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1
to INTRODUCTION

The technique of using atmospheric dispersion to estimate atmospheric

delay was first proposed by Bender and Owens l in 1965. Since then, many

researchers have used this technique for applicatio ►ts in globk43 surveying„

geophysical research, and positioning . 2i9,4 More recently, there has been

considerable interest in developing remote sensing techniques for the global

measurements of temperature and pressure based on the theory of atmospheric

dispersion. Gardner s has proposed a pressure measurement technique which

uses a pulsed two-color laser altimeter for ranging over the ocean. The

success of this technique depends on Vh^,t accuracy in measuring the

differential propagation time. In general, picosecond accuracy in

differential arrival-time measurement is required in order to achieve

millibar-level pressure measurements. In a recent paper, we have expended

the theory on differential arrival-time estimation to include speckle

noise. 6 To demonstrate the feasibility of this technique, Abshire et al.718

have conducted preliminary experimental studies by ranging to retro-

reflectors over horizontal paths. The experimental timing accuracy was about

6 picoseconds. This corresponds to a pressure measurement accuracy of 3

millibars at nadir. In this report, we describe recent pulsed measurements

of atmospheric delay obtained by ranging to the more realistic targets

including a simulated-ocean target and an extended plate target. These

measurements are used to estimate the expected timing accuracy of a

correlation receiver system. The experimental work reported here was

conducted using a pulsed two -color laser altimeter developed at NASA-GSFC.
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2. TAR6VT CONFXGURATIONS

Abshire et al. 718 have done extensive experimental studies on the

differential arrival time and the atmospheric delay of optical returns by

ranging to rstro-reflectors over the horizontal paths using the 355- and

1064-nm wavelengths. They have also performed experiments on single-color

#	 returns from an adjustable extended target over the horizontal paths to

test various receiver processing algorithms as well as to identify error

t
sources. 8 The experiment involved a "V"-shaped target which consisted of 14

Af

plastic bicycle reflectors on adjustable mounts to simulate the depth-

distributed specular returns from the ocean surface. The test results

indicated that it is posaible to resolve the returns from individual bicycle

reflectors. The fluctuation, of the strengths between shots in the return

was believed to be caused by the combination of shot noise and speckle-

induced fluctuations introduced by the target.

In an attempt to identify the different noise sources, ve conducted

additional experiments in March, 1983. The main objectives of these new

experiments were to further study the speckle-noise effect on the received

pulses and to investigate the timing performance of a correlation receiver 	 j

based on the measurements which we obtained for the various target 	 .	 1

configurations. In this chapter, the detailed descriptions of the ranging

path and the target configurations are furnished.

The experiment took place at NASA-GSFC during the last week of March,

A:

1983. During the experiment, the laser pulses were transmitted over a 	 ry

horizontal path using a periscope mirror (Fig. 1) mounted permanently on the
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roof of the laboratory. The ranging targets were located on the roof of

another building at approximately the same altitude, The round-trip distance

between the targets and the ranging system was 753 m.

The first target that was used in the experiment was a 36" by 1.5" Flat

plate covered by reflective tape. A single retro-reflector was mounted 9"

in front of the plate. It was used for comparison aM alignment purposes.

The front view of this target is shown in Fig. 2. It should be noted that

the radius of the laser footprint was on the order of one centimeter.

Since the length of the plate target was 36", the amount of pulse broadening

could be controlled by tilting the target surface at the appropriate angle.

This configuration is a typical example of a continuous range-spread target.

The amount nf range spread ( S) is given by

f

S = L cos¢ ,	 (1)

where L is the length of the plate target, and ^ is the tilting angle between

the plate target and the ray of incidence.

After a few sets of raw data for this target configuration were

collected, we discovered that some of the received pulses on each data set

contained only minimal energy from both the retro -reflector and the plate

target. We later concluded that the plate target of 1 .5" width was simply

too narrow to compensate for the effect of vertical laser beam wandering.

During some measurements, the turbulence steered the beam off target, which

accounted for the small return energy.	 In order to correct this problem, a

;p
a

i

"

f
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36" by 6" flat plate was used to replace the old target. The new target is

shown in Fig. 3.

The return pulses from these targets have widths of about twice the

amount of range spread. Since each received pulse width is longer than the

t	 speckle correlation length, the target-induced speckle causes random, small-

r'

scale fluctuation within an individual received pulse.9

The second target was a simplified version of the "V"-shaped, extended

target in Abshire's experiment. In this configuration, one side of the "V"

Was covered by the non-reflective blanket so that the target became acs array

of seven bicycle reflectors with each reflector offset by 6" behind and 1"
_ r

to the right of the previous reflector. 	 Each individual reflector had a 2.5"

dia. circular reflecting surface which consisted of a plastic shield on top of

the numerous small cube-corner reflectors. 	 Since the plastic shield had an
sf

optically rough surface, much of the reflected energy was scattered away from C

the receiving telescope so that the back-scattered signal was more difficult !,'

to detect.	 To overcome this difficulty, a retro-reflector was placed 9" in

front of the first bicycle reflector. 	 With this strong returned signal from

the retro-reflector as a reference, it was relatively easy to locate the

° target return.	 The picture of this target is shown in Fig. 4. f
9

w
In this configuration, the target array as a whole is a range-spread

r

target, but each bicycle reflector consists of numerous non-dispersive cube-

corner reflectors.	 As a result, the target-induced speckle will cause 1

4 random 'fluctuations in the total received energy as well as small-scale !

I

fluctuation within each received pulse.
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9
3. SYSTEM F.ARDWARE

A pulsed laser ranging system was constructed and developed at NASA-GSFC

for the experimental two-color laser altimetry research. The objectives for

building this system were both to verify the theoretical instrument

performance and to determine the technical limits in measuring the atmospheric

delay. This system has gone through many modifications in order to improve

its performance. The block diagram of an older version of this system is

shown in Fig. 5, and summaries of the norminal specifications of the laser,

optical, and receiver subsystems are given in Tables 1, 2, and 3,

respectively. In the new ranging system that we used throughout our

experiments, the bias error in measuring the atmospheric delay was reduced

by using a single detector for both the 355- and 1064-nm pulses and by

reducing the magnification in the receiver optics. Roth of these changes have

been incorporated into the receiver design shown in Fig. 6. This subsystem

has replaced the subsystem within the dashed lines in Fig. 5. Airborne

experiments using this system are also planned for measurements over the ocean

later this year. In the future, a dual-channel streak tube camera-based

receiver system will be employed to replace the waveform digitizer which

will yield a much higher time resolution. This chapter outlines the operation

of the ranging system for the horizontal path experiment. Detailed

descriptions of the subsystems and their performance limitations can be found

in [7].

During the experiment, the mode-locked frequency-tripled ND:YAG laser

transmitter produced optical pulses at 1064 nm. A small fraction ( about 4%)
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ble 2. Optical system specifications
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Manufacturer:	 Quantel International, Model YG40

T'	 Dye type:	 Kodak Q-Switch-1 A9740

Laser rods:	 ND:YAG, 6 mm diameter, 65 nun long
i

Harmonic conversion crystals:	 KD*P - Type 1

Output energy:	 6 mJ at 1064 nm, 3 mJ at 532 nm,

1W at 355 nm

Output pulse width: 	 60 - 100 psec (nominal)
4 .
	

'

9
	

Repetition rate:	 5 pulses per second

Table 1.	 Laser specifications
5

A. .s 4
4y

t&

P	 ,
^v

Turning mirrors: Enhanced Al surface

F Roof mirror: 38 em dia. flat, enhanced Al surface

Telescope assembly: Elliptical cross-section, 459 sq. cm
.s

. collection area, 91.4 cm focal length

Field stop: 0.16 cm dia., telescope FOV = 1.78 mrad

j
R

Narrow-band filters: 355 nm: 10 nm FWHM, 532 nm: 2 nm FWHM,

1064 nm: 2 nm FWHM

Photomultipliers: Varian 154 static-crossed-field,

160 psec impulse response

PM3: 5-20 photocathode, QE 17% at 355 nm
Fti

PM2: InGaAsP photocathode, QE 12% at 532 nm

PM1: InGaAsP photocathode, QE 2.8% at 1064 nm

mounted in housing at approx. -10 deg. C

X18'

i

^q

z

4

Y	
f

d'	 1

t4^

—n.•.	 L-A	 ^ ice,	 .r-' ^... ^_..	 .^..^	 .., ..._
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Calibration source: l GHz VCO, manually tuned and referenced

to frequency counter

Discriminators: Ortec 934, constant fraction type

Time interval unit: Hewlett-Packard 5370, 100 psec accuracy

Stop gate generator: Ortec 416A Gate and Delay generator

Waveform digitizer: Tektronix 87912 with 7A29 and 7B15

plug-ins, 600 Miz bandwidth, 500 nsec/div

sweep speed

Minicomputer: Digital Equipment Corporation Minc-11,

=• with LSI 11/23 processor, RT-11

operating system

Table 3, Receiver Electronics
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of the transmitted energy was reflected by a beam splitter into the reference

path to trigger the timing circuit. The remainder of the energy passed

through a beam splitter and was directed over the atmospheric path to the

target reflector(s). The reflected energy was collected by the telescope and

was directed through a shutter into the receiver assembly. The amount of

collected energy was varied from one set of data to the next by carefully

controlling the effective collection area of the receiver telescope.

This system was operated in the ranging mode to measure the system delays

and the atmospheric delay. The photomultiplier outputs were recorded by the

Tektronix R7912 waveform digitizer. In these measurements, the time biases	 n

caused by digitizer sweep speed nonlinearities and time-walk were minimized by

using specially developed calibration procedures. Normally, 200 individual
{

measurements were recorded in this mode. The mean pulse separation time	 E

^	

_ b

between the returns from the retro-reflector and the target and the mean

flight-time reading were then computed from these data.

The waveforms of the received pulses are of principal interest in this

N	
experiment because of their applications to remote pressure measurements. In tl

the following chapters, the detailed description of the waveform processing

and the analysis of the timing performance of a correlation receiver using

these waveforms are given.	 1'

r; t

F	 i

r	 .	 ^)



T 	 arg max(l_. dt S(t) S(t + T)l

T

1

is

k. DATA PROCESSING

Several sets of returned pulses from both the plate target and the

bicycle reflector array were collected. Different data sets of the same

target configuration correspond to measurements taken with different receiving

aperture sizes and/'or at different times.

There are 200 individual waveforms of the received signals recorded in

each data set. Due to the photomultiplier and digitizer time jitter, the

waveforms appear to shift temporally from pulse to pulse in a random ;Fashion.

This time ,fitter would contribute additional error to the timing accuracy of

the receiver if left uncorregted. Since we are only interested in the

differential arrival time between the retro-reflector returns and the tart

returns, we can correct the time-jitter problems by using the peak returns

from tLa retro-reflector as the time reference. Specifically, the time

positions of the retro-reflector peak returns are first determined by using

a center-of-mass algorithm. A mean peak position is then computed, and all

the waveforms are aligned with respect to this mean peak position. After

the waveforms in a data set are aligned, the corresponding mean, standard

deviation, and the signal-to-noise ratio for that set of data are computed.

If an individual received signal is denoted by S(t), and the mean

received signal by S(t), then the correlation receiver estimates the arrival

time according to

4F;

P

I
i
3



i 1..

lG

In this experiment, the arrival times of the returned pulses From the

plate aad the bicycle reflector targets are the principal interests. Because

each aligned waveform in every data sat also includes the retro-reflector

return of 1000 pace FWHM width which contaminates a portion of the extended

target return, it is necessary to eliminate the retro-reflector returns fromr

the waveforms before correlating. This problem of cross-over is particularly

severe in the bicycle reflector returns where the separation times between

the peak retro-reflector returns and the peak returns from the first bicycle

reflector are only about 750 psec. In order to recover the net extended

target returns, the first halves of the retro-reflector returns and their

mirror images are subtracted from the return waveforms. A typical return
a

waveform ihic„ included both the returns from the bicycle reflectors and the

retro-reflector is shown in Fig. 7(a), and the same waveform after subtracting

the retro-reflector return is shown in Fig. 7(b). We can see that the tail

of the return from the first bicycle reflector is recovered very nicely.

The pulse subtraction routine has been incorporated into the correlation

algorithm. The first part of this algorithm finds the mirvir image and

performs the subtraction. The second part performs the correlation between

the resultant mean waveform of the data and each individual resultant

°	 waveform, and locates the peak of the correlation function. This peak
;z

corresponds to the estimate of the time of arrival. The last part of

the algorithm calculates the mean and the standard deviation of the arrival

time. The results obtained using this algorithm are then presented in the

forms of a history plot and a histogram.

The results are shown in Fig. 8 through Fig. 85. A list of different

of
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1Figure 7(a). A typical return waveform w hich contains both the returns
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target configurations and parameters associated with these results is given

in Table 4.
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rrwwww rrrrrwwr www^wrwrwwwwwwwrrrw

File
wrwrwrwrrwwwwwwr

------Target	 w
 —Mwwwwrw

Tilt.
rrwwrw ww
Rec. Laser Pulse	 Time Mag.

Name Configuration Angle Apert. Width Scale
/unit)

Vale
(pe^ unit)(deg) (sq.cm) (psee) (ps

P0329A 36"x1.5" Plate 45 459 60 19.53 0.142

P0329B 36"x1.5" Plate 45 301 60 19.53 0.142

P0329C 36"x,1.5" Plate 45 172 60 19.53 0.142

PO401A 36"x6" Plate 30 459 100 19.53 0.568

PO401B 36"x6" Plate 30 301 100 19.53 0.568

PO401C 36"x6" Plate 30 172 100 19.53 0.568

PO401D 36"x6" Plate 30 71 100 19.53 0.284

PO401E 36"x6" Plate 30 32 100 19.53 0.0568

T0331A Bike Reflectors 459 100 19.53 1:42

T0331B Bike Reflectors 301 100 19.53 1.42

T0331C Bike Reflectors 172 ,.fi1 19.53 1.42

T0331D Bike Reflectors 71 100 19.53 1.42

T0331E Bike Reflectors 32 100 19.53 1.42

rr—rrr—rwrurrrrrra.rr-----rwwrrr rr..rrrrr--wrrrrrrrwrrrrr.nrrrrr rw—rrr—wrrwrrrrrw
e

Table 4. List of horizontal path experiments conducted at NASA-GSFC
during the last week of March, 1933.

s'	 **Note: 1. The time scale applies to all the plots, the timing histories,
and the timing histograms.

k	 2. The magnitude scale applies only to the waveforms of the
received siggnals and the mean signals, and the standard

wb;	 deviation plots.
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5. DATA ANALYSIS

From the exper$,mt ntal results, we observe considerable fluctuations both

in time and amplitude in the received signal waveforms. The main sources

which contributed to random amplitude fluctuations are fluctuations in laser

output energy, shot noise, speckle noise, turbulence, and random gain of the

photomultiplier. The main sources of temporal fluctuations are the time

,jitter in the photomultiplier and waveform digitizer. As mentioned in

Chapter k, the problem of temporal fluctuation was corrected by properly

aligning the waveforms using the retro-reflector returns. In this chapter,

we concentrate on the problem of amplitude fluctuation and the timing

performance of the correl a tion algorithm.

Due to the nature of the noise sources, there are different types of

amplitude fluctuations presented in the laser ranging measurements.

Fluctuations in laser output energy and photomultiplier's random gain

contribute to fluctuations in the received energy level from pulse to pulse.

The effects of turbulence and shot noise cause, fluctuations in energy level

and distortion of the received pulse shape. The effect of speckle noise

on the extended target-returns causes both fluctuations in energy level and

small-scale fluctuations within each received pulse.

The retro-reflector has an optically smooth surface, so its returns are

free of speckle noise-induced fluctuations. Also, because it is a point

target, the problem of pulse distortion is nonexistent. This fact is well-

illustrated by referring to the recorded waveforms. In these waveforms,

the retro-reflector returns have very smooth Gaussian shapes with widths
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equal to the impulse response of the receiver.	 The variations in energy

level.4 ..,Hong them are due to other noise sources.

By co;,q^^iring the returns from the extended targets with those from the

retro-reflector, we find that the returns from the extended targets drop off

much faster than those from the retro-reflector as the receiving aperture

area decreases. 	 This is 'because the optically rough surfaces of the extended

targets cause the reflected beam to scatter. 	 The portion of the scattered

beam being intercepted by the receiving telescope also spreads over the entire

aperture, and so any changes in the aperture area will cause the changes in
F
F*

the amount of received energy.	 On the other hand, the reflected beam from the

nondispersive retro-reflector is directed right back to the receiver without

much divergence, this means a total interception of the reflected beam and the

spatial extent of th lo beam are much smaller than the area of the receiving

aperture.	 Consequently, the returns from the retro-reflector are much less

!
sensitive to the changes in the receiving aperture.

In the plate target configuration, the widths of the returned pulses are

broadened by both range spread and curvature effects.	 Due to the physical

size of the receiving aperture, a large number of speckle correlation cells
j^

are intercepted by the receiving telescope, or equivalently, the spatial

granularity or the returns is very fine with respect to the receiving

aperture diameter. 10	This, in turn, implies that the effects of the speckle

noise-induced fluctuations are negligible. 	 Also, because of the larger target

>F	 .

area, the return energy from the plate target is much less sensitive to the

-. turbulence-induced horizontal beam wanderiag than that from the retro-

reflector.	 That is the reason for the higher SNR`s in the plate target
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returns than those in the retro-reflector. returns.

The waveforms of the received pulses from the bicycle reflector array

indicate very fine Gaussian-shaped structures. 	 These correspond to the

returns from the first few bicycle reflectors within the laser footprint. 	 In

addition to the distortions from overlapping, the shapes of these structures

are very similar to the returns from the retro-reflector, and it is not clear

if there are any speckle noise-induced fluctuations.	 In order to proceed with

the analysis, we hypothetically assume each bicycle reflector to be a retro-

reflector (speckle noise-free situation) and try to express the statistics of

its returns in a form that we can compare with the experimental results. 	 The p;

 s4

analytical result shows that the signal-to-noise ratio of a returned signal
Ci

from a retro-reflector is given by
r
r—

SNR =	
1	 (3)
+ var (a)

s

4

where <N> is the mean tecelved energy, and a is a random proportionality

F

factor which includes the fluctuations due to turbulence, laser output, and

photomultiplier's gain.	 In the shot-noise limiting case, the SNR is

proportional to the mean received energy. 	 This means that, if there is no i

speckle noise-induced fluctuation, we expect each SNR plot to be identical to

z the mean pulse shape. 	 But as the actual SNR plots indicate, the SNR's of the

r6
bicycle reflector returns drop off to a negligible level relative to the SNR's

f,
of the retro-reflector returns. 	 From the above reasoning, we conclude that

there are speckle noise-induced fluctuations in the returns from the bicycle p'	 1
c

y
^.

reflector array, and these fluctuations cause the reductions in SNR.
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Theoretically, the performance of a correlation algor{.*hm in arrival time

estimation is related directly to the returned signal bandwidt. ,, the signal

strength, and the number of speckle correlation cells.	 Since the speckle

noise does not have significant contributions to the returned signals in this

experiment, we shall neglect its effect on the timing performance.

The returns from the bicycle reflector array contain sharp temporal

structures which correspond to high-frequency signals, and the signal

strengths are reasonably high due to the specular nature of the small cube-

corner reflectors. As a result, we expect reasonably good estimates of

arrival times for these returns. On the contrary, the returns from the plate

target contain relatively low-frequency contents, and the signal strengths are

not as high because of the diffused target surface. Therefore, we do not

expect the correlation receiver to perform as well in estimating the arrival

times for these returns. This fact is well-illustrated experimentally by

referring to the histograms of the arrival-time estimation. The results

indicate that the single shut: accuracy is 40 to 120 psee for the bicycle

reflector configuration, while the single shot accuracy is 90 to 140 psec

for the plate target configuration. The timing accuracy of the bicycle

reflector configuration is of considerable interest since this

configuration simulates the actual ocean surface. By averaging over 100

shots, a timing accuracy of 4 psec is achievable. This corresponds to the

pressure measurement accuracy of 2 mbar. Thus, the results show that the

pulsed two-color laser altimeter technique in measuring pressure is promising.

Further experiments have been planned to verify the feasibility of this

Y

k
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technique for airborne and satellite-based applications.
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6. CONCLUSIONS

The horizontal path ranging experiment was conducted in March, 1983 to

verify the feasibility of the remote pressure measurement technique for

weather modeling. The waveforms of the received signals from both the ocean-

simulated bicycle reflector array and the range-spread plate target were

recorded, and their corresponding arrival times were estimated using the

correlation algorithm. For the ocean-simulated bicycle reflector

configuration, the atmospheric delay can be measured with an accuracy of 40

psec on each laser pulse. This accuracy permits 4 psec accuracy on 100-shat

averages of the receiver data. For the plate target configuration, a timing

accuracy of 90 psec on each Laser firing is achievable. This corresponds to a

9-psec accuracy on 100-shot averages. In order to acquire higher accuracies

which are essential to applications in barometric measurements, a receiver

system with better time resolution is required. A streak tube camera-based

receiver system of 5-psec time resolution is planned to replace the waveform

digitizer-based receiver system. Subsequent airborne experiments using this

system are planned in the spring of 1984.
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