17,321,346 research outputs found

    Secure direct communication using Einstein-Podolsky-Rosen pairs and teleportation

    Full text link
    A novel scheme for secure direct communication between Alice and Bob is proposed, where there is no need for establishing a shared secret key. The communication is based on Einstein-Podolsky-Rosen pairs and teleportation between Alice and Bob. After insuring the security of the quantum channel (EPR pairs), Bob encodes the secret message directly on a sequence of particle states and transmits them to Alice by teleportation. In this scheme teleportation transmits Bob's message without revealing any information to a potential eavesdropper. Alice can read out the encoded messages directly by the measurement on her qubits. Because there is not a transmission of the qubit which carry the secret message between Alice and Bob, it is completely secure for direct secret communication if perfect quantum channel is used

    Electric and magnetic form factors of strange baryons

    Full text link
    Predictions for the electromagnetic form factors of the Lambda$, Sigma and Xi hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors G_M(Q^2) can be parametrized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.Comment: 15 pages, 8 figures, 3 tables, submitted to Eur. Phys. J.

    Optical conductivity of the one-dimensional dimerized Hubbard model at quarter filling

    Full text link
    We investigate the optical conductivity in the Mott insulating phase of the one-dimensional extended Hubbard model with alternating hopping terms (dimerization) at quarter band filling. Optical spectra are calculated for the various parameter regimes using the dynamical density-matrix renormalization group method. The study of limiting cases allows us to explain the various structures found numerically in the optical conductivity of this model. Our calculations show that the dimerization and the nearest-neighbor repulsion determine the main features of the spectrum. The on-site repulsion plays only a secondary role. We discuss the consequences of our results for the theory of the optical conductivity in the Bechgaard salts.Comment: 11 pages and 12 figure

    Reconclining phi radiative decays with other data for a0(980), fo(980), pi-pi -> KK and pi-pi -> eta-eta

    Full text link
    Data for phi -> gamma (eta-pizero) are analysed using the KK loop model and compared with parameters of a0(980) derived from Crystal Barrel data. The eta-pi mass spectrum agrees closely and the absolute normalisation lies just within errors. However, BES parameters for fo(980) predict a normalisation for phi -> gamma (pizero-pizero) at least a factor 2 lower than is observed. This discrepancy may be eliminated by including constructive interference between fo(980) and sigma. The magnitude required for sigma -> KK is consistent with data on pi-pi -> KK. A dispersion relation analysis by Buttiker, Descotes-Genon and Moussallam of pi-pi -> KK leads to a similar conclusion. Data on pi-pi -> eta-eta also require decays of sigma to eta-eta. Four sets of pi-pi -> KK data all require a small but definite fo(1370) signal.Comment: 21 pages, 11 figures, Small rearrangement of reference

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon

    Get PDF
    The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by FermiFermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from November 2007 to January 2013, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10×1010^{\circ}\times 10^{\circ}, finding a source extension σext\sigma_{ext}= 1^{\circ}.8±\pm0^{\circ}.5. The observed differential energy spectrum is dN/dE=(2.5±0.4)×1011(E/1TeV)2.6±0.3dN/dE =(2.5\pm0.4) \times 10^{-11}(E/1 TeV)^{-2.6\pm0.3} photons cm2^{-2} s1^{-1} TeV1^{-1}, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by FermiFermi-LAT, and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with Supernova Remnants indicates that the particle acceleration inside a superbubble is similar to that in a SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    New NLO Parametrizations of the Parton Distributions in Real Photons

    Full text link
    We present new NLO sets of parton distributions in real photons based on a scheme invariant definition of the non-perturbative input. We compare the theoretical predictions with LEP data and a best fit allows us to constrain the parameters of the distributions. The shape of the gluon distribution is poorly constrained and we consider the possibility to measure it in photoproduction experiments. Three parametrizations which aim to take into account the scattering of LEP data are proposed. They are compared to other NLO parametrizations.Comment: 38 pages, 23 Postscript figures, fig. 6,7,8,9 improved, comparisons with other NLO parametrizations, added reference

    Asymptotics of class numbers

    Full text link
    A "simple trace formula" is used to derive an asymptotic result for class numbers of complex cubic orders.Comment: 37 page

    Some consequences of a noncommutative space-time structure

    Full text link
    The existence of a fundamental length (or fundamental time) has been conjecture in many contexts. Here one discusses some consequences of a fundamental constant of this type, which emerges as a consequence of deformation-stability considerations leading to a non-commutative space-time structure. This mathematically well defined structure is sufficiently constrained to allow for unambiguous experimental predictions. In particular one discusses the phase-space volume modifications and their relevance for the calculation of the GZK sphere. Corrections to the spectrum of the Coulomb problemb are also computed.Comment: 17 pages Latex, 3 figure
    corecore