots, since it is not necessary to
measure the height of the measured object and the distance from the measured object to
the LiDAR, high beam, low-cost solid-state 3D LiDAR, has been widely used in the field
of agricultural robots. Figure 9 lists the different types and applications of LiDAR. For
example, Weiss et al. [151] used FX6 LiDAR (Nippon Signal Co., Ltd., Tokyo, Japan) and
developed the RANSAC-Algorithm for machine vision, so that agricultural robots can
implement detection of a single plant between cornrows and generate a crop row map of a
single plant, to provide accurate location data for future plant protection, fertilization, or
weeding, as well as other individual plant care work. Zhang et al. [58] designed a low-cost
laser radar and gyroscope clustering technology, to extract sparse point cloud data on
the trunk and to realize the autonomous navigation of a rubber-tapping robot intelligent
rubber cutting platform and rubber forest information collection. In a forest environment
with different row spacings and plant spacings, the robot’s position was obtained using
the extended Kalman filter algorithm, and the heading and lateral errors of the cutting
robot were analyzed. Most existing studies have focused on detecting single plants or crop
behaviors, and the planned path is a straight line. Although this is convenient for robot
control, it is not conducive to avoiding obstacles such as a fruit tree canopy and pedestrians
between rows.

Another area of application for radar sensor technology is precision agriculture, which
aims to reduce expense and significantly increase yields. In precision agriculture, field
crop phenotypic information reflects the relationship between crop growth and its growth
environment. Traditional field crop phenotype information is obtained by manual measure-
ment, which is time-consuming, labor-intensive, and may cause poor data objectivity. As
such, the emergence of large-scale field crop phenotyping platforms with LiDAR as the core
sensor is well suited to meet the needs of fine field crop phenotyping information collection,
by accurately recording and evaluating parameters (e.g., soil conditions or yields) for opti-
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mally adapting land tillage (seeding and fertilization) to various conditions [26,153,154].
For example, installing LiDAR on ground mobile robots, for the localization and identifica-
tion of trees in orchard environments, allows the precise determination of a trunk’s height,
volume, and mass, and thus the expected yield [155–157].
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4.2. Information Fusion

Due to the uncertainty of the working environment of agricultural robots, and the
flexibility of operation in a narrow range, sometimes more sensors will be used to collect the
relevant navigation information. Then, multi-sensor information fusion technology should
be comprehensively used to complete the correct estimation of the position and state of
the machine, to achieve reliable automatic navigation [75,158]. At the same time, different
types of sensors need to be installed, to improve the intelligence of agricultural robots. The
commonly used ones include anti-collision, infrared, ultrasonic, laser, visual, tactile, and
so on, to complete the information fusion of multiple sensors and obtain more reliable
and accurate information [159,160]. Therefore, agricultural robots must integrate different
subsystems, transmit the required information, and ensure correct synchronization [161].
Moreover, such robotic systems must be cost-effective and ensure human safety, while
protecting the environment, crops, and machinery.

Agricultural robots are a class of intelligent agricultural equipment, which can use
technologies such as multi-sensor fusion and automatic control to realize automatic and
intelligent production of agricultural equipment operating in natural environments [162].
The main research on information fusion from different sensors includes fusion structure,
fusion algorithm, sensor ranging, target recognition, autonomous navigation, and path
planning [163,164]. The multi-sensor information fusion method is essential for information
fusion. Therefore, specific decision-making needs are required, and appropriate fusion
methods are adopted. Note that a robot body is loaded with various sensors such as LiDAR,
ultrasonic, and vision sensors [165,166]. Based on the environment sensing technology of
multi-sensor information fusion, the object’s shape, speed, and distance are simulated and
computed through complex algorithms, to achieve highly stable motion and data collection
and processing functions of the robot in the agricultural environment. Du et al. [167] used
an industrial camera to design a high-throughput lettuce phenotype visual measurement
method, for the problem of comparative analysis of the growth of different lettuce varieties,
under the same cultivation environment, and established a quantitative evaluation method
for variety selection and breeding, as shown in Figure 10. Wang et al. [168] combined
unmanned technology with electronically controlled seeding technology to develop a large
field corn seeding robot. Through integrating operation process seeding status information
(seeding depth, missed seeding, and fault detection) with the positioning information
(longitude and latitude signals from the Beidou system) of the unmanned tractor, and
developing a set of electronically controlled seeding controllers, based on this, they created
an integrated system for unmanned seeding operations, applicable to large field operations,
as shown in Figure 11.
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Environmental awareness, an auxiliary component of agricultural robots, is also vital.
Ensuring safe interaction between robots and target objects and their surroundings through
multi-sensor information fusion is the basis for agricultural robots accomplishing their
operational tasks. As sensors for agricultural robots to obtain external information, future
research works should mainly focus on: (1) The various agricultural robots obtaining differ-
ent information of the operation scene, based on the principle of sensors, the development
of new materials, and new methods of universal modular sensors. (2) Agricultural robots
need muscular mobility and passability in natural scenes, and then require environmental
sensing sensors to achieve dynamic recognition and rapid decision-making in complex
scenes. The agricultural robots’ complex operating environment and diverse operating ob-
jects eventually lead to each agricultural robot needing to be equipped with a multi-sensor
information fusion system applicable to a single working condition. Therefore, it is urgent
to develop a multi-sensor information fusion system applicable to agricultural robots, and
develop a low-cost, highly robust general-purpose agricultural robot-specific controller.

5. Discussion

At present, agricultural robots can replace humans in simple agricultural production,
but they can still not meet the requirements when facing complex operations with complex
agronomic processes. With the development of robotics and the continuous improvement
of image processing technology, the research of agricultural robots working in complex
unstructured farmland has become a current research hotspot. Agricultural robots comprise
a mobile chassis, robotic arms, end-effectors, and environmental sensing systems [169].
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Agricultural robots can move in a planned manner, because of their complete motion
mechanism, and the corresponding control system and drive system. Drive systems
for agricultural robots are classified according to energy conversion modes, as electric,
hydraulic, pneumatic, and new drive units, or integrated systems that combine them for
application. Thus, when designing the drive system of agricultural robots, we need to
match the appropriate control method to the working scenario, to improve the robustness
during operations.

When designing the end-effectors for agricultural robots, based on a full grasp of the
physical nature of the work object, we need to explore how to accomplish the operational
goals, and need not imitate a human entirely using two hands to perform the work, as long
as the same effect is obtained [69,170]. In addition, there are many kinds of robotic arms
for agricultural robots, depending on the operating environment and the object, where
the size, weight, and cultivation method of the object are the main factors affecting the
construction of the robotic arm, whose primary role is to move the end-effector to the target
position. In short, agricultural robot’s end-effector design should respond to the individual
differences of the operation object and improve the operation efficiency, without damaging
the operation target. It is a difficult area for current research work. Depending on the
principle of grasping and cutting fruit stems, the end-effector of harvesting robots can be
divided into clamping and non-clamping. At present, the clamping end-effectors mainly
utilize a multi-finger type, suction cup type, soft body bionic type, or other methods; the
non-clamping types include a direct cutting type, inhalation cut off type, inhalation hook
cut type, and inhalation twist off type, with a cutting or twisting action; the structures used
today are also very numerous, and include scissor type, rotary blades and other physical
shears, and electrical heated wire, laser cutting, and other cutting methods; according to the
different principles and applications, as shown in Figure 12. In addition, the end-effector
can attach certain auxiliary mechanisms such as suction cups, pushers, and various sensors
to accomplish accurate picking and reduce damage. For example, end-effectors based
on force perception are capable of realistically and accurately outputting the appropriate
operating force, according to the working environment, and are particularly suitable for
grasping fruits with a large volume and weight. For example, a force sensing end-effector
can output a realistic, accurate, and appropriate operating force, according to the working
environment, which is especially suitable for grasping fruits with a large volume and
weight.
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In the background of the continuous development of robotics and the improvement
of image processing technology, agricultural robot have learnt how to accomplish various
tasks intelligently, efficiently, and safely, and according to their operating environment [171].
The various different operation objects remain a hot research issue [172,173]. Agricultural
robots need to integrate artificial intelligence technology and be equipped with LiDAR, a
depth camera, infrared camera, spectral camera, robotic arm, and other equipment, based
on the fusion of multi-sensor information, to achieve a high stability of robot movement in
the agricultural environment.
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6. Conclusions and Outlook
6.1. Conclusions and Challenges

This review article focused on reviewing actuators and sensors for applications in
agricultural robots. Since end-effectors and robotic arms are now required to achieve
accurate operation, flexible operation, and crop protection, the existing techniques have
also been described. However, there are still some problems remaining to be solved in the
research of related fields. This is reflected in:

(1) The combination of agricultural machinery and agronomy is not common.

Field crops have achieved a high degree of mechanization, while orchards, hilly
mountains, and other mechanization areas are still relatively behind, especially those with
manual picking work. The current stage of agricultural equipment is far from being able to
meet the needs of the development of modern agricultural production. We have found that
it is necessary to increase the adaptiveness and versatility of actuators and end-effectors
for the flexible operation of agricultural robots, in order to apply them to all operating
environments, for cost reduction and efficiency improvements. In addition, to guarantee
the best operating performance of agricultural robots with actuators, control strategies
are indispensable. We have explored various practical control methodologies for both the
trajectory control and operational mechanism control, such that agricultural robots can be
properly controlled in complex farmland environments.

(2) The development situation is positive, but the technology is lacking.

A low level of technical maturity and a lack of core algorithms have led to the reduced
versatility of the developed agricultural robots. Although various advanced agricultural
sensors are used in agricultural robots, to obtain data from agricultural environmental
factors (such as the soil, crops, climate, etc.) and to detect patterns and correlations between
variables, we have identified the vital role of assistive systems and technologies, including
environmental perception and information fusion, in ensuring the high performance of
agriculture robots. Our view is that the advanced vision (including depth perception,
scanning sensors such as LiDAR, and artificial intelligence for decision making and classifi-
cation) applied to agricultural robots needs to be robust against environmental changes
and multi-sensor information fusion should be comprehensively used to achieve reliable
automatic navigation, control, and manipulation.

(3) More variety, but insufficient design and optimization.

End-effectors are an essential component of agricultural robots. There are many
problems caused directly or indirectly by an inadequate design of end-effectors, mainly
due to a lack of reliability of their own drive systems during operation, resulting in a poor
accuracy, serious damage, and poor applicability to complex environments. In addition,
because these end-effectors adopt new technologies and materials, their higher cost restricts
applications. Therefore, we believe that end-effectors need to be developed based on the
similarity of operating objects, and the development of a new drive system, taking into
account the biomechanical characteristics of the operating object, optimizing and improving
the movement principle, and ensuring the quality of the operation, while reducing the
development costs is an urgent problem to be solved in the process of the practicalization
of end-effectors.

6.2. Outlook

With 5G mobile internet, big data, cloud computing, artificial intelligence, and other
high-end technologies, combined with modern manufacturing, and based on existing
research, the development of agricultural robots for the future is proposed in the following
stages:

(1) Increase scalability and versatility.

Most agricultural robots presently adopt special actuators and unique control systems
to form a closed structure, according to their functional requirements, and which cannot be
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expanded by replacing actuators, adding sensors, and other functional modules. Although
most picking robots are suitable for certain fruits and vegetables, the use of specialized
mechanical structures and control programs is not conducive to expanding the functions
of picking robots. For example, if a strawberry picking robot was expanded into an
apple picking robot, by modularizing the functions of the picking robot, the mechanical
parts or control devices with different degrees of freedom could be replaced to adapt to
different types of fruit and vegetable picking. The workload is equivalent for redesigning
and redeveloping in the currently closed structure. Therefore, through research and the
design of open structures and control systems, agricultural robots could achieve better
scalability and versatility, and the capability for flexible operation. The development cycle
of agricultural robots and the production costs could be reduced, and the utilization rate
and operating performance could be further improved.

(2) Coordination of overall operation

The automatic agricultural work of robots is no longer limited to the ideal farming
environment, and complex non-structural farming work is also required. Since agricultural
robots are composed of mobile robot chassis, actuators, robotic arms, end-effectors, and an
image recognition system, the overall operational performance depends not only on each
component, but also on the cooperation and coordination between each system. Therefore,
the coordination and cooperation between the subsystems of agricultural robots is still a
challenging research hotspot.

(3) Standardization of agricultural production

The environmental and geographical conditions in which crops are grown vary widely
around the world. Different regions have different agricultural production environments,
which bring great challenges for developing agricultural robots, because of the different
technological requirements. Therefore, the standardization of agricultural production could
effectively promote the development and application of agricultural robots.
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