5,323 research outputs found

    Decoherence of Quantum-Enhanced Timing Accuracy

    Get PDF
    Quantum enhancement of optical pulse timing accuracy is investigated in the Heisenberg picture. Effects of optical loss, group-velocity dispersion, and Kerr nonlinearity on the position and momentum of an optical pulse are studied via Heisenberg equations of motion. Using the developed formalism, the impact of decoherence by optical loss on the use of adiabatic soliton control for beating the timing standard quantum limit [Tsang, Phys. Rev. Lett. 97, 023902 (2006)] is analyzed theoretically and numerically. The analysis shows that an appreciable enhancement can be achieved using current technology, despite an increase in timing jitter mainly due to the Gordon-Haus effect. The decoherence effect of optical loss on the transmission of quantum-enhanced timing information is also studied, in order to identify situations in which the enhancement is able to survive.Comment: 12 pages, 4 figures, submitte

    The relative and absolute timing accuracy of the EPIC-pn camera on XMM-Newton, from X-ray pulsations of the Crab and other pulsars

    Full text link
    Reliable timing calibration is essential for the accurate comparison of XMM-Newton light curves with those from other observatories, to ultimately use them to derive precise physical quantities. The XMM-Newton timing calibration is based on pulsar analysis. However, as pulsars show both timing noise and glitches, it is essential to monitor these calibration sources regularly. To this end, the XMM-Newton observatory performs observations twice a year of the Crab pulsar to monitor the absolute timing accuracy of the EPIC-pn camera in the fast Timing and Burst modes. We present the results of this monitoring campaign, comparing XMM-Newton data from the Crab pulsar (PSR B0531+21) with radio measurements. In addition, we use five pulsars (PSR J0537-69, PSR B0540-69, PSR B0833-45, PSR B1509-58 and PSR B1055-52) with periods ranging from 16 ms to 197 ms to verify the relative timing accuracy. We analysed 38 XMM-Newton observations (0.2-12.0 keV) of the Crab taken over the first ten years of the mission and 13 observations from the five complementary pulsars. All the data were processed with the SAS, the XMM-Newton Scientific Analysis Software, version 9.0. Epoch folding techniques coupled with \chi^{2} tests were used to derive relative timing accuracies. The absolute timing accuracy was determined using the Crab data and comparing the time shift between the main X-ray and radio peaks in the phase folded light curves. The relative timing accuracy of XMM-Newton is found to be better than 10^{-8}. The strongest X-ray pulse peak precedes the corresponding radio peak by 306\pm9 \mus, which is in agreement with other high energy observatories such as Chandra, INTEGRAL and RXTE. The derived absolute timing accuracy from our analysis is \pm48 \mus.Comment: 16 pages, 9 figures. Accepted for publication on A&

    Timing accuracy of the Swift X-Ray Telescope in WT mode

    Full text link
    The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on Astronomy&Astrophysic

    Analysis of short pulse laser altimetry data obtained over horizontal path

    Get PDF
    Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter

    The ballistic acceleration of a supercurrent in a superconductor

    Full text link
    One of the most primitive but elusive current-voltage (I-V) responses of a superconductor is when its supercurrent grows steadily after a voltage is first applied. The present work employed a measurement system that could simultaneously track and correlate I(t) and V(t) with sub-nanosecond timing accuracy, resulting in the first clear time-domain measurement of this transient phase where the quantum system displays a Newtonian like response. The technique opens doors for the controlled investigation of other time dependent transport phenomena in condensed-matter systems.Comment: 4 pages, 3 figure

    An improved solar wind electron-density model for pulsar timing

    Full text link
    Variations in the solar wind density introduce variable delays into pulsar timing observations. Current pulsar timing analysis programs only implement simple models of the solar wind, which not only limit the timing accuracy, but can also affect measurements of pulsar rotational, astrometric and orbital parameters. We describe a new model of the solar wind electron density content which uses observations from the Wilcox Solar Observatory of the solar magnetic field. We have implemented this model into the tempo2 pulsar timing package. We show that this model is more accurate than previous models and that these corrections are necessary for high precision pulsar timing applications.Comment: Accepted by ApJ, 13 pages, 4 figure

    Detecting massive gravitons using pulsar timing arrays

    Get PDF
    Massive gravitons are features of some alternatives to general relativity. This has motivated experiments and observations that, so far, have been consistent with the zero mass graviton of general relativity, but further tests will be valuable. A basis for new tests may be the high sensitivity gravitational wave experiments that are now being performed, and the higher sensitivity experiments that are being planned. In these experiments it should be feasible to detect low levels of dispersion due to nonzero graviton mass. One of the most promising techniques for such a detection may be the pulsar timing program that is sensitive to nano-Hertz gravitational waves. Here we present some details of such a detection scheme. The pulsar timing response to a gravitational wave background with the massive graviton is calculated, and the algorithm to detect the massive graviton is presented. We conclude that, with 90% probability, massles gravitons can be distinguished from gravitons heavier than 3×10−223\times 10^{-22} eV (Compton wave length λg=4.1×1012\lambda_{\rm g}=4.1 \times 10^{12} km), if biweekly observation of 60 pulsars are performed for 5 years with pulsar RMS timing accuracy of 100 ns. If 60 pulsars are observed for 10 years with the same accuracy, the detectable graviton mass is reduced to 5×10−235\times 10^{-23} eV (λg=2.5×1013\lambda_{\rm g}=2.5 \times 10^{13} km); for 5-year observations of 100 or 300 pulsars, the sensitivity is respectively 2.5×10−222.5\times 10^{-22} (λg=5.0×1012\lambda_{\rm g}=5.0\times 10^{12} km) and 10−2210^{-22} eV (λg=1.2×1013\lambda_{\rm g}=1.2\times 10^{13} km). Finally, a 10-year observation of 300 pulsars with 100 ns timing accuracy would probe graviton masses down to 3×10−233\times 10^{-23} eV (λg=4.1×1013\lambda_{\rm g}=4.1\times 10^{13} km).Comment: 13 pages, 5 figures, Accepted by Ap
    • …
    corecore