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The paper begins with a survey of advances in state-of-the-art minimum-time simulation for
road vehicles. The techniques covered include both quasi-steady-state and transient vehicle
models, which are combined with trajectories that are either pre-assigned, or free to be opti-
mized. The fundamentals of nonlinear optimal control are summarized. These fundamentals
are the basis of most of the vehicular optimal control methodologies and solution procedures
reported in the literature. The key features of three-dimensional road modelling, vehicle po-
sitioning, and vehicle modelling are also summarized with a focus on recent developments.
Both cars and motorcycles are considered.
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1. Introduction

A classic metric used to assess the performance of road vehicles is the time taken to
travel a prescribed distance. The quest to improve vehicular performance has promoted
the development of numerical methods that estimate these times. The aim of this paper
is to provide an overview of the predominant approaches reported in the literature, and
to discuss some recent advances.

Minimum-time simulation is a classical optimal control problem (OCP)1. It is thus no
surprise that OCP methods are an important component of minimum-manoeuvre-time
and minimum-lap-time simulations (MLTS) [1]. In the generic OCP framework the driver
is the ‘optimal controller’ who takes charge of the application of drive power, braking
and steering. Subject to the physical limits associated with the road boundaries and
the vehicle’s performance, the control algorithm, ‘the optimal driver’, seeks to minimise
some performance criterion such as the lap time. In the most general formulation, the
control objective is ‘drive the vehicle so as to complete a prescribed number of laps
in minimum time’. In order to make the solution to these problems practically feasible
using the computational facilities currently available, a number of simplifications have
been proposed. These simplifications might include such things as prescribing a priori

∗Corresponding author. Email: matteo.massaro@unipd.it
1In order to avoid awkward usage, such as OCPs, we will always use acronyms in their singular form.
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Figure 1. Driving the Monza circuit in Italy, from [2].

the vehicle’s trajectory, using quasi-steady-state (QSS) models (as opposed to dynamic
models), and using simplified tyre and aerodynamics models.

In order to limit the scope of this review we will not cover techniques that are based
predominantly on feedback control. These methods use a feedback loop to minimise an
error relative to a prescribed optimal trajectory (in this context ‘trajectory’ refers to the
target controls and the consequent state response). We will also limit our discussion of
‘prescribed-trajectory’ approaches, as these are now well understood.

We begin in Section 2 with an historical overview of the main developments in MLTS
with summary assessments of the (published) state-of-the-art. After briefly reviewing
the fundamentals of the OCP in Section 3, the most popular solution techniques are
discussed in Section 4. We will also look at some of the practicalities such as scaling,
the computation of gradients, and problem regularization. Section 5 is devoted to three-
dimensional road modelling. The identification of the road-related parameters—the road
reconstruction problem—is covered in Section 6. Vehicle positioning kinematics is covered
in Section 7. Section 8 is devoted to vehicle models. In Section 9 we summarize the formu-
lation of MLTS problems, with an example application for both a car and a motorcycle
given in Section 10.

2. Historical overview

2.1. The early days

Early attempts to numerically predict the lap-time performance of road vehicles date
back to the late 1950s. The complete driving profiles of Formula One cars were routinely
computed before races, including the speed on different sections of the track, braking
distances and gear-shifting points. An example application of this type is discussed for
the Monza circuit (Italy) in [2]; see Figure 1.

In 1971 a computer analysis of the Watkins Glen GP circuit (USA) was carried out
with the aim of computing the speed and acceleration profiles of racing cars [3]. The
vehicle was treated as a point mass, with prescribed acceleration limits, driven along an
empirically determined ‘racing groove’. This is an example of a QSS method featuring the
early use of ‘g-g’ diagrams, which began to appear in published forms in the 1970s [4, 5].
These diagrams show the accelerations achievable in a horizontal plane (the ‘flat road’
assumption), which is a useful way of characterizing the vehicle’s performance envelope.
The limit accelerations, especially in the longitudinal direction, are functions of speed.
For that reason, speed-dependent families of g-g diagrams are of obvious utility—these
assemblies of g-g diagrams are called ‘g-g-v’ diagram; see for example Figure 2. The
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Figure 2. The g-g-v diagram of a racing car, from [5].

lateral accelerations are less sensitive to speed, unless there are significant aerodynamic
downforces, which may be the case.

A MLTS can be computed using g-g diagrams once the trajectory is given (either the
racing line, or a sequence of straights and constant-radius turns). The method begins
from the corner apices (or ‘critical points’, see Figure 3), where the vehicle is assumed to
attain the maximum lateral acceleration. The corresponding speed, sometimes called ‘the
critical speed’, is easily obtained since the curvature at the apex is also assumed known.
Before the apex, the vehicle is braking along the g-g envelope (along the predefined
trajectory), while after the apex it is accelerating (again along the predefined trajectory).
The speed profiles between two apexes (the acceleration out of turn k and the deceleration
into turn k + 1) are then connected at their intersection point.

The minimum transit time for a predefined trajectory is considered in [6] using a
dynamic planar car model that includes longitudinal, lateral and yaw degrees-of-freedom
(DOF). The calculation procedure begins by dividing a track section into a series curves.
After identifying the critical points, and the corresponding critical speeds, the equations
are integrated assuming maximum acceleration after the critical point and maximum
deceleration before the critical points to find the velocity profile. A section of the Paul
Ricard circuit (in France) is simulated using a dataset resembling that of a Formula One
car. The results, namely the g-g diagrams, are compared with the performance measured
for a Formula One car driven by three racing drivers (Andretti, Peterson and Stewart).

MLTS that are based on predefined trajectories and QSS models are considered in [7].
While MLTS based on g-g diagrams is now standard, a new departure is the use of a
predefined trajectory obtained by an optimization procedure. Minimizing the distance
travelled through the corner, and maximising the cornering speed, both appear to be
sensible objectives. To see how these objectives are related, we observe that by balancing
lateral forces (neglecting aerodynamic forces)

m
v2

max

ρ
= µmg ⇒ vmax =

√
µρg, (1)

where vmax is the vehicle’s maximum cornering speed, ρ is the trajectory radius of curva-
ture, and µ is the tyre-road coefficient of friction. This relationship shows that minimising
the distance travelled, and maximising the cornering speed are conflicting objectives—the
shortest path leads to a low radius of curvature trajectory, while a high radius of curva-
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Figure 3. Procedure for QSS optimization, from [6].

ture is required for higher speeds. The method proposed in [7] assumes that the optimal
trajectory through each corner equates to maximizing the minimum cornering radius.
The trajectory through each turn is parametrized in terms of four points: the turn-in
point (assumed to be on the outer periphery of the track), the brake release point, the
throttle re-application point (mid corner and on the inside track boundary), and the
corner exit (on the outer periphery of the track). Once these points have been selected,
they are interpolated by a cubic spline. Simulations are shown for a front-wheel-drive D2
Super Touring saloon car on the Hockenheimring (Germany).

An alternative, but related approach to computing the optimal trajectory is discussed
in [8]. This paper considers a constrained optimisation problem that takes into account
both the geometry of the circuit and the dynamics of the vehicle. The important point
is that the optimal trajectory through the corner is strongly influenced by the dynamics
of the vehicle, and is thus a combination of the shortest path and the minimum curva-
ture trajectory. In [9] the minimum curvature path is generated by solving a quadratic
programming (QP) problem. The key contribution of this paper is the extension of the
QP formulation used for determining accurate curvature approximations and improved
lap-time estimates. Improvements in relation to the results in [8] are also presented.

An early example of optimising a vehicle’s performance by solving a (nonlinear) OCP
is presented in [10]. The idea is to minimize the manoeuvre time (cost function), while
satisfying the dynamic equations (constraints) of the vehicle, as well as other constraints
such as the road boundaries. Strictly speaking, [10] does not consider a pure minimum-
time problem, as the cost function also contains a ‘deviation from a reference path’
term. A number of approximation are introduced which makes finding a solution less
burdensome; only lane-change manoeuvres are considered. This work also introduces the
elapsed distance (rather than elapsed time) as the independent variable—this is a feature
of almost all subsequent MLTS work. This change of variable transforms the free-final-
time OCP into a fixed-terminal-distance OCP (with the problem state dimension reduced
by one).

2.2. The 1990s

Some early examples of MLTS solved as minimum-time OCP appeared in the 1990s.
A hairpin curve at the Fuji Speedway (Japan) is considered in [11]; the cost function
is the manoeuvre time. Unlike earlier studies, no pre-assigned reference trajectory is
provided—the trajectory is determined by the optimizer. A single-track three DOF car
model is employed (the well-known ‘bicycle model’); the longitudinal and lateral tyre
forces are constrained by friction circles. The lateral forces are modelled as linearly-
saturating: they grow linearly with slip (at fixed cornering stiffness) until saturation is
reached. The side-forces remain constant thereafter; load transfer effects are not con-
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Figure 4. Vehicle positioning through curvilinear coordinates, adapted from [16].

sidered. Both front-wheel-drive (FWD) and rear-wheel-drive (RWD) configurations are
considered, together with front- and rear-wheel steering variants. The solution of the
OCP is obtained using a sequential conjugate-gradient-restoration algorithm [12, 13].

A more general vehicle model is employed in [14], which is again represented by a
three DOF planar model, but this time with four-wheels (two tracks) and steady-state
(longitudinal and lateral) load transfer. Both drag and downforces are considered. The
inputs are the steering rate and the total drive/braking longitudinal force. The drive
force is split equally between the two propulsive wheels (i.e. an open differential), while
braking influences are split between the front and rear axles according to a prescribed
brake bias, and applied symmetrically. The tyre lateral forces depend on the side slip and
normal load through a Magic Formula. The coupling between longitudinal and lateral
forces recognises a friction ellipse. The maximum engine torque vs. engine rpm curve is
converted into a relationship between the tyre longitudinal force and the vehicle speed.
It is thus assumed that the driver engages the gear ratio that provides the maximum
torque at the current speed—this is an approach that is employed in almost all of the
subsequent work on MLTS. Gear shifts are assumed instantaneous. The cost function of
the OCP comprises the manoeuvre time and a barrier term relating to the mass centre
of the car violating the road boundaries. The driver’s physical limitations are accounted
for by limiting the maximum steering rate. The OCP is solved by an indirect gradient
projection method [15]. Only lane-change manoeuvres, using both a RWD Formula One
car, and FWD passenger car, are considered.

MLTS for motorcycles are considered for the first time in [16]. The vehicle model
includes a roll freedom, in addition to longitudinal, lateral and yaw DOF typical of
planar car models. Additional states include the front tyre vertical load, the rear tyre
vertical load, and the rear tyre lateral force. There are three control inputs: the lateral
force on the front tyre, the longitudinal tyre forces and the brake bias that divides the
longitudinal force between the front and rear tyres under braking. The physical controls
are integrals of the OCP inputs, which are constrained in order to avoid abrupt bang-
bang physical inputs. The equations of motion are supplied as a set of implicit differential
equations (IDE), which makes the application ‘nonstandard’, since most OCP solvers
only deal with ordinary differential equations (ODE). Referring to Figure 4, curvilinear
coordinates are employed to track the vehicle’s position using the travelled distance s1

along the centreline, the lateral position s2 of the vehicle with respect to the centreline,
and the relative orientation α of the vehicle with respect to the tangent to the centreline.
In order to avoid a free-end-time formulation, the distance travelled is maximized in a
prescribed time. The cost function also includes penalty-function terms that account for
tyre-force saturation, the rate of change of the vehicle’s physical inputs, and violation
of the road boundaries. A section of the Mugello circuit (Italy) is simulated with a
dataset representative of a racing motorcycle. The OCP is solved using the indirect
solver SOLVDE [17].
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2.3. The 2000s

In the early part of the new millennium a number of research outputs appeared that
relate to the MLTS optimal control of Formula One cars. In [18] a seven DOF planar car
model is employed, which includes the standard longitudinal, lateral and yaw motions
of the car’s chassis, and the spin motion of the four wheels. The tyre forces depends
on slips and loads through Magic Formulas. The equations are written in the space
domain. The cost of the OCP is the manoeuvre time. The track is described in terms
of the curvature of the centreline and is divided into segments. The continuity of the
state trajectories across the k to k+ 1 segment boundary being enforced by a constraint
of the form xinit(k + 1) − xfinal(k) = 0. In this study, there are typically 3-5 control
segments for each track partition. The optimal trajectory for each road section can be
solved separately once the initial conditions and the controls have been selected by the
optimizer. This process is repeated to convergence as is standard in multiple-shooting
techniques. The sequential-quadratic-programming (SQP) algorithm implemented in the
Matlab

TM

Optimisation Toolbox was used. The track segments have lengths of between
8 m (tight corners) and 120 m (straights), and 20–30 m in medium and fast bends, while
the control segments have lengths of between 4 m (tight corners) and 20 m (straights).
This methodology is used to study the effect of the yaw inertia on a 300 m double lane-
change manoeuvre. The effect of mass on a full lap of the Montmeló (Spain) and Suzuka
(Japan) circuits are reported in [19]—this time the SQP solver is SNOPT [20]; the results
trend with the (then-current) experimental value (0.036-0.037 s/kg/lap). The effect of the
longitudinal position of the centre of mass is analysed in [21], again for both the Montmeló
(Spain) and Suzuka (Japan) circuits. In [22] automatic differentiation (AD) is used to
replace finite differences, and a ten-fold decrease in computation time is demonstrated.
In this study AD is employed to evaluate the first-order derivatives of the objective and
constraint functions with respect to the state and control variables.

Advances in the MLTS of motorcycles are reported in [23, 24], where the motorcycle
model is extended to include the steer angle (in addition to the longitudinal, lateral,
yaw and roll DOF described in [16]). The rider is again assumed rigidly attached to the
chassis, i.e. he/she only affects the vehicle’s inertia. Relaxation equations are included for
both the front and rear tyre forces, while tyre saturation is again modelled using friction
circles. The motorcycle inputs are the front and rear wheel longitudinal forces and the
steering torque (between the handlebar and the chassis). The OCP inputs are the rate
of change of the motorcycle’s physical inputs. The independent variable is the centreline
distance travelled, while the cost is the minimum-manoeuvre time. The resulting OCP is
solved as a two-points boundary-value problem (TPBVP). A symbolic procedure is used
to find the adjoint equations, which are then discretized by a finite-difference scheme.
The forward and backward equations constitute a large set of algebraic equations, which
are solved with a modified version of the affine-invariant Newton scheme. Constraints
such as the road width are included in the cost function using barrier functions [25]. A
racing motorcycle is simulated on a lap of the Adria International Raceway (Italy).

In [26] the motorcycle model is extended to include a realistic engine torque map using
a technique similar that described in [14]—the rider only ‘sees’ the engine torque envelope
at the rear wheel. A full lap on the Adria circuit, and a two-dimensional representation of
the Mugello (Italy) circuit, are considered with a view to finding optimal gearbox ratios
for a 1000cc SuperBike class motorcycle. The problem is again solved with the indirect
method described in [24].

A motorcycle model that includes the motion of the rider is discussed in [27]. Refer-
ring to Figure 5, the rider’s upper body has fore-and-aft rotation γ, and lateral lean (η)
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Figure 5. Rider model with lateral lean and fore-and-aft DOF, from [27].

freedoms. The for-aft rotation takes place around a lateral axis through the rider’s seat.
The lean roll freedom occurs around a longitudinal axis close to the ground. In combi-
nation, these freedoms are used to replicate the rider’s motion. The aerodynamic drag
coefficient is a function of the rider’s forward lean; lower drag being associated with a
prone ‘tucked-in’ position. The model inputs are torques that determine the lean motions
of the rider, the steering torque, and the front- and rear-wheel longitudinal tyre forces.
The OCP controls are filtered with second-order low-pass filters prior to injection into
the vehicle model in order to recognise the limited bandwidth of human riders; this is
an alternative to saturating the control rates. The minimum-time manoeuvres studied
are for a straight section and a U-turn. The solution of the OCP is obtained with the
indirect method described in [24]. It is demonstrated that the rider’s air drag variation
due to fore-aft leaning dominates the effect of the changes in the centre of mass position.
The lateral lean motion has a much greater influence on the vehicle’s dynamics. For
example, lateral leaning reduces the need for ‘counter-steering’ on the entry to corners,
and reduces the roll angle in the turn (as compared to the rigidly attached rider).

At this point the MLTS reported in the literature, for both cars and motorcycles, use
‘flat’ two-dimensional tracks, with the racing line assumed free to be determined as part
of the optimization process.

An early attempt to compare the results of the newly developed dynamic methods,
without predefined trajectory, and the QSS methods with predefined racing lines is re-
ported in [28] for an open-wheel race car on a full lap. The vehicle model used is the seven
DOF car described in [18, 19, 21]; the reference dynamic MLTS is the Montmeló OCP
simulation reported therein. In order to obtain the corresponding QSS simulations, the
g-g diagrams of the same car model are computed at different speeds, and then used for
the MLTS with a second-order polynomial fit to the racing line obtained from the OCP
solution. Good agreement is demonstrated between the longitudinal and lateral accelera-
tions profiles. However, there appears to be a delay in some corner entry and exit points,
which is attributed to the different braking and acceleration crossover points—the points
where the accelerating and braking speeds between two apexes reach the same value.
The difference in the reported lap time is 2.3 s. Variations in the position of the centre
of mass of the car produces similar results with both methods. When it comes to the
computation time, the difference is two order of magnitude.

2.4. The 2010s

An alternative approach to the MLTS problem for race cars is reported in [29]. In this
study the optimiser was only given limited access to the vehicle model—the states which
are common to all representative vehicle models. These include the absolute position
coordinates of the car’s mass centre, the longitudinal and lateral velocities of the car, the
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vehicles yaw rate and lateral acceleration, the longitudinal slip ratio at each wheel, as
well as the tyre loads. The idea is that the method can potentially be applied to models of
any complexity. In this work the manoeuvre under study is defined in terms of suitably
spaced waylines, each being perpendicular to the track centreline, and with a length
representing the width of the track. At each wayline, longitudinal and lateral controls are
found that satisfy the track-boundary constraints. Other constraints are introduced that
limit the search space, these include the slip ratio, the understeer (angle), the vehicle’s
slip, and tyre load maxima. An interior-point feasible sequential quadratic programming
code [30], is used with forward-finite-difference gradient calculations. A receding horizon
of approximately 250 m is used. An example application is given for a Formula One car
on Jerez circuit (Spain).

In 2011 a survey of automotive optimal control was published [31], with the third
section devoted to minimum-time manoeuvring. Some of the papers discussed above are
included, while others are not.

Another example of the application of direct multiple shooting methods to MLTS is
reported in [32]. A single-track car model with nonlinear tyres representative of a Porsche
911 Club Sport stock car is employed. The MLPS was conducted on the Formula One
racing circuit Hockenheimring (Germany), with a lap time of 112.7s obtained using 324
shooting intervals. The works builds upon prior studies [33–36], where vehicle equations,
datasets, and solution approach details are provided. The position of the vehicle is given in
terms of the car’s progress on, and lateral deviation from, the centreline. The independent
variable is the travelled distance. A notable feature of the approach is that the gear ratios
are treated as ‘discrete’, which leads to a mixed-integer OCP. The discrete controls
are treated alongside the standard continuous controls (steering rate, braking force and
throttle position). Mixed-integer programming problems are difficult to solve, but can
be avoided using relaxation ‘tricks’. The resulting large-scale nonlinear programming
problem (NLP) is solved using the SQP solver within MUSCOD [37].

An alternative to QSS approaches and nonlinear OCP is presented in [38–40]. The
central idea is to linearise the vehicle model at each time step, and then solve the resulting
convex QP optimization problem. This is in contrast to the prior use of nonlinear models
in combination with a nonlinear programme solver. The problem is formulated within
a model predictive control (MPC) framework, in which the minimum time problem is
formulated as one of maximizing the distance travelled along the track centreline. The
track and vehicle trajectories are linearised by considering small displacements from a
fixed reference. The method was developed initially for predicting optimal trajectories
at constant speed. It was then extended to solve the minimum-lap-time problem, and to
investigate ‘robustness’ to disturbances and driver errors. The vehicle model considered
is a single-track car model extended to include the spin of the front and rear wheels i.e.
five DOF. The tyre response is modelled with a Magic Formula. The model inputs are the
steering angle and the total wheel torque. A second-order low-pass filter (cut-off frequency
3 Hz and damping ratio 0.7) is used to represent the neuromuscular system dynamics of
the driver. The results are compared with those from standard nonlinear optimizations
on a 90o bend—good agreement was found. The method is then demonstrated on a
short racing circuit, with road roughness included as a disturbance. A linear quadratic
regulator (LQR) was used to keep the vehicle close to the nominal vehicle path and speed
profile in the presence of disturbances.

Another example of an MPC-based approach to MLTS is reported in [41]. A cascade
optimization structure is employed to overcome possible shortcomings associated with a
finite preview (receding) horizon. The objective of the low-level MPC problems is to find
control inputs that achieve a blend of minimising the manoeuvre time and maximising the
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exit velocity in each preview horizon. These low-level problems are solved using GPOPS-
II [42]. The outer optimization problem selects the weights (manoeuvre time to exit
speed) to be used on each (local) MPC horizon, in order to minimize the lap time. This
global problem is solved using a genetic algorithm on supercomputing clusters. A Formula
One car model is considered on (two-dimensional) Hockenheim and Nürburgring circuit
models. The previews lengths for the local MPC problems are in the range 200–250 m.
The elapsed distance is the independent variable, and curvilinear coordinates are used
for the vehicle positioning.

The combination of a QSS paradigm and a transient vehicle model is described in
[43], in which the trajectory is pre-defined. During the calculation of the optimal MLTS
strategy the transient states are treated as distance-dependent parameters. The QSS
outcome is used post-facto to calculate a revised dynamic response, which induces, in
turn, a revised QSS solution. This iterative process is repeated until the dynamic states
have settled. The technique accommodates dynamics effects such as the tyres’ damping
and temperature—a grip scaling factor is used that depends on the tyre surface temper-
ature, and a cornering stiffness factor that depends on the tyre core temperature. To be
clear, the method does not use pre-computed g-g diagrams, instead, the states of the QSS
model are computed step-by-step when solving an NLP problem. The given application
considers a 2009 Le Mans prototype on the Circuit de la Sarthe. The computing time is
approximately twelve minutes on a 2.5 GHz Intel core 2 workstation.

The lap time of a race series-hybrid electric vehicle (S-HEV) is considered in [44]. The
powertrain considered contains an internal combustion engine (ICE), a motor-generator
system and a battery. The ICE is connected mechanically to the permanent magnet
synchronous (PMS) motor generator, which converts the engine’s output mechanical
power into an alternating current (AC) supply. This is then rectified and connected to a
direct current (DC) link. The battery acts as an energy store, or a source of additional
power when required. Under driving conditions power is taken from the DC link and
supplied to the PMS motor-generator that is mechanically coupled to the road wheels.
Under braking the power flow is reversed, and the vehicle’s kinetic energy is converted
into electrical power, which is used to recharge the battery. One additional state, the
battery’s state of charge, augments a standard three DOF single-track vehicle model
with saturated tyres. A sport car is simulated on the Mugello circuit using an indirect
solver [24]. It was found that the battery is used primarily to boost the initial phases
of acceleration—it is then recharged under braking. Since the optimal control problem
being considered is of minimum-time type, the power flow to and from the battery shows
bang-bang type characteristics [1]. Under some circumstances the ICE is used for battery
recharging purposes.

Minimum-lap-time optimal control combined with the optimization of vehicle setup
parameters is considered in [45]. The vehicle is represented as a standard double-track
configuration with longitudinal, lateral and yaw freedoms. The model assumes instanta-
neous longitudinal and lateral load transfers, combined-slip nonlinear tyres, an adaptive
braking ratio (i.e. the brake bias is not fixed), a limited-slip (speed sensing) differential,
and simple aerodynamic force representations. The control inputs are the rate of change
of steering angle, the rates of change of the longitudinal tyre slips, and the normal loads
on the four tyres. A direct collocation method is employed to transcribe the nonlinear
OCP as a NLP. The transcription is carried out using ICLOCS [46] with a trapezoidal
integration scheme, while the NLP solver is IPOPT [47]. The derivatives required include
first- and second-order partial derivatives of the cost function, the path constraints, the
system dynamics, and the boundary constraints, all with respect to the decision vari-
ables including the inputs, the states and the parameters. Analytical derivatives were
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Figure 6. Thermal energy recovery system in [51]; the MGU-K is not shown.

provided. The solution is shown to converge on the Barcelona-Catalunya circuit with
mesh size >0.5 m; the computing time is of the order one hour, and approximately 15 min
with a 2 m mesh. The problem of finding the centreline that best fits experimental GPS
data is solved separately as a another OCP, where the cost function is the error between
the reconstructed centreline and measured GPS survey data. The problem input is the
rate-of-change of track curvature (as a function of elapsed distance).

Three-dimensional road models are introduced in the context of minimum-lap-time
OCP for cars in [48, 49] and in [50]. In the former study a double-track car model, with
quasi-static load transfer, is employed with the OCP solved for Barcelona-Catalunya
circuit. A direct transcription process is used to transform the OCP into a NLP using
GPOPS-II [42] in combination with the solver IPOPT [47]. In the latter study a single-
track car model, with a delayed load transfer, is solved on the Mugello circuit—the OCP is
solved using an indirect approach [24]. The study in [50] assumes that the road inclination
and camber angles are ‘small’. The three-dimensionality of the circuit introduces a num-
ber of heretofore unfamiliar dynamical phenomena. These include inclination-dependent
top speeds, camber-angle-dependent lateral accelerations in corners, and normal tyre
loads that responds to elevation rates-of-change (suspension squatting in ‘dips’ and sus-
pension load reductions on the brows of hills). In three-dimensional road studies the
centreline is modelled using three curvatures (the geodesic and normal curvatures, and
the relative torsion), which are continuous functions of the travelled distance—in ‘flat
road’ studies the track is characterized by the geodesic curvature alone. For computa-
tional convenience, the road curvatures are parametrized in terms of Euler angles in the
attitude-slope-banking convention. The orientation and lateral position of the vehicle
are computed relative to the centreline and its tangent; this is a routine extension to the
two-dimensional case. The problem of finding curvatures that best fit experimental sur-
vey data, related to the left and right boundaries of the track, is solved as another OCP
[48]. The cost function is the error between the reconstructed and measured boundaries.
The control inputs are the rates of change of the track-related Euler angles, which are
elapsed-distance dependent.

Energy recovery systems that include both conventional kinetic energy recovery system
(KERS) and exhaust gas heat scavenging were introduced into Formula One in 2014. In
combination, these are usually referred to as energy recovery systems (ERS). A schematic
of the thermal part of the ERS system is shown in Figure 6. The main power source is a
conventional 1.6 l turbo-boosted ICE. Inlet pressure boosting is achieved using a single-
stage compressor that is linked to a motor-generator unit heat (MGU-H) and an exhaust
turbine—the connection shaft is not the ICE crank shaft. When the waste gate is open,
the compressor is powered by the MGU-H operating as a motor that is supplied by the
energy store (ES). This is an energy inefficient way of operating the power train and is
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only used in qualifying—opening the waste gate reduces the exhaust manifold pressure
thereby increasing the ICE’s output power. When the waste gate is closed, the single-
stage exhaust turbine drives both the compressor and the MGU-H, which operates as
a generator—this is the normal mode of operation under racing conditions. The power
train includes a second motor-generator unit that is not shown in the figure. This is
the motor-generator unit kinetic (MGU-K), which converts the vehicle’s kinetic energy
into stored electrical energy under braking, or as a power-boosting motor on corner
exit, or when overtaking. The optimal usage of these ERS is considered in [51], where
the 2014 FIA technical regulations [52] are fully explained. A number of constraints on
the allowable energy flows and the per-lap stored/expended energy need be enforced.
The vehicle model includes four additional states that monitor energy- and power-flow-
related constraints. These include total fuel usage that is limited to 100 kg per race—the
regulations also impose a fuel mass-flow-rate constraint of 100 kg/h. The stored energy
is limited to 4 MJ, the energy flow from the ES to the MGU-K is limited to 4 MJ per
lap, while the energy flow from the MGU-K to the ES is limited to 2 MJ per lap. If the
car is to be competitive, this asymmetry mandates the use of thermal energy recovery,
which was a relatively new technology at the time. The power flow to/from the MGU-K
is limited to ±120 kW, while the power to/from the MGU-H is unrestricted. In the OCP
setup one must include power balance constraints on the ICE-MGU-K and compressor-
turbine-MUG-H shafts. A Formula One car is simulated on the Barcelona-Catalunya
circuit (this time in its ‘flat road’ form). It is shown that the optimal operation of the
ERS is very different during racing and qualifying; in qualifying the profligate short-term
use of fuel and stored electrical energy is permitted by the technical regulations.

In most forms of motor racing optimising the vehicle’s aerodynamic performance is of
paramount importance. With this motivation in mind, the aero-suspension interaction
of an open-wheeled race car was considered in [53]. In this study the drag and lift coef-
ficients were functions of the car’s roll angle, steer angle, slip angle and the front- and
rear-axle ride heights; the roll angle and ride heights depended, in turn, on the suspen-
sion travel which was computed with a QSS meta-model. Since Formula One cars have
‘hard’ suspensions, the suspension travel is limited (of the order of the tyre squash) and
‘almost’ linear. At each integration time step the tyre loads are computed and fed into
the suspension meta-model in order to find the vehicle trim. These trim conditions were
then used to update the aerodynamic coefficients. For the avoidance of confusion, the
suspension meta-model does not comprise the suspension kinematic equations. In the
case of the cross-coupled multi-link suspension used in this study, there are 26 equations
associated with each axle. The orientations and locations of the wheel carriers are de-
scribed by 12 equations, there are another 12 equations associated with the forces on
the suspension arms, and 2 equations that determine rocker angles and cross-coupled
heave spring displacements. These equations are a function of the force and moment on
the tyre contact patch. Each axle roll angle is computed as the wheel height difference
divided by the axle track, while the axle ride heights are computed as the average wheel
height. In the OCP solver a constraint is included that forces the front- and rear-axle
roll angle to be equal; this replaces the conventional rigid-chassis roll balance equation.
In the example reported, the suspension travel was found to be a function of the normal
load only (the other force components and moments had a negligible effect). It is shown
that parameter optimization problems involving the car’s suspension and aerodynamics
are readily soluble. The results demonstrate that the track-specific optimization of these
systems can substantially reduce the lap time. The solution technique used is described
in [49].

The effects of aerodynamic maps on the MLTS is also considered in [54]. In this case
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Figure 7. Friction coefficient with the reference dataset in [61].

the drag and downforce coefficients depend on the front- and rear-ride heights through a
third order polynomial. The classical QSS assumption on load transfers is lifted. The car
model has 14 DOF, which include suspension travel and the wheel spin, together with
the six DOF of the chassis. A 2012 GP2 car is simulated on the Barcelona circuit with
the indirect collocation method described in [24], with a focus on suspension dynamics.

The MLTS for a go-kart is discussed in [55]. A seven DOF model is employed, with
six DOF associated with the motion of the chassis, and one with the spin velocity of the
rear axle. The front axle spin dynamics are neglected, because the go-kart considered
only has braking and propulsion influences on the rear axle. A race go-kart is simulated
and compared with experiments conducted on the ‘Pista Azzurra’ near Jesolo (Italy).
After some parameter tuning the simulated and experimental lap times were roughly
equal at 53.6 s, with the simulation time approximately 230 s on a laptop equipped with
an Intel Core-i7 640M processor. The OCP is solved with the indirect method described
in [24]. The lack of a differential meant that high lateral load transfers were required to
minimize the lap times. This produced some inside-wheel ‘lifting’ under turning in order
to maintain peak loading on the outside wheels. Limit-handling is also considered in [56,
57], where it is shown that in some scenarios ‘drifting’ and ‘handbrake turning’ techniques
arise as solutions to the minimum-time OCP. A long-distance track is considered in [58],
where the 60 km Snaefell Mountain Course is simulated for the design of an electric
motorcycle for the annual Isle of Man TT Zero Challenge. The motorcycle is represented
as a mono-wheel with the track elevation considered (without cambering). The electric
power train consists of a lithium battery pack, a brushed DC drive motor, and a motor
controller. Ackermann effects on MLTS are studied in [59]. State-of-the-art engine models
are employed to investigate the minimization of emissions production in [60].

A simple thermodynamic tyre model is introduced in the MLTS in [61], where the
solution method remains the direct approach described in [29]. The tyre is divided con-
ceptually into carcass and tread: the carcass is considered rigid with the tyre’s compliance
coming from the elastic bristles of the tread. The contact patch is divided into sliding
and non-sliding regions as taught in the standard brush model [62]. The patch is assumed
rectangular, with a fixed width, and with the length determined by the inflation pressure.
The normal load distribution is assumed symmetric and approximately parabolic. The
friction coefficient is assumed to depend on the sliding velocity and tread temperature
in the manner of the well-known ‘time-temperature’ equivalence [63]. The master curve
of the tread compound is assumed to be Gaussian as shown in Figure 7. The sliding
velocities at which maximum friction is attained increases with the temperature. The
road-tyre friction coefficient is assumed to reduce linearly with the contact pressure. A
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lumped-parameter thermodynamic model is considered, with three states representing
the temperature of the tread, the gas and the bulk material. Track temperature and
ambient air temperature are assumed constant, with the heat flows governed by New-
ton’s law of cooling. The model assumes convective heat flows between the tread and the
surrounding air; the heat transfer coefficient increases linearly with the vehicle’s speed.
Conductive heat transfers occur between the tread and the road in the adhesion regions
(the front part of the contact patch). Radiation effects are neglected. The heat that
warms the tyres comes from carcass deflection (whose heating power is assumed to be a
linear function of the tyre forces), and from the tread sliding on the road (the heating
power is a function of the sliding friction coefficient, the normal load, and the sliding
velocity). A diagram representative of this configuration is shown in Figure 8, where Q1

is the heat flow generated by tyre slip, Q2 is generated by flexing of the tyres’ structure
and carcass, Q3 is heat lost by convective cooling, Q4 represents heat lost by conductive
cooling in the adhesion region of the contact patch, and Q5 represents the heat transfer
between the tread and the carcass; the heat flows from the carcass to the gas is neglected.
The Silverstone national circuit (UK) is used in the simulation work. It is shown that
the carcass and inflation gas temperatures vary slowly, while the tread temperature vari-
ations are larger and faster. In short manoeuvres the carcass and gas temperatures are
essentially constant.

The purely thermodynamic tyre work considered in [61] is upgraded to include wear
in [65] and [64]. Following the results in [61], the gas and tyre carcass temperatures are
neglected in [65], while an estimate of tyre wear is introduced, using an additional state.
The sensitivity of tyre friction coefficient to tyre temperature variations is based on ex-
periment. The length of the sliding region is modelled using an empirical formula—30%
of the contact patch is assumed to be ‘sliding’ at 0 deg of slip angle, which increases
to 80% when the slip angle increases to 8 deg; linear interpolation on the slip angle is
employed, with the influence of longitudinal slip neglected. The tyre wear rate is com-
puted using a combination of tyre frictional power, ‘graining’ and ‘blistering’. Graining
is used to describe particles of rubber breaking away from the tread surface as a con-
sequence overworking, while the tyre is below its optimal operating temperature range.
Blistering is used to describe accelerated wear resulting from localised hot spots. The
results suggest that earlier, smoother braking into corners, and reduced throttle usage in
high-speed corners optimises tyre wear. A trade-off between lap times and tyre wear is
demonstrated using the Barcelona circuit and the direct method described in [49]. This
study also addresses the possibility of tailoring the cars differential setup to minimise
tyre wear. In particular, the value of opening the differential on corner entry and then
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locking it on corner exit is illustrated. This strategy maximises traction and longitudinal
acceleration—similar results are reported in [66].

These tyre management studies are extended in [64]; see Figure 8. The complexity
of the tyre model is in-between that used in [61] and that employed in [65]. In this
new study the thermodynamic states are the tyre tread and the tyres bulk material
temperatures; in particular, the gas temperature state used in [61] was removed. This is
because the dominant heat flows are from the carcass to the tread, and from the tread to
the road—smaller heat flows are associated with the tread to ambient, and the carcass
to ambient, with the smallest (and negligible) heat flow from the carcass to the gas. On
a racing lap the tread will typically undergo rapid temperature variations. On the other
hand the carcass temperature reacts more slowly making it more difficult to manage—this
is particularly true in cases where carcass-temperature reductions are required. In order
to recognise the long-run impact of tyre degradation, the grip is modelled as a function
of both tyre wear [67] and the tread temperature [68]. Simulations on the Circuit de
Catalunya show that with new tyres the first lap tends to be slow reflecting the combined
influences of a low operating temperature and tyres that have not yet been ‘rubbed in’.
The tyres then operate optimally for a number of laps with the lap times gradually
increasing due to wear. After that tyre wear begins to affect the performance more
noticeably, and the lap times begin to degrade. At some point the drop-off in performance
increases to the extent that the car is no longer competitive, and a tyre change is required.
The numerics associated with these thermal- and wear-related phenomena are clearly car,
track and tyre dependent.

The MLTS of electric vehicles (EV) equipped with separate motors on each wheel
(wheel-independent motors (WIM)) is considered in [69]. A standard two-track planar
vehicle model is employed. The solution is obtained by transcribing the OCP into a
NLP. A forward-Newton discretisation is employed, and the resulting NLP is solved
with IPOPT [47]. Simulations on a hairpin suggest that during combined braking and
steering, the optimal torque distribution generates an ‘understeering yaw-moment’, while
an ‘oversteering yaw-moment’ is produced during combined acceleration and steering.
Larger torques are applied to the wheels with larger normal loads. The results of the OCP
are then used to design a causal torque allocation strategy, which assumes knowledge of
the drivers inputs, the vehicle speed and accelerations, and produces torque references
for the four WIM.

A similar study is presented in [70], where the effect of altering the passive handling
on the minimum time performance of the EV with 4 WIM is studied. The solution is
obtained using GPOPS-II [42], with the derivatives computed algebraically using the
automatic differentiation tool ADIGATOR [71], while IPOPT [47] is the NLP solver.
It is found that the manoeuvre time for the reference-following torque-vectoring (TV)
vehicle is largely insensitive to target understeer gradients.

Recent work reported in [72] extends the investigation of MLTS to EV, using a stan-
dard planar nonlinear two-track car model and a simple Thevenin battery model. The
Nuerburgring Grand Prix course is the demonstration track. The transcription of the
continuous OCP is obtained using Hermite-Simpson collocation within the JuMP frame-
work [73, 74], and the programming language Julia [74]. The derivative information is
computed via automatic differentiation using [75]. The NLP is IPOPT [47]. The same
solution technique is employed in [76] to study the effect of active rear-axle steering,
and longitudinal torque allocation. The illustration track is again the Nuerburgring. It
is found that the torque allocation potential is greater than that possible with rear-axle
steering.

A road with variable (location-dependent) road-tyre friction coefficient is introduced
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Figure 9. Variable friction road map [77]. (a) Location-dependent friction map, and (b) Determining the friction
coefficients for each wheel.

into MLTS in [77]. The track-friction map is given in terms of the absolute coordinates (x
and y), and then converted into curvilinear coordinates (the travelled distance s and the
lateral position n with respect to the centreline); see Figure 9. A linear regression with
Gaussian basis functions is employed to limit the tyre-road friction; both single-track
and double-track car models are considered. The problem is solved with IPOPT [47]
after transcribing the OCP as a NLP through orthogonal Legendre-Gauss collocation.
Algorithmic differentiation is employed using CasADi [78]. A Roborace car is simulated
on the Berlin Formula E racetrack, with changes in the lap time and racing line, due
to the introduction of the variable-friction map demonstrated. The computation times
are approximately 100 s for the single-track model and 120 s for the double-track model
on a standard laptop computer, with a mesh sampling interval of 3 m. Variations in the
tyre-road friction of ±0.1 show variations in the optimal trajectory up to 2.9 m.

The MLTS of motorcycles on three-dimensional tracks is considered in [79] and [80].
The former includes suspensions and a linearly-saturated tyre model (combined with an
indirect solution method [24]), while the latter employs a slightly embellished variant
of the classical ‘Whipple model’ [1] using Magic Formula based tyres (combined with a
direct solution method [42]). In [80] measured data was obtained from an instrumented
motorcycle ridden by a professional rider. Both studies simulate a racing motorcycle on
the three-dimensional Mugello circuit, with similar results and trends found. The com-
parison between the measured and simulated data highlights the possibility of predicting
the directional behaviour of the vehicle, in a minimum-time manoeuvring framework.
These results also provide novel insight into the riding style of top-level racing riders on
high-power machines. It was found that the most important influences on the lap time
were: (i) the centrifugal forces induced by the road pitch rate, which provide additional
down forces that can broaden the vehicles performance envelope, and (ii) the road bank-
ing that makes it possible to support higher cornering speeds without exceeding the tyre
limits.

A QSS method without a pre-defined trajectory is introduced in [81]—recall that QSS
simulations are usually solved using a pre-defined trajectory that is determined by other
means. The method builds on established g-g diagram type ideas, with an OCP solver
used to compute the optimal trajectory and the related lap-time. The overarching idea is
to encapsulate the vehicle model complexities in g-g diagrams that ‘encode’ the perfor-
mance envelope of the vehicle; these diagrams can be determined either numerically or
experimentally. The related OCP is simple, and forces the vehicle represented by the g-g
diagrams to follow the track in the minimum time. Comparison between the standard
MLTS with a predefined trajectory are discussed. The optimal controls are the longitu-
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dinal and lateral accelerations, while the states are the speed, the lateral position and
relative orientation with respect to the centreline. The method is applied to both cars
and motorcycles. The OCP is solved using the direct method described in [42].

The QSS method, without a pre-defined trajectory, is extended to deal with three-
dimensional track in [82]. The g-g maps are replaced by g-g-g diagrams; vertical ac-
celeration is added to the longitudinal and lateral accelerations. The method is again
demonstrated for both a MotoGP motorcycle and a Formula One car on the Mugello
and Barcelona-Catalunya tracks. The optimal controls are the rates-of-change of the ac-
celerations, while the states remain those of the two-dimensional model, i.e. speed, lateral
position and orientation with respect to the centreline on the road tangent plane. The
road is defined using three curvatures as summarized in [1]. Semi-analytical motorcycle
and car models are used to compute representative g-g-g diagrams. It is found that the
computation time for the free-trajectory QSS approach is approximately 10 times faster
than the free-trajectory approach using a dynamic model, and about 10 times slower
than the pre-defined trajectory QSS approach—there are thus two orders of magnitude
difference between the typical solution times obtained with free-trajectory full-dynamic
models, and fixed-trajectory QSS simulations.

Most recently, an extended three-dimensional road model is described in [83]. The
idea is to lift the assumption that transverse sections of the road are ‘straight’, i.e.
that the road banking does not change when moving laterally across the track at fixed
elapsed distance. This variable transverse camber feature is particularly important on
some NASCAR ovals; at least one such track is characterized by camber angle variations
of up to 10 deg. NASCAR tracks are also characterized by large banking angles (of up
30 deg), and the oft-employed ‘small camber angle’ assumption is not justifiable. In this
work the classical ribbon model with flat lateral strips is replaced by a curved ribbon
as in Figure 10. The geodesic and normal curvatures, and the relative torsion, are still
used to describe the road centreline, where the moving Darboux frame is located. In
contrast to prior work, the road elevation in the transverse direction is modelled using a
multivariate polynomial fitted to experimental data. The road reconstruction problem is
again cast as an OCP, where the cost is the error between the reconstructed road profile
and a 3D mesh of experimental data. The performance of a NASCAR car is simulated on
the Darlington Raceway (USA), showing that lateral shifts in the optimal trajectory of
several meters, as compared to a flat ribbon, are required in some corners. These lateral
position shifts exploit the increased camber angles at the outside periphery of the track.
The MLTS is obtained using the method in [82]; the road model developed is equally
suitable for application with dynamic models.

We mention in conclusion that two popular direct and indirect solution methods for
vehicular OCP are compared and contrasted in [84](PINS [24, 85] and GPOPS-II [42]).
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Three scenarios relevant to vehicle applications are considered. A minimum-time ma-
noeuvre with a basic two-wheeled model, the road reconstruction problem, and a MLTS
for a GT car on the Adria International Raceway. The results showed that each ap-
proach has advantages and disadvantages—PINS excelled in terms of computation time
and absolute accuracy, while GPOPS-II was more robust and showed high accuracy on
initially coarse meshes. Results showed that direct and indirect methods have a similar
overall performance when dealing with MLTS problems. Most of the observed differences
between the two solvers can be explained in terms of the numerical implementations
rather than intrinsic differences. These variations in implementation include: the inte-
gration scheme used, mesh refinement schemes, multiplier initialisations, penalty tuning
algorithms, derivative computations, and the state projection used in feasible regions.

2.5. Summary remarks

The above survey indicates that there are three main approaches to the MLTS for road
vehicles: QSS simulations with a predefined trajectory, transient simulations without a
predefined trajectory, and QSS simulations without a predefined trajectory. The first is
the oldest and simplest method, usually solved using the so-called ‘apex-finding’ tech-
nique, or as an OCP; most implementations are built around g-g diagrams. The second
is the most general method, and began to gain traction in the 2000s. This approach em-
ploys dynamic vehicle models, and track descriptions of varying complexity. The OCP is
then solved by transcription and a NLP solver, or with an indirect method that is based
on the solution to a TPBVP. In indirect methods the constraint equations are discretised
along with appropriate adjoint equations. The third method is the most recent, and seeks
to exploit some features of the other two techniques. This approach generally results in
simpler and faster-to-solve OCP.

Several common features characterizes most of the work reported in the literature.
These include: (i) describing equations are written in the spatial domain (rather than the
time domain), (ii) some form of magic-formula-type tyre descriptions are used, (iii) curvi-
linear track and vehicle kinematics descriptions are used, (iv) the OCP inputs comprise
rates-of-change of the physical model input (or filtered versions thereof), (v) typically
collocation methods are employed to solve the OCP, i.e. both the states and controls are
discretized on a mesh, with the resulting equations solved simultaneously.

Both cars and motorcycles have been studied in detail. In the case of cars, both single-
and double-track descriptions have been employed. Quasi-steady-state load transfer de-
scriptions form an integral part of the vehicles mathematical description. Most detailed
3D track descriptions are based on a ribbon model, with recent work extending this
idea to so called ‘curved ribbons’. Many problem-specific embellishments have been in-
cluded in the basic vehicular optimal control framework. These include: (i) vehicle-trim-
dependent aerodynamic models, (ii) thermodynamic tyre models, including wear models,
and multi-lap simulations, (iii) variable tyre-road friction descriptions, (iv) complex hy-
brid power trains that include KERS systems, thermal energy recovery systems, and
pure-electric drivetrains, (v) torque vectoring and rear-axle steering, (vi) emissions and
detailed ICE models. It is reasonable to expect that this list will continue to lengthen.

3. Fundamentals of OCP

Most of the MLTS referred to above rely on the numerical solution of a nonlinear OCP.
The purpose of this section is to review some of the relevant fundamentals. The material
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discussed here is mainly from [1], with additional background available in a number of
classic books on optimal control including [15, 86–89].

The dynamical system, which in the case of MLTS, is the vehicle and its related
subsystems, is usually described by a set of ordinary differential equations (ODE)

x′(s) = f(x(s),u(s), s) si ≤ s ≤ sf . (2)

The prime denotes derivatives with respect to the (independent) elapsed-distance variable
s; si and sf are the initial and final values of s respectively. In most MLTS, this distance is
measured along the centreline of the track. The state vector is x(s) ∈ Rn and u(s) ∈ Rm
are the controls; Rk denotes the space of k-dimensional vectors of real variables.

In the so-called Bolza form, the cost function, or performance index (PI) is

J(x(s),u(s), s) =M(x(si), si,x(sf ), sf ) +

∫ sf

si

L(x(s),u(s), s)ds. (3)

In the case of a MLTS the prototypical PI is

J =

∫ sf

si

1

ṡ
ds = T, (4)

where ṡ = ds/dt is the velocity of the vehicle projected on to the track centreline, and
T the manoeuvre execution time. The travelled distance associated with an arbitrary
manoeuvre (such at executing a U-turn) is sf − si. In the case of closed-circuit racing

J =

∮
1

ṡ
ds, (5)

is used. The path integral is evaluated along the centre-line (or spine) of the track, with
the path length the lap distance.

The objective of the OCP is to minimize J , while simultaneously satisfying the dynamic
equations (2), and the path constraints

c(x(s),u(s), s) ≤ 0. (6)

These constraints may, for example, include ‘stay on the track’ conditions. The boundary
constraints are given by

b(x(si), si,x(sf ), sf ) = 0. (7)

In the case of closed-circuit racing, these boundary constraints might be used to enforce
continuity condition across the start-finish line. It is intuitively clear, for example, that
the tyre carcass temperatures must be the same an instant before, and an instant after
the start-finish line—these are continuity, or ‘no jumps allowed’ constraints.

In the case that the solution is tackled using an indirect approach, the Control Hamil-
tonian

H(x,λ,µ,u, s) = L(x(s),u(s), s) + λTf(x(s),u(s), s) + µTc(x(s),u(s), s) (8)
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is of importance; λ is the co-state, while µ are the Lagrange multipliers associated with
the inequality constraints.

The optimal control problem gives rise to the following first-order necessary conditions:

x′ =
∂H
∂λ

, (9)

λ′ = −∂H
∂x

, (10)

u∗ = arg min
u∈U
H(x∗,λ∗,µ∗,u, s), (11)

where U is the set of admissible controls. The Lagrange multipliers associated with the
inequality constraints must satisfy the complementary slackness conditions

µj(s) = 0, when cj(x,u, s) < 0, j = 1, . . . , p

µj(s) < 0, when cj(x,u, s) = 0, j = 1, . . . , p

µj(s) > 0, when cj(x,u, s) > 0, j = 1, . . . , p.

(12)

The (mixed) boundary conditions are given by

either x(si) fixed, or λ(si) = −∂M
∂x

(si) +

(
∂b

∂x
(si)

)T

ν

either x(sf ) fixed, or λ(sf ) = +
∂M
∂x

(sf )−
(
∂b

∂x
(sf )

)T

ν,

(13)

where ν is the lagrange multiplier associated to the boundary constraints. This means
that (9), (10) and (13) constitute a TPBVP. One typically has initial conditions on x,
and terminal conditions on λ. In combination, equations (9) and (10) form a Hamiltonian
system, in which (9) are the state equations and (10) the co-state equations. Condition
(11) is the Pontryagin Minimum Principle (PMP).

If (8) is linear in the controls, and one collects these control-related terms in a function
Φ(s), called a switching function2, the PMP demands that

u∗(s) =

umax if Φ(s) < 0
unknown if Φ(s) = 0
umin if Φ(s) > 0

(14)

where umax and umin are, respectively, upper and lower bounds on the admissible controls
u(s). If the condition Φ(s) = 0 does not occur over any finite interval, the controls are of
bang-bang type—controls of this type are endemic in MLTS problems. In the case that
Φ(s) = 0 over a finite interval ∆s > 0, the PMP says nothing about the optimal controls
on that interval. These problems are called singular. Consider a minimum-time problem
for a long straight section of road with a powerful car and a finite speed constraint (limit).
It is clear that the optimal strategy would be to apply maximum power until the car
reaches the speed limit v = vmax. After that, one would simply apply enough power to
overcome such things as drag, thereby maintaining v = vmax until the end of the road

2The switching function must be evaluated on an optimal trajectory.
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section. In this case the engine power satisfies umin < u∗ < umax, and is consequently a
bang-singular problem—it is ‘bang’ while u∗ = umax, and singular thereafter. If the initial
speed is vmax, the entire arc is singular. Finally, if one applies a terminal speed constraint
such as vf < vmax, the problem becomes bang-singular-bang. The second ‘bang’ arc would
be u∗ = umin, which is used to brake the car as quickly as possible so as to meet the
terminal constraint v(sf ) = vf . While important, these problems often present numerical
difficulties.

The most common solution methods for indirect formulations are discussed in Section 4,
and involve discretizing equations (9) and (10) with (11) on a finite mesh along the centre
line of the track. This discretization process reduces the infinite-dimensional TPBVP into
one of finite dimension.

In the case that the OCP is tackled using a direct approach, the control Hamilto-
nian (8), the co-state equations (10), and the PMP equations (11) need not be derived.
Instead, the OCP in (2)-(7) can be solved by transcription using a NLP solver. That
said, when searching for the minimum, most optimization routines use internally neces-
sary conditions called the Karush-Kuhn-Tucker (KKT) conditions [90–93]. In the limit
∆si → 0, the KKT equations become the first-order necessary conditions associated with
indirect methods [1, 88].

4. Solution methods

Due to their inherent complexity, most practical optimal control problems must be tack-
led numerically; this implies immediately that some form of discretization will be re-
quired. Techniques that make explicit use of first-order necessary conditions such as
those described in Section 3, are called indirect methods. Other methods, such as dy-
namic programming [15], or the transcription of the continuous OCP into a NLP, will be
referred to as direct methods [88].

Once the solution methodology has been chosen, the problem is solved using either
time marching or collocation-based simulation. In time marching, the dynamics are inte-
grated using an algorithm in which the solution at a given time step is obtained from the
solution of the dynamics at one or more previous time steps. In collocation-based meth-
ods the solution at every steps is obtained simultaneously by solving a set of algebraic
equations—in this framework any notion of time marching, is suppressed.

4.1. Indirect time marching

An ‘obvious’ solution methodology to the TPBVP given by (6)–(13) is some form of
trial-and-error iteration combined with a time-stepping numerical integration algorithm.
In indirect shooting, the known initial conditions are used in combination with estimates
of those currently missing. Equations (9)-(10) are then solved from si to sf using time
marching, with the optimal control given by (11). One then compares the resulting
terminal conditions with those already provided in (13). Any mismatch is then used to
revise the unknown initial conditions with the process repeated to convergence. This
process is reminiscent of how students converge on the solutions to their homework
exercises, by invoking multiple update visits to their tutors. The same approach can
be applied using the the known final conditions in combination with estimates of those
currently missing.

While this shooting methodology might be intuitively obvious, it has a significant
shortcoming—the TPBVP associated with Hamiltonian systems have inherently unsta-
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ble dynamics. This solution procedure will be problematic when the time interval of
interest is long compared with the growth rates of the Hamiltonian system dynamics in
a neighbourhood of the optimal solution.

In order to overcome this difficulty the multiple-shooting method was developed. In
this case the interval [si, sf ] is divided into K subintervals Sk = [sk−1, sk], where s0 = si
and sK = sf with

⋃K
k=1 Sk = [si, sf ]. The shooting method is then applied over each

subinterval [sk−1, sk]. In order to enforce continuity, the following conditions

x(s−k )− x(s+
k ) = 0, k = 1, . . . ,K − 1, (15)

must be recognised in combination with (13). Despite being of higher dimension, the
multiple-shooting method represents an improvement, because the shorter integration
intervals reduce the sensitivity to errors in the unknown terminal conditions.

4.2. Direct time marching

Another basic time-marching method is direct shooting. In this case the control is
parametrized using

u(s) =
J∑
j=1

ajψj(s), (16)

where ψj(s) are pre-assigned basis functions and aj are parameters to be determined by
the optimization. The system dynamics can be evaluated by integrating the differential
equations (2) over the interval of interest [si, sf ]; this is an initial value problem (IVP).
The cost function (3) is also determined using a numerical approximation that is consis-
tent with the numerical integrator used to solve the differential equations. The following
standard NLP arises from the approximation of the optimal control problem:

min F (z) subject to

{
zmin ≤ z ≤ zmax

g(z) ≤ 0,
(17)

which is typically ‘large’, containing the decision variables z and constraints g—in this
particular case z consists of the aj coefficients in (16).

In a manner similar to that used for indirect methods, direct multiple-shooting may be
employed, with the interval [si, sf ] again divided into K subintervals Sk. In this way the
problem is decomposed into K-IVPs with

u(k)(s) =

J∑
j=1

a
(k)
j ψ

(k)
j (s). (18)

The values of the states x(sk−1) at the beginning of each subinterval and the unknown

coefficients a
(k)
j in the control parameterization (18) are the unknowns in the NLP. To

enforce continuity (15) are again employed at the subinterval interfaces. The key feature
of these problems, which makes then tractable, is the fact that the NLP is sparse. Well
known solvers such as SNOPT [20], IPOPT [47] and KNITRO [94] may be used for
solving such large sparse NLPs.
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4.3. Collocation methods

Collocation methods produce (smooth) approximations to the solutions x(s) in (2) in the
form of polynomial functions. These polynomials satisfy the given differential equation
on a finite set of points in the integration interval, and coincides exactly with the initial
condition x(sk−1) in each integration sub-interval. Suppose the solution interval [si, sf ] is
divided into K mesh intervals Sk, as in the case of multiple shooting. In each k–interval
Sk, the solution of the dynamic equations (2) is approximated in terms of a set of basis

functions ψ
(k)
j (s)

x(k)(s) ≈X(k)(s) =

J∑
j=0

c
(k)
j ψ

(k)
j (s). (19)

These basis functions are usually in the form ψ
(k)
j (s) = (s− sk−1)j , so that the approx-

imation X(k)(s) is a J th-order polynomial, whose coefficients c
(k)
j are defined in order

to match the initial condition at the beginning of the interval, and the dynamic equa-
tions (2) at the collocation points sj = sk−1 ≤ s1, · · · sJ ≤ sk within Sk—at these points
X ′(sj) = f (x(sj),u(sj), sj). If there are only two collocation points at sk−1 and sk,

X(k)(s) is quadratic, and the well-known trapezoidal integration rule results—the de-
fault used is ICLOCS [46]. In the case that there is only one collocation point in the
middle of the interval, the midpoint integration rule is obtained. This is the rule em-
ployed in PINS [24] to discretize the TPBVP to give a large set of nonlinear algebraic
equations (typical size for MLTS > 100, 000). If three collocation points are used, at the
beginning, middle and end of the interval, the Simpsons rule results and X(k)(s) is cubic;
this method is used e.g. in SOCS [88].

Assuming basis functions of order J in (19), this parameterization is used to integrate
the equations from sk−1 to ‘stage times’ sik ∈ Sk, where sk−1 ≤ s1k < s2k < · · · <
s(J−1),k < sJk ≤ sk for all i ∈ [1, . . . , J ] using

0 = Xik −Xk−1 −
J∑
j=1

A
(k)
ij f(Xjk,U jk, sjk), (20)

where Xjk and U jk are the values of the function approximations X(s) and U(s) at

the stage points sjk; both the states and controls are discretized. The matrices A
(k)
ij are

integration matrices associated with the particular integration (quadrature) rule being
employed. These defect conditions are satisfied at all the collocation points within each
mesh interval. The subinterval boundary conditions (15) must also be satisfied. Given

the controls at each collocation point, the goal is to solve for the coefficients c
(k)
j in each

mesh interval. As opposed to time-marching methods, all of the defect equations are
solved simultaneously as a large-scale algebraic system.

Of particular importances are methods that use collocation points that are the roots
of orthogonal polynomials, which are called pseudo-spectral methods. Of relevance here
are the Legendre-Gauss (LG), the Legendre-Gauss-Labbato (LGL) and Legendre-Gauss-
Radua (LGR) schemes that are all slightly different. In the case of LG schemes, the
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Figure 11. LG, LGL and LGR collocation points in the of J = 5.

collocation points are the J roots of the Legendre polynomials, which are given by

PJ(τ) =
1

2JJ !

∂J

∂τJ
(τ2 − 1)J , (21)

with the basis functions given by the Lagrange polynomials

Lj(τ) =
∑

1 ≤ m ≤ J
m 6= j

(
τ − τm
τj − τm

)
. (22)

There are three important points to note here: (i) the Legendre polynomials have simple
distinct roots that lie in the interval −1 < τ < 1, (ii) Lj(τj) = 1 and Lj(τi) = 0 for i 6= j
(the isolation property), and (iii) the root locations of the Legendre polynomials mandate
the normalization of the independent variable so that

τ =
sk−1 + sk − 2s

sk−1 − sk
. (23)

It is clear that τ = 1 when s = sk, and τ = −1 when s = sk−1. The ‘isolation’ property
of the Lagrange polynomials means that

x(τ) ≈X(τ) =
J∑
j=1

X(τj)Lj(τ). (24)

One of the advantages of LG collocation, is that operating with J points is comparable
in terms of accuracy, to operating with 2J equidistant points [95]. Comparison with (19)
reveals that the cj ’s are approximations of the states X at the collocation points, while
the basis functions ψ are replaced by the Lagrange polynomial Lj(τ).

The closely related LGR and LGL methods require modifications that we will now
describe. In the case of the LGL method, we use collocation points that are the roots
of P ′J−1(τ) (rather than PJ(τ)) plus the terminal points τ = −1 and τ = 1; this is the
primary method used in OTIS [96]. In the case of LGR schemes the collocation points
are the roots of (PJ−1(τ) +PJ(τ))/(τ + 1), which include the initial point of the interval
[97]; this is the primary method used in GPOPS [42, 98] and is also available in ICLOCS2
[99]. Both LGR and LGL are used in DYMOS [100], which is within OpenMDAO [101].
A further variation is the use of Hermite polynomials in place of Lagrange polynomials.
Figure 11 shows the collocation points for the three methods in the case of J = 5. It
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can also be observed that the midpoint rule is the most basic LG scheme, while the
trapezoidal and Simpson are basic LGL schemes [88]. The LGR method has also been
shown to be a good estimator for the co-state of the OCP from the Lagrange multipliers
of the KKT conditions of the related NLP problem [102, 103]. This suggests that solving
the OCP with a direct method, i.e. without using the co-state equations, will give good
estimates of the multipliers related to the co-state equations. Regardless of the specific
choice of the collocation points, the primary solver for the resulting NLP problem is either
SNOPT [20] or IPOPT [47]. These methods converge spectrally (i.e. at an exponential
rate) as a function of the number of collocation points (for smooth problems), hence the
name pseudo-spectral [104].

4.4. Mesh refinement

A key aspect of efficiently generating accurate solutions to OCP using collocation meth-
ods is the placement of both the mesh segment boundaries, and the collocation points.
The algorithmic determination of the mesh boundaries and the related collocation points
is called mesh refinement. In a traditional fixed-order collocation method the degree p
of the approximating polynomial in each interval is fixed, and the mesh refinement algo-
rithm determines the location of the mesh boundaries—these are called h-type methods.
In contrast, p-type algorithms use fixed mesh in combination with variable-order approx-
imating polynomials. When both h and p are varied, the algorithm is of h-p type; the h
and p variants can be considered special cases of h-p algorithms.

Both pure h and pure p method have their limitations. Achieving high accuracy may
require an extremely fine mesh (in the case of an h method), or it may require the use
of an unreasonably high-order degree polynomial in the case of a p method. A specific
limitation of p methods is their ability to deal with discontinuities that occur routinely in
minimum-time OCP—increasing the order of approximating polynomials for discontinu-
ous functions is of limited utility. It is better to use an h algorithm to place discontinuities
on segment boundaries. The use of fixed low-order polynomials (h methods) for smooth
functions with poor polynomial representations also has obvious drawbacks. In a general
MLTS setting h-p orthogonal collocation mesh-refinement methods are thus well moti-
vated. Algorithms based on h-p mesh refinement are described in a number of papers
including [105–107]. As a general rule, if the error across a particular segment is large
and uniformly distributed, the polynomial order should be increased. If a significant error
occurs at an isolated point within a segment, the segment should be subdivided.

4.5. Scaling

Scaling usually has a significant influence on the performance of optimization algorithms.
Since convergence tolerances, and other criteria, are necessarily based on notions of
‘small’ and ‘large’ quantities, problems with unbalanced scaling may cause difficulty.
One notion of scaling is to transform the variables from their original representation,
which may reflect the physical nature of the problem, to dimensionless quantities that
have desirable properties in terms of the convergence of optimization algorithms. In the
case of vehicular problems, it is common to make the length of the car or motorcycle
the fundamental unit of length—after scaling, the vehicle has a dimensionless length of
one. In the same way, the fundamental unit of mass is the mass of the vehicle—after
scaling, the vehicle has a dimensionless mass of one. In order to scale time, we give the
vehicle unit weight, and so a time scale of

√
g/l0 is used in which l0 is the vehicle’s length
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and g is the acceleration due to gravity (
√
l0/g is thus the fundamental unit of time).

Once normalizing scale factors for length, mass, and time have been defined, all other
scale factors can be defined in terms of combinations of these quantities. During racing a
vehicle’s speed might be 90 m/s; after scaling this becomes 15.58 in dimensionless units
if l0 = 3.4 m. During firm acceleration and fast cornering, the car’s longitudinal and
lateral tyre forces might reach 8,000 N, which becomes 1.236 in dimensionless units if the
vehicle’s mass is 660 kg; the force scale factor is derived from the mass, length, and time
scale factors. This scaling scheme forces the nonlinear solver’s decision variables into a
‘more spherical’ space as opposed to an elongated hyperellipsoid one.

4.6. Gradients

NLP solvers usually require derivatives of the cost function and constraints with respect
to both the state and control variables. For this reason non-smooth problem features
have to be approximated by differentiable functions in a way that does not change signif-
icantly the problem’s solution. Functions such as min(x, 0) and max(x, 0) have undefined
derivatives at x = 0, and can be conveniently approximated using

max(x, 0) ≈ x+
√
x2 + ε

2
and min(x, 0) ≈ −−x+

√
x2 + ε

2
, (25)

in which ε is a ‘small’ constant. Since

∂

∂x

(
±x+

√
x2 + ε

2

)
=

1

2

(
x√
x2 + ε

± 1

)
, (26)

one sees that the derivative approximations are now well defined at x = 0. One may also
make use of max(a, b) = a+ max(b− a, 0). In the case of |x|, one might use

|x| ≈
√
x2 + ε.

In this case

∂

∂x

√
x2 + ε =

(
x√
x2 + ε

)
,

with the derivative approximation at x = 0 again well defined. These approximations
become more accurate as the value of ε is reduced, with values in the range 10−5 ≤ ε ≤
10−2 typical for MLTS.

When it comes to computing gradients practically, there are at least four possible
approaches. The first and most obvious is to compute derivatives analytically, either
by hand, or by using a computer algebra package such as MapleTM or MathematicaTM.
While the precision of this approach is appealing, and generally results in faster rates of
convergence, it is sometimes not practical to compute derivatives this way.

Another approach is to compute derivatives numerically using finite (forward, backward
or central) differencing. In the case of forward differencing one uses

df

dx
≈ f(x+ ∆)− f(x)

∆
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in which ∆ is the step length. The difficulty with this approach is that ∆ must be small
enough to provide a good approximation to the derivative, but not so small that round-
off errors occur when calculating the difference f(x+ ∆)− f(x)—this is the well-known
step-size dilemma.

Another approach is complex-step differentiation, which is both accurate and efficient
[108–110]. In the case of higher-order derivatives a more general version of the complex-
step derivative approximation, called the multi-complex-step derivative approximation,
can be used as a way of computing Hessians without truncation errors [111].

Another powerful approach is algorithmic or automatic differentiation (AD), which
computes function derivatives to the precision that one would achieve using analytic or
symbolic differentiation [71, 78, 112, 113]. While any of these approaches can be used,
symbolic and automatic differentiations are most common in vehicular minimum-time
problems.

Finally, relaxation ‘tricks’ can be used to avoid discontinuous Mixed-Integer Program-
ming problems, such as gearbox modelling. In this case one might approximate the
gearbox with a continuously-variable transmission. Suppose there are n gear ratios of
κ1, · · ·κn, with corresponding gear-change speeds vi. One can compute the engaged gear
ratio κ using

κ = κ1 +

n∑
i=1

(
κi+1 − κi

2

)
(1 + sin(tan−1(k(v − vi)))), (27)

where k is a ‘switching’ constant that is selected to provide robust numerical performance.
If the vehicle speed v ≤ vi, gear κi is engaged.

4.7. Regularization

When the controls enter the system dynamics and performance index linearly, the pos-
sibility of bang–bang controls and/or singular arcs exists; see Section 3. The majority of
general-purpose optimal control software codes have difficulties with problems containing
singular arcs. In order to avoid oscillatory solutions and non-convergent behaviours with
these problems, it is often useful to introduce into the performance index small terms
that are quadratic (i.e not linear) in the controls. These terms ensure, at least in theory,
that the Pontryagin minimum principle can be used to find the optimal controls (for
the perturbed problem). If these terms are ‘small’ relative to the main cost, they do not
change the problem in any significant way. The regularized problem has the following
cost

Ĵ = J +

∫ sf

si

m∑
i=1

εiu
2
i ds, (28)

in which the εi’s are small constants with the ui’s the controls.

5. Road modelling

As was mentioned in Section 2, the majority of the published work on MLTS is based
on two-dimensional road models with uniform friction characteristics. More advanced
road models are three-dimensional and include variable camber and elevation—variable
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Figure 12. Three-dimensional road model, from [83].

tyre-road friction studies are unusual, but have nonetheless been reported in publications
such as [77]. Curvilinear coordinate based road models are ubiquitous and will now be
summarized in the three-dimensional case.

In accordance with classical Frenet-Serret theory, the track centre line is a space curve
that can be described by two curvature functions, namely the curvature κ and the tor-
sion τ . Both variables are a function of the elapsed distance s. When the centre line
is ‘broadened out’ into a ribbon-based track description (think of a strip of tagliatelle
bent to represent the road), the road’s twist rate ν ′ is required to represent the track’s
camber [1]. A moving trihedron, called the Darboux frame, moves with the vehicle along
the road’s centreline with its x-y plane tangent to the road surface. An orthogonal ba-
sis for the Darboux frame is [t,n,m], which can be described using the conventional
attitude-pitch-roll convention as follows

R = Rz(θ)Ry(µ)Rx(φ) =

 cθcµ cθsµsφ − sθcφ cθsµcφ + sθsφ
sθcµ sθsµsφ + cθcφ sθsµcφ − cθsφ
−sµ cµsφ cµcφ

 , (29)

where Rz(θ), Ry(µ) and Rx(φ) are respectively elementary rotation matrices around the
z, y and x axes. The angles θ, µ and φ represent the attitude, slope and camber angles
of the road; ‘s’ and ‘c’ refer to the sine and cosine of the corresponding (subscripted)
Euler angles. The moving Darboux frame can be seen in Figure 12 (a) moving along the
road centre line. The Euler angles, θ, µ and φ are obtained by integrating the curvature
variables that are referred to as the relative torsion Ω0

x, the normal curvature Ω0
y, and

the geodesic curvature Ω0
z [1, 48]. The angular spatial rate of the Darboux frame is the

vector Ω0 = [Ω0
x,Ω

0
y,Ω

0
z]
T . The Euler angles and the angular rate are related byΩ0

x

Ω0
y

Ω0
z

 =

1 0 −sµ
0 cφ cµsφ
0 −sφ cµcφ

φ′µ′
θ′

 , (30)

where Ω0 is expressed in the Darboux frame—a skew-symmetric representation of the
angular rate (expressed in rad/m) is given by RTR′. The location of the origin of the
Darboux frame is given by xCyC

zC

 =

∫
tds =

∫  cφcµsφcµ
−sµ

 ds, (31)

where t (the first columns of (29)) is the tangent to the road centreline. This road model
is laterally flat, i.e. the road camber does not vary laterally.

27



March 31, 2021 Vehicle System Dynamics mainVSDplenary˙clean

In order to accommodate lateral camber variations, which are required for some
NASCAR oval models for example, it is assumed that the real road surface can float
above, or submerge below the x-y plane of the Darboux frame [83]. To make this exten-
sion the road surface is described by

S =
{
xP (s, n) = xC(s) + n(s)n(s) +m(s)m(s, n) ∈ R3

}
, (32)

where s ∈ [si, sf ] and n(s) ∈ 1
2 [−rw(s), rw(s)]; the m(s)m(s, n) term introduces lateral

camber variations. The origin of a vehicle-fixed axis system is given in terms of a vector
xP—this point is assumed to lie on the road surface and is commonly the projection
of the vehicle’s centre of mass for cars, and the rear ground-contact contact point for
bikes; see Figure 12 (a). The vehicle’s trajectory is again assumed to start at si and
terminate at sf ; it is also assumed that n, and the road width rw, are functions of s,
with the position-dependent elevation m(n, s) a function of both n and s. The legacy
three-dimensional road model corresponds to the case m(s, n) = 0. The vectors n and
m are represented by the second and third columns of (29).

If the surface S is to remain tangent to the road at positions away from the centre
line, the camber angle must be adjusted to φ(s) + ∆φ(s, n), where3

∆φ(s, n) = atan(∂nm) ≈ ∂nm (33)

for small changes in road elevation (in Darboux coordinates). These camber variations
are illustrated in Figure 12 (b), where the dots represent the survey data and the solid
line an approximating function m(s, n). The impact that this camber change will make
on the track curvature estimate at xP can be calculated from (30), by replacing φ with
φ+ ∆φ, to obtain Ωx

Ωy

Ωz

 ≈
Ω0

x

Ω0
y

Ω0
z

+

 ∆φ′

∆φΩ0
z

−∆φΩ0
y

 , (34)

where for small angles

∆φ′ ≈ n′∂nnm+ ∂snm. (35)

The curve m(s, n) can be any (sufficiently continuous) curve; in [83] an algebraic function
is assumed.

In sum, the three-dimensional road model is described by the three road curvatures
related to the centreline (Ω0

x(s),Ω0
y(s),Ω

0
z(s)), plus the coefficients of the algebraic func-

tion representing the transverse undulations m(s, n). The Euler angles associated with
the Darboux frame, and the vehicle-fixed frame with origin xP , can be found by inte-
grating the curvatures Ω and Ω0 respectively [83].

6. Road reconstruction

Once the structural properties of the road model have been defined (Section 5), the
associated parameters have to be identified from measured survey data—this is the road

3We use the notation ∂nm to denote ∂m
∂n

, and ∂snm to denote ∂2m
∂s∂n

and so on.
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(model) reconstruction problem. The direct derivation of curvature information from
survey data (GPS, LiDar, etc.) has a number of difficulties, including drift, measurement
noise distortion, and the failure of the ends of closed-circuit models to meet. A number
of different approaches are reported in [9, 114, 115], and the references therein, with
techniques based on the solution of secondary OCP effective and simple to implement.

The OCP aims to minimize the error between the reconstructed road model and the
experimental survey data—importantly, road-closure constraints are used to prevent the
beginning and end of closed-circuit models from ‘missing each other’. The optimal con-
trols are derivatives of the Euler angles described in (29), as well as the derivatives of
the road width for variable-width tracks.

In ‘flat ribbon’ modelling one usually requires survey data relating to the track bound-
aries, which might be noisy. The optimal control framework described in Section 3 is
utilized. The road model state vector comprises three position variables for the track
centre line, integrator chains for each of the Euler angles, and a road-width variable

x = [xC , yC , zC , φ, φ
′, µ, µ′, θ, θ′, rw]T . (36)

The controls are the rates of change of the three Euler angles in (29) and the road width

u = [uφ, uµ, uθ, urw]T , (37)

which are manipulated so that the trajectory and orientation of the Darboux frame
circumnavigates the race track while minimising an estimation error given by (3) with

J =

∫ se

si

(R(u) +Q(x)) ds. (38)

The various terms therein are given by

R(u) = rφu
2
φ + rµu

2
µ + rθu

2
θ + rrwu

2
rw, (39)

Q(x) = qx(xl − xl0)2 + qy(yl − yl0)2 + qz(zl − zl0)2 +

qx(xr − xr0)2 + qy(yr − yr0)2 + qz(zr − zr0)2. (40)

The track boundaries are described by

xl,r = xC ∓ (−sθcφ + cθsµsφ)
rrw
2
, yl,r = yC ∓ (cθcφ + sθsµsφ)

rrw
2
, zl,r = zC ∓ cµsφ

rrw
2
.

The control weights are rφ, rµ, rθ, rrw, while qx, qy, qz are weights on the reconstruction
errors in (40). The survey data for the right and left boundaries are given by, respectively,
xr0, yr0, zr0 and xl0, yl0, zl0. The weight selection is used to emphasise, or de-emphasise,
the relative importance of the tracking error, the rejection of measurement noise, and the
smoothness of the curvature estimates. Excessively ‘busy’ curvature estimates are likely
to cause convergence difficulties in subsequent MLTS calculations.

The estimation dynamic system (2) is described by

f(x,u) = [cθcµ, sθcµ, −sµ, φ′, uφ, µ′, uµ, θ′, uθ, urw]T . (41)

In the case of closed race tracks, cyclic boundary conditions must be enforced, i.e. x(si) =
x(sf ) for all the state variable except the yaw angle θ, which must satisfy θ(si)−θ(sf ) =
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±2π—the sign is determined by the running direction. In combination, the cyclicity
conditions ensure that the start and end of the track marry up at the start-finish line.

A number of minor variants have been reported in the literature, e.g. the third deriva-
tives of the Euler angles are controlled instead of the second derivatives (in this case
three more states must be added to (36)). This variation is required, for example, when
the spacial rates of change of the track curvature are required. One might also include
a term in (40) that weights the error between the reconstructed and measured centre-
line. In the more recent formulations, including the curved ribbon [83], for example,
the first- or second-order spatial derivatives of the m(s, n) polynomial coefficients are
added to the controls (36). While these details are beyond the scope of this survey, the
cost function (40) may also require error terms relating to the fitting errors associated
with a track-surface mesh; see Figure 12 (b). Examples of application to several tracks
have been reported in the literature, these include Barcelona-Catalunya [45, 48], Spa-
Francorchamps [1], Adria and Imola [84], Mugello [79, 80] and the Darlington Raceway
[83]. In the last example, the NASCAR track is reconstructed using a curved ribbon
model, which shows variations in the road camber in the lateral direction of up to 10 deg.
This is combined with large absolute camber angles of up to 30 deg.

7. Vehicle positioning

Once a road model has been constructed, one must consider the kinematics of vehicle po-
sitioning on the road surface. Referring again to Figure 12 (a), it is clear that the vehicle’s
position is determined by the distance travelled s, the lateral and vertical displacements
n and m respectively, and the yaw of the vehicle relative to the centreline tangent χ.
These variables specify the position of the vehicle with respect to the Darboux frame,
whose location and orientation are known once s is known; see Sections 5 and 6.

In the case of a flat-ribbon road model these quantities are determined by

ṡ =
ucχ − vsχ
1− nΩ0

z

ṅ = u sinχ+ v cosχ χ̇ = ωz − Ω0
z ṡ (42)

which are derived in several places including [1]. The longitudinal and lateral components
of the vehicle’s velocity are u and v, respectively, or more precisely, the velocity of the
projection of the vehicle’s reference point on to the road plane. The angular velocity
(rad/s) of the vehicle is ωz, while Ω0

z is the geodesic curvature (rad/m) of the Darboux
frame.

When the road prototype is extended to include lateral curvature, these equations
include additional terms that relate to road height variations m(s, n) relative to the
Darboux frame [83]:

ṡ =
ucχ − vsχ

1− nΩ0
z +mΩ0

y

ṅ = u sinχ+ v cosχ+ (m− n∂nm) Ω0
xṡ, χ̇ = ωz − Ωz ṡ. (43)

The ribbon’s lateral curvature gives rise to m(s, n)-related terms in (43), while the Ω0
z

term becomes Ωz, which is the geodesic curvature (rad/m) of the frame tangent to
the road plane at the vehicle’s reference point (not on the centreline). The relationship
between Ω0

z and Ωz is given by (34). The position and orientation of the vehicle are
obtained integrating (43), which are appended to the vehicle’s equations of motion.
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8. Vehicle models

A variety of models have been proposed to describe the dynamics of cars and motorcycles
in MLTS, see Section 2. The aim of this section is to highlight the essential features of
these models in order to incorporate them in OCP.

Car models (both single- and twin-track variants) include the following states

x = [u, v, ωz]
T , (44)

which represent, respectively, the longitudinal and lateral velocity of a vehicle-fixed ref-
erence point, with the vehicle’s yaw velocity given by ωz. These quantities are usually
expressed in a vehicle-fixed reference frame. The control inputs include (but are not
limited to) the steering angle δ, and the propulsive/braking torque Tw

u = [δ, Tw]T . (45)

The torque Tw is split between the front and rear axles in accordance with the vehicle’s
drivetrain layout, which might be rear-wheel drive (RWD), front-wheel-drive (FWD), or
all-wheel-drive (AWD). The distribution of the braking torque depends on a front-to-
rear wheel braking ratio. In ‘simple’ models one will typically assume: (i) that the drive
torque is split symmetrically between the wheels on each axle (i.e. an open differential),
(ii) symmetric braking torques, (iii) no states associated with wheel spin—tyre forces
are applied to ground-contact points that are assumed ‘fixed’ in the car’s body-fixed
reference frame, and the propulsive/braking torques being related by the wheel radius
(spin inertia effects are neglected), (iv) identical left- and right-wheel steering angles (i.e.
Ackermann and toe effects neglected), and (v) ‘instantaneous’ longitudinal and lateral
load transfers (suspension and inertial effects are neglected).

Simple motorcycle models include typically the following states

x = [u, v, ωz, ϕ, ϕ̇, δ, δ̇]
T . (46)

The first three states are defined as for cars (44), while ϕ and ϕ̇ are required to represent
the motorcycle’s roll angle and roll rate. Unlike car models, the steering angle δ and
steering rate δ̇ are introduced into the state rather than the input vector. This change is
required in order to preserve the basic dynamical properties of any two-wheeled vehicle
(particularly ‘weave’, ‘castoring’ and ‘capsize’); see the classic Whipple model in [1]. The
bicycle/motorcycle inputs comprise steering and propulsive/braking torques respectively

u = [Th, Tw]T . (47)

The drive torque acts on the rear wheel and reacts on the main frame, while the steer
torque Th acts on the steered assembly and reacts on the main frame. Unlike cars,
motorcycles are only conditionally stable—it is self-evident that at very low speed a
two-wheeled machine will ‘fall over’. Issues relating to ‘wobble’, ‘weave’, ‘capsize’ and
conditional stability are discussed in detail in [1]; we refer the interested reader to that
source and the many references therein. One often finds the term ‘bicycle model’ used
to refer to single-track car models, but this term is misleading, because the absence of a
roll freedom means that car-related bicycle models have nothing to do with bicycles.

Tyres are an important component of any vehicle model. Be it a car or motorcycle tyre,
the forces and moments generated on the contact patch are nonlinear functions of the
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tyre’s side-slip angle, slip ratio, camber and normal load—other variables may enter the
tyre description in complex tyre models. Another important issue relates to cross-coupling
between the longitudinal and lateral forces through such things as weighting functions,
friction ellipses, and so on. No matter what model is used, the tyre forces and torque
must remain within the limits dictated by the available friction. In most MLTS models
the tyre response is instantaneous, especially in the case of cars, while for motorcycles
the tyre response lag may be represented by relaxation equations that involve a single
state. A number of tyre model variations have been reported in the literature, but they
all share these common features. An in-depth discussion of tyre modelling is reported in
the classic [62]; an extended discussion is also available in [1].

The equations of motion are usually derived in the time domain, either by pencil-
and-paper, or with the aid of a multibody modelling tool, see for example [116–125].
As explained in Section 3 the OCP is usually formulated in the spatial domain, which is
achieved by the change of variable dt = ds/ṡ. The vehicle can thus be described by

x′ = f(x(s),u(s), s), (48)

in which the prime denotes a derivative with respect to s.
In some applications QSS models are used instead of their dynamic counter-

parts—dynamic models with QSS components, or approximations, are also widely em-
ployed. These include such things as vehicle models with instantaneous load transfers,
non-dynamic suspension models, tyre models with an instantaneous response and so on.
In these cases the differential equations describing the dynamic system in (2) are replaced
by algebraic equations for the corresponding steady-state system

0 = f(xQSS ,uQSS). (49)

These equations can be solved for the equilibrium states xQSS and controls uQSS once
the vehicle’s motion has been determined in terms of speed and lateral acceleration for
example. In the case of a basic car model with three states (44), and two controls (45),
one could pre-assign the (constant) longitudinal velocity uQSS and the yaw rate ωz,QSS .
The resulting algebraic equations (49) can then be solved for the lateral velocity vQSS ,
steer angle δQSS and wheel torque Tw,QSS . The same general approach can be used for
motorcycle models.

In a more general setting, longitudinal acceleration (at constant speed) can be emu-
lated by including apparent inertial forces. In this case one obtains a quasi-steady-state
solution rather than a steady-state solution—regardless of SS or QSS conditions, the
vehicles state is determined by a set of (usually nonlinear) algebraic equations. The per-
formance envelope of the vehicle is determined by QSS calculations that can be presented
graphically as g-g diagrams, which are plots of the vehicles normalized longitudinal ac-
celeration limit (at a particular speed) versus the normalized lateral acceleration at the
same speed. In practice, (49) are solved iteratively until a physical limit of the vehicle is
reached—limits include the maximum engine power, a tyres’ friction limit, the rollover
limit of a car, or the ‘wheelie’ (front tyre lift) or ‘stoppie’ (rear tyre lift) limit of a mo-
torcycle. Figure 13 shows the performance envelope of three vehicles, obtained using the
semi-analytical vehicle models given in [82].

Figure 13 (a) shows the g-g diagram of a prototypical Formula One car at different
speeds. At low speeds (solid line) the acceleration limits are dictated by tyre friction.
As the speed increases (dashed and dotted lines), the maximum acceleration is limited
by the engine power (the top horizontal lines in the g-g diagram), while the maximum

32



March 31, 2021 Vehicle System Dynamics mainVSDplenary˙clean

(a) (b) (c)

Figure 13. (a) g-g diagrams for a formula car, (b) a racing motorcycle, both at different speeds. (c) is for a
NASCAR at 70 m/s at different camber angles and apparent gravity.

available deceleration increases with speed due to increased aerodynamic drag and down
force. The g-g diagram also ‘widen out’ at higher speeds, because increased downforce
facilitate increases in the maximum available lateral acceleration.

Figure 13 (b) shows the g-g diagram of a prototypical MotoGP bike at different speeds.
At low speeds (solid line), the acceleration and deceleration limits have a quite different
shape as compared with cars. At lows speeds the maximum acceleration is limited by
the onset of a ‘wheelie’, while the deceleration limit is determined by the onset of a
‘stoppie’—these limits appear as concave arcs on top and bottom of the g-g diagram.
The lateral accelerations are still limited by the tyre friction. As the speed increases,
the maximum acceleration is limited by engine power, while more braking capacity is
available due to aerodynamic drag. The lateral acceleration limits are largely independent
of speed, because there are no significant speed-dependent aerodynamic effects at play
in this example.

Figure 13 (c) show the g-g diagram of a Nascar car. Most NASCAR ovals comprise only
left turns and so the tyres, suspension, and aerodynamics are set up to favour left-handed
cornering. This asymmetry is evident at all speeds. The dashed line represents the car’s
g-g characteristics on a road with a camber of 20 deg (in the direction of turning), which
represents another reason for the asymmetry, and increases the maximum lateral accel-
eration capacity for left-handed cornering. The dot-dash line represents the acceleration
envelope when the apparent gravity (due to centrifugal acceleration and slope variations)
is increased by 50 %—as one would expect the whole g-g map enlarges.

This last example suggests conceptually that the standard g-g-V diagram should be
extended to a more general g-g-g-V diagram, which is indeed one of the approaches to
deal with effects related to road three-dimensionality in MLTS with QSS models.

9. The MLTS problem

In this section we summarizes the steps needed to solve the MLTS problem.
The first step in the solution of a MLTS is to survey the track and construct a track

model using the processes outlined in Sections 5 and 6. At the end of this step one will
have available the track curvature and track-width parameters, which will be required in
the construction of inequality constraints that confine the car to the road.

Supposing one wants to build a dynamic simulation without a pre-defined race line,
the next step is to construct a dynamic vehicle model (2). This model provides additional
constraints that describe how the system states and controls are related to each other.
There are two elements to this: (i) the vehicle’s equations of motion (48), and (ii) the
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kinematic differential equations related to the vehicle positioning (43). In combination,
these equations will allow the optimal control solution algorithm to drive the car around
the track and seeks out an optimal control strategy. The propulsive and steering controls
will produce lateral, longitudinal and yaw velocity profiles consistent with the vehicle’s
equations of motion. These profiles, using (42), will ‘drag’ the Darboux frame along
the track centre line. In this way the vehicle drives along the road plane of a moving
coordinate system which pitches, rolls and turns with the track (as described by the track
model).

The OCP controls are usually the rates of change of the physical controls required
by the vehicle model. For example, the steering input might be uδ = δ̇, or a steering
torque version of it (in the case of motorcycles). The introduction of these additional
integrators in the vehicle model serve two main purposes, namely (i) it tends to improve
the numerical behaviour of the MLTS, and (ii) it allows one to introduce rate constraints
on the controls. The input vectors for simple car and motorcycle models are

u = [uδ, uTw
]T and u = [uTh

, uTw
]T , (50)

respectively. The state vectors are typically

x = [n, χ, δ, Tw, u, v, ωz]
T and x = [n, χ, Th, Tw, u, v, ωz, ϕ, ϕ

′, δ, δ′]T (51)

for cars and motorcycle respectively. The first two states are governed by the second and
third equations in (43). The third and fourth states come from integrating the inputs as
described above. The remaining equations, i.e. f5 · · · f7 for cars and f5 · · · f11 for bikes,
come from the equations of motion used to represent the vehicle’s dynamics.

For MLTS the cost function (3) is the minimum lap time, which is (4), or (5), plus
addition regularization terms should they be required; see Section 4.7. If regularization
terms are introduced, the ‘true’ lap time can be computed separately introducing an
auxiliary ‘time-measuring’ state.

The controls should be limited to reflect the neuro-muscular capabilities of a human
driver/rider. These limits may include, for example, the steering torque (say 100-150 Nm)
and the rate of change of steering angle. One may also want to feed the controls through
low-pass filters with a bandwidth of few Hertz. There will also be limits on the steering
travel, or suspension travel, in more advanced models. The driving, braking and lateral
capabilities of the tyre should take care of themselves if the tyre model is appropriately
parametrised. The engine power should be enforced using constraints such as

Fxu ≤ Pmax or Twωr ≤ Pmax, (52)

where Pmax is the mechanical engine power (at the road in the former expression and at
wheels in the latter), Fx is the longitudinal drive force, u is the vehicle’s speed, ωr is the
angular velocity of the drive wheels. Note that Fxu ≤ Twωr, since the former expression
does not recognise power losses due to longitudinal tyre slip and spin inertial effects.

In order to keep the vehicle on the track, one would include the constraint

|n| ≤ rw
2
− tw

2
, (53)

where rw is the road width, and tw is the vehicle’s track width. If one wants to take
account of vehicle yawing, or differing front and rear track widths, four more complicated
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constraints are required—one for each wheel ground-contact point.
Particularly in the case of motorcycles, one may include ‘no wheel lift-off’ constraints.

One can get wheel lift-off in cars, for example, if one ‘over cooks’ a corner entry, but far
more likely with powerful motorcycles are ‘wheelies’ and ‘stoppies’, both of which could
result in numerical problems during the solution of MLTS.

Implicit in free-trajectory MLTS, is the idea that the optimal control algorithm will
automatically ‘seek out’ the optimal racing line—in this problem configuration one seeks
to minimise the lap time without violating any vehicle or track-related constraints. In
simpler problems, the racing line may be pre-assigned as another constraint set.

One may choose to carry out a MLTS using a QSS model instead of a dynamic model
(or partially dynamic model). In this case g-g diagrams are often used to impose limits
on the vehicle’s performance. When the trajectory is predefined—the fixed-trajectory
problem—the problem becomes one of computing the speed profile that minimises the
lap time while remaining within the limits imposed by the g-g diagrams. This approach
has the advantage that, in principle, the g-g diagram could be measured and no vehicle
modelling exercise is required. In these simulations the classical apex-finding method
is usually employed (although an OCP approach is also possible), which begins with
the identification of the apexes in the pre-defined trajectory. At each apex a minimum
speed and maximum lateral acceleration is assumed. Braking comes before the apex, and
acceleration after the bend; see discussions in Section 2.

The third possibility is to use a QSS vehicle representation combined with a free
trajectory that will be determined by the associated OCP solution. In this case the
MLTS is again solved as an optimal control problem using the cost functions (4), or (5).
The optimal controls are the longitudinal and lateral accelerations

u = [ax, ay]
T , (54)

with the equations of motion replaced by acceleration constraints, which can be enforced
using a polar representation of the g-g diagrams. That is

ρ̃ ≤ ρmax(α̃, V, g̃), (55)

where

ρ̃ =
1

g

√
ã2
x + ã2

y and α̃ = arctan 2(ãx, ãy), (56)

while ãx, ãy, g̃ are the apparent longitudinal, lateral and vertical accelerations on the
vehicle and ρmax is the boundary of the g-g diagram. The dynamic equations of the OCP
reduces to the second and third equations in (43), together with V̇ = ax, with all the
other vehicle-model-related complexities encoded in the g-g-V or g-g-g-V diagrams.

We conclude with some clarifying comments: (i) elevation changes and banking will
reflect on the vehicle’s performance through the g̃ parameter; (ii) in more complex situ-
ations the influence of track camber must be recognised that may change laterally [83];
(iii) considerations such as fuel consumption constraints will require additional dynamic
equations; (iv) to obtain smoother solutions, the derivatives of the accelerations (i.e.
jerks) may be used as control inputs—in this case the input vector becomes u = [jx, jy]

T

with the additional equations ȧx = jx and ȧy = jy required; (v) fixed-trajectory method
is easily recovered by making the track width arbitrarily small (|n| ≤ ε with ε small)—in
this case the track becomes the racing line.
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(a) (b)

Figure 14. (a) Car on Barcelona-Catalunya and (b) motorcycle on Mugello, from [82].

10. Examples of application

MLTS on three-dimensional track models of the Barcelona-Catalunya and Mugello cir-
cuits are shown in Figure 14. The (a) part of the figure was obtained using g-g diagrams
of a car (Figure 13 (a)) on the Barcelona track, while the (b) part is for a motorcycle
(Figure 13 (b)) on Mugello. The free-trajectory QSS methodology discussed in Section 9
was employed. The results from these calculations include the optimal trajectories, and
the associated speed profiles. All the other vehicle states can be found by back calcu-
lation; each simulation point correspond to a point of the corresponding g-g diagram.
The MLTS was solved using a direct approach, with the original continuous-time prob-
lem discretised and solved as an NLP using IPOPT [47]. The total number of equations
being solved simultaneously was approximatively 12,000, with mesh points spaced be-
tween 0.2 m (on tight corners) and 25 m (on straights) along the centreline. The controls
were longitudinal and lateral ‘jerks’, i.e the time rates of change of acceleration. Three-
dimensional effects result in a change of approximatively 1 s in the lap time for the car
on the Barcelona circuit (the flat circuit being faster), and a change of approximatively
4 s for the motorcycle on the Mugello circuit (the flat circuit being slower in this case).
We refer the reader to [82] for further details.

11. Conclusion

An historical overview of advances in the state-of-the-art of minimum-lap-time simula-
tions of road vehicles is provided, with a commentary on the most widely used modelling
and solution strategies included. Most approaches use either quasi-steady-state vehicle
models with pre-assigned trajectories, or dynamic vehicle models with free trajectories
found by optimization. A combination of quasi-steady-state models, with free trajec-
tories, has been proposed and researched recently. Most of the studies reported in the
literature use two-dimensional road models. More recently, three-dimensional road mod-
els based on geometric ribbons have been developed—these models are laterally flat. In
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another recent devolvement, road models with a laterally varying camber have been pro-
posed. The use of the ‘elapsed distance’ as the independent variable is now ubiquitous,
as are curvilinear coordinates for track and vehicle-positioning descriptions. The optimal
control problem resulting from the minimum-lap-time problem is usually solved with a
direct approach based on nonlinear programming. That said, several studies using indi-
rect methods (based on first-order necessary conditions) have also been reported. The
most commonly employed solution techniques are based on collocation (both direct and
indirect), with a number of studies employing multiple-shooting also reported.
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