12,377 research outputs found

    Development of Onchocerca volvulus in humanized NSG mice and detection of parasite biomarkers in urine and serum.

    Get PDF
    BACKGROUND: The study of Onchocerca volvulus has been limited by its host range, with only humans and non-human primates shown to be susceptible to the full life cycle infection. Small animal models that support the development of adult parasites have not been identified. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that highly immunodeficient NSG mice would support the survival and maturation of O. volvulus and alteration of the host microenvironment through the addition of various human cells and tissues would further enhance the level of parasite maturation. NSG mice were humanized with: (1) umbilical cord derived CD34+ stem cells, (2) fetal derived liver, thymus and CD34+ stem cells or (3) primary human skeletal muscle cells. NSG and humanized NSG mice were infected with 100 O. volvulus infective larvae (L3) for 4 to 12 weeks. When necropsies of infected animals were performed, it was observed that parasites survived and developed throughout the infection time course. In each of the different humanized mouse models, worms matured from L3 to advanced fourth stage larvae, with both male and female organ development. In addition, worms increased in length by up to 4-fold. Serum and urine, collected from humanized mice for identification of potential biomarkers of infection, allowed for the identification of 10 O. volvulus-derived proteins found specifically in either the urine or the serum of the humanized O. volvulus-infected NSG mice. CONCLUSIONS/SIGNIFICANCE: The newly identified mouse models for onchocerciasis will enable the development of O. volvulus specific biomarkers, screening for new therapeutic approaches and potentially studying the human immune response to infection with O. volvulus

    Co-infection with Onchocerca volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting?

    Get PDF
    Ivermectin treatment may induce severe adverse reactions in some individuals heavily infected with Loa loa. This hampers the implementation of mass ivermectin treatment against onchocerciasis in areas where Onchocerca volvulus and L. loa are co-endemic. In order to identify factors, including co-infections, which may explain the presence of high L. loa microfilaraemia in some individuals, we analysed data collected in 19 villages of central Cameroon. Two standardized skin snips and 30 mul of blood were obtained from each of 3190 participants and the microfilarial (mf) loads of both O. volvulus and L. loa were quantified. The data were analysed using multivariate hierarchical models. Individual-level variables were: age, sex, mf presence, and mf load; village-related variables included the endemicity levels for each infection. The two species show a certain degree of ecological separation in the study area. However, for a given individual host, the presence of microfilariae of one species was positively associated with the presence of microfilariae of the other (OR=1.79, 95% CI [1.43-2.24]). Among individuals harbouring Loa microfilariae, there was a slight positive relationship between the L. loa and O. volvulus mf loads which corresponded to an 11% increase in L. loa mf load per 100 O. volvulus microfilariae. Co-infection with O. volvulus is not sufficient to explain the very high L. loa mf loads harboured by some individuals

    Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity

    Get PDF
    Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations

    The therapeutic efficacy and macrofilaricidal activity of doxycycline for the treatment of river blindness

    Get PDF
    Background. Onchocerca volvulus and lymphatic filariae, causing river blindness and elephantiasis, depend on endosymbiotic Wolbachia bacteria for growth, development, fertility, and survival. Clinical trials have shown that doxycycline treatment eliminates Wolbachia, causing long-term sterilization of adult female filariae and effecting potent macrofilaricidal activity. The continual reinfection by drug-naive worms that occurs in these trial settings dilutes observable anti-Wolbachia and antifilarial effects, making it difficult to estimate therapeutic efficacy and compare different doxycycline regimens, evaluated at different times after treatment. Methods. A meta-analytical modeling framework is developed to link all usable data collected from clinical trials measuring the Wolbachia status and viability of individual female adult worms collected at various times after treatment with 4, 5, or 6 weeks of daily 100 or 200 mg oral doxycycline. The framework is used to estimate efficacy parameters that are not directly measurable as trial outcomes. Results. The estimated efficacy of doxycycline (the maximum proportional reduction in the percentage of adult female O. volvulus positive for Wolbachia) is 91%–94% on average, irrespective of the treatment regimen. Efficacy is >95% in the majority of trial participants. The life span of Wolbachia-depleted worms is reduced by 70%–80%, from approximately 10 years to 2–3 years. Conclusions. The efficacy parameters are pertinent to the prospects of using doxycycline on a “test and treat” basis for onchocerciasis control and confirm doxycycline as a potent macrofilaricidal therapy. The modeling approach is more generally relevant to the design and evaluation of clinical trials for antifilarial drugs conducted in endemic settings

    The macrofilaricidal efficacy of repeated doses of ivermectin for the treatment of river blindness

    Get PDF
    Background: Mass drug administration (MDA) with ivermectin is the cornerstone of efforts to eliminate human onchocerciasis by 2020 or 2025. The feasibility of elimination crucially depends on the effects of multiple ivermectin doses on Onchocerca volvulus. A single ivermectin (standard) dose clears the skin-dwelling microfilarial progeny of adult worms (macrofilariae) and temporarily impedes the release of such progeny by female macrofilariae, but a macrofilaricidal effect has been deemed minimal. Multiple doses of ivermectin may cumulatively and permanently reduce the fertility and shorten the lifespan of adult females. However, rigorous quantification of these effects necessitates interrogating longitudinal data on macrofilariae with suitably powerful analytical techniques. Methods: Using a novel mathematical modeling approach, we analyzed, at an individual participant level, longitudinal data on viability and fertility of female worms from the single most comprehensive multiple-dose clinical trial of ivermectin, comparing 3-monthly with annual treatments administered for 3 years in Cameroon

    Omentopexy for correction of right abomasal displacement: results in 135 cows

    Get PDF
    One hundred and thirty-five cows were surgically treated for correction of right displaced abomasum (RDA) using the right flank omentopexy technique. In 33 cows an abomasal dilatation was diagnosed. Abomasal volvulus was found in 99 animals and omaso-abomasal volvulus in three. In-hospital mortality was 15% (n = 20). None of the cows with abomaso-omasal torsion survived. Ninety-seven percent (n = 32) of the cows with abomasal dilatation and 84% (n = 83) of the cows with abomasal volvulus were discharged from the clinic. Six months after surgery, respectively 94% of the cows with abomasal dilatation had survived. This percentage fell to 88.5% after another half year. For cows with abomasal volvulus, these survival rates were 74% and 62%, respectively. Regardless of the type of abomasal dislocation, 77% of the total group of animals survived after six months and 66% after one year. Six months after surgery, good milk production was reported in 67% (n = 58) of the surviving cows; this figure rose to 91% of the surviving cows (n = 63) after 12 months

    Phylogenetic relationships of the Wolbachia of nematodes and arthropods

    Get PDF
    Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes

    Stage-specific proteomes from onchocerca ochengi, sister species of the human river blindness parasite, uncover adaptations to a nodular lifestyle

    Get PDF
    Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers
    corecore