9,964,625 research outputs found

    Energy dependence of pion and kaon production in central Pb+Pb collisions

    Get PDF
    Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80 and 158 AGeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s_NN^1/4 with a change of slope starting in the region 15-40 AGeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40 AGeV. A non-monotonic energy dependence of the ratio of K^+ to pi^+ yields is observed, with a maximum close to 40 AGeV and an indication of a nearly constant value at higher energies.The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed

    On tests of local realism by CP-violation parameters of K^0 mesons

    Full text link
    Recently various papers have proposed to test local realism (LR) by considering electroweak CP-violation parameters values in neutral pseudoscalar meson systems. Considering the large interest for a conclusive test of LR and the experimental accessibility to these tests, in this paper we critically consider these results showing how they, albeit very interesting, require anyway additional assumptions and therefore cannot be considered conclusive tests of LR

    Eikonal representation in the momentum-transfer space

    Get PDF
    By means of empirical fits to the differential cross section data on pp and p(bar)p elastic scattering, above 10 GeV (center-of-mass energy), we determine the eikonal in the momentum - transfer space (q^2- space). We make use of a numerical method and a novel semi-analytical method, through which the uncertainties from the fit parameters can be propagated up to the eikonal in the q2q^2- space. A systematic study of the effect of the experimental information at large values of the momentum transfer is developed and discussed in detail. We present statistical evidence that the imaginary part of the eikonal changes sign in the q^2- space and that the position of the zero decreases as the energy increases; after the position of the zero, the eikonal presents a minimum and then goes to zero through negative values. We discuss the applicability of our results in the phenomenological context, outlining some connections with nonperturbative QCD. A short review and a critical discussion on the main results concerning "model-independent" analyses are also presented.Comment: 18 pages, 17 figures, 4 tables, svjour.cls. Revised discussion on the proton's electromagnetic form factor and references added. To appear in Eur. Phys. J.

    Microwave traps for cold polar molecules

    Full text link
    We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm^3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a clear path to producing large samples of polar molecules at temperatures much lower than has been possible previously.Comment: 10 pages, 3 figure

    Direct Fragmentation of Quarkonia Including Fermi Motion Using Light-cone Wave Function

    Full text link
    We investigate the effect of Fermi motion on the direct fragmentation of the J/ψJ/\psi and Υ\Upsilon states employing a light-cone wave function. Consistent with such a wave function we set up the kinematics of a heavy quark fragmenting into a quarkonia such that the Fermi motion of the constituents split into longitudinal as well as transverse direction and thus calculate the fragmentation functions for these states. In the framework of our investigation, we estimate that the fragmentation probabilities of J/ψJ/\psi and Υ\Upsilon may increase at least up to 14 percent when including this degree of freedom.Comment: 7 pages 5 figures Appeared in EPJC; Fig 1 and Appendix revise

    High-contrast dark resonance on the D2 - line of 87Rb in a vapor cell with different directions of the pump - probe waves

    Full text link
    We propose a novel method enabling to create a high-contrast dark resonance in the 87Rb vapor D2-line. The method is based on an optical pumping of atoms into the working states by a two-frequency, linearly-polarized laser radiation propagating perpendicularly to the probe field. This new scheme is compared to the traditional scheme involving the circularly-polarized probe beam only, and significant improvement of the dark resonance parameters is found. Qualitative considerations are confirmed by numerical calculations.Comment: 7 pages, 4 figure

    Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0

    Full text link
    Soft photons inside hadronic jets converted in front of the DELPHI main tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the experimental data as compared to the Monte Carlo predictions is observed. This excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/- 0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected level of the inner hadronic bremsstrahlung (which is not included in the Monte Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8), which is similar in strength to the anomalous soft photon signal observed in fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.

    Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature

    Full text link
    The statistical properties of the bid-ask spread of a frequently traded Chinese stock listed on the Shenzhen Stock Exchange are investigated using the limit-order book data. Three different definitions of spread are considered based on the time right before transactions, the time whenever the highest buying price or the lowest selling price changes, and a fixed time interval. The results are qualitatively similar no matter linear prices or logarithmic prices are used. The average spread exhibits evident intraday patterns consisting of a big L-shape in morning transactions and a small L-shape in the afternoon. The distributions of the spread with different definitions decay as power laws. The tail exponents of spreads at transaction level are well within the interval (2,3)(2,3) and that of average spreads are well in line with the inverse cubic law for different time intervals. Based on the detrended fluctuation analysis, we found the evidence of long memory in the bid-ask spread time series for all three definitions, even after the removal of the intraday pattern. Using the classical box-counting approach for multifractal analysis, we show that the time series of bid-ask spread does not possess multifractal nature.Comment: 8 EPJ pages including 7 eps figure

    A description of the ratio between electric and magnetic proton form factors by using space-like, time-like data and dispersion relations

    Full text link
    We use the available information on the ratio between the electric and magnetic proton form factors coming from recently published space-like data and from the few available time-like data. We apply a dispersive procedure on these data to evaluate the behaviour of this ratio, as a complex function, for all values of q^2.Comment: 12 pages, 7 Encapsulated Postscript figures, uses epsfig, rotating, exscale, amsmath, cite, latexsym, graphics, color packages, added reference

    Multi-scale correlations in different futures markets

    Full text link
    In the present work we investigate the multiscale nature of the correlations for high frequency data (1 minute) in different futures markets over a period of two years, starting on the 1st of January 2003 and ending on the 31st of December 2004. In particular, by using the concept of "local" Hurst exponent, we point out how the behaviour of this parameter, usually considered as a benchmark for persistency/antipersistency recognition in time series, is largely time-scale dependent in the market context. These findings are a direct consequence of the intrinsic complexity of a system where trading strategies are scale-adaptive. Moreover, our analysis points out different regimes in the dynamical behaviour of the market indices under consideration.Comment: 14 pages and 25 figure
    corecore