7,362 research outputs found

    Sulfonated sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural

    Get PDF
    The natural acidity of sporopollenin, the biopolymer coating the outer walls of pollen grains, was enhanced by the sulfonation of its surface. Modified sporopollenin displaying sulfonic acid groups has been prepared, characterized by elemental analysis, SEM, EDX, FTIR and XPS and tested as a heterogeneous catalyst in the dehydration of D-xylose and xylan to produce furfural. The optimal reaction conditions involve 10 wt % of sulfonated sporopollenin in the presence of 1.5 mmol of NaCl in a biphasic water-CPME system. When heated at 190 °C, the reaction affords furfural in a yield of 69% after 40 min under microwave irradiation. The time dependence of the dehydration and influence of temperature, pentose loading and positive effect of chloride ions on the reaction rate are reported. It was found that the catalytic system, recharged with the pentose and solvent, could be recycled ten times without loss of performance. The transformation of xylan into furfural at 190 °C for 50 min gave furfural in a yield of 37%

    Characterization And Catalytic Upgrading Of Crude Bio-Oil Produced By Hydrothermal Liquefaction Of Swine Manure And Pyrolysis Of Biomass

    Get PDF
    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150oC for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (

    Synthesis of an acidic biomorphic carbon-based catalyst for simultaneous esterification and transesterification reactions

    Get PDF
    The activation of cellulose followed by sulfonation produces a biomorphic functionalized carbon material with acid catalytic activity as a solid-acid replacement for homogeneous catalysts. The carbon-based material contains carboxylic and sulfonic acid groups and exhibits high catalytic performance for liquid-phase acid-catalyzed reactions in presence of water. The activation of cellulose at high temperature (600ºC) followed by sulfonation also results in an amorphous carbon with an acidity value close to 1.52 mmol.g-1. The catalytic test shows that the sulfated carbon has enough amount of sulfonic acid groups and exhibit high catalytic activity and stability for esterification and tranesterification of raw materials; achieving a comversion value close to 90.5% at 2h of reaction comparable to an homogeneous catalysts. Structural and active site analyses suggest that the marked difference in catalytic activity is due to the accessibility of reactants to sulfonic acid groups in the carbon structure.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Zinc-rich paint coatings containing either ionic surfactant-modified or functionalized multi-walled carbon nanotube-supported polypyrrole utilized to protect cold-rolled steel against corrosion

    Get PDF
    The intense anodic action of sacrificial zinc pigments ensured viable galvanic function of the highly porous liquid zinc-rich paints (ZRPs) result in deteriorated long-term corrosion resistance often accompanied by cathodic delamination phenomena. In our approach, such a efficacy problem related to the corrosion preventive function of ZRPs is addressed by the application of intimately structured anodic inhibitor particles composed of nano-size alumina and either polyelectrolyte-modified or chemically functionalized multi-walled carbon nanotubes (MWCNT) supported polypyrrole (PPy) in one specific zinc-rich hybrid paint formulation providing balanced active–passive protective functionality. High dispersity of the nanotube-free PPy-deposited inhibitor particles (PDIPs) with uneven polymer distribution on the alumina carrier was confirmed by transmission electron microscopy (TEM) observations. Furthermore, the MWCNT-embedded PDIPs indicated almost complete surface coverage of the alumina-nanotube carriers by PPy with decreased microstructure dispersity which is attributed to the effect of double-flocculants type co-deposition of the oppositely charged polymers causing coalescence of the modified particles. Depending on the amount of the nanotubes and their proportion to the quantities of the deposited PPy and polyelectrolyte as well as the concentration of the surfactant, varied micron-scale association of the PDIPs in the suspensions of dissolved alkyd matrix was disclosed by rheology characterization carried out at particular solid contents similar to hybrid paint formulation. The evenly distributed but less densely packed nano-structure of PPy was evidenced on the polyelectrolyte-modified nanotubes by Fourier-transform infrared (FTIR) spectroscopy whereas more compact polymer film formation was confirmed on the surface of functionalized nanotubes. According to the greater electrical conductivity, enhanced electroactivity and reversibility of the nanotube-embedded PDIPs were indicated over the nanotube-free particles by cyclic voltammetry, depending on the type and the amount of the nanotubes and their modification. Protection function of the hybrid paint coatings (formulated with spherical zinc pigment at 70 wt.%) was investigated by immersion and salt-spray chamber tests over 254 and 142 day periods, respectively. Firm barrier nature of the nanotube-embedded PDIP contained hybrids was proved by electrochemical impedance spectroscopy (EIS) and radio-frequency glow-discharge optical-emission-spectroscopy (RF-GD-OES). Furthermore, due to the increased conductivity of the nanotube-embedded PDIPs cemented in epoxy primers optimally at 0.4 and 0.6 wt.%, altered corrosion preventive behaviour of the hybrid coatings was indicated by the positively polarized open-circuit potentials (OCPs) and the X-ray photoelectron spectroscopy (XPS) detected lower relative quantities of the interfacially accumulated zinc corrosion products, moderate oxidative degradation of the epoxy vehicle. Decreasing oxidative conversion of iron at the surface was indicated by XPS found to correlate with the increasing intensity of zinc corrosion and decreasing oxidative degradation of the epoxy binder, according to the higher nanotube contents of hybrid coatings. In addition, inhibited zinc corrosion caused low rate of oxidative degradation of epoxy, allowing increased durability of coating adhesion and cohesion thereby ensuring reliable protection by zinc-rich compositions. As a conclusion, modified or functionalized MWCNTs acting as unexchangeable doping agents promote enhanced reversibility and increased conductivity of PPy, forming nano-size inhibitor particles with advanced features. Thus, such inhibitor nano-particles in zinc-rich hybrid compositions afford improved barrier and high efficiency galvanic–cathodic corrosion preventive function, exceeding long-term protection capability of the conventional ZRPs

    Preparasi Katalisator Berbasis Biochar dari Ampas Buah Merah untuk Reaksi Transesterifikasi Minyak Jelantah

    Get PDF
    Biodiesel can be produced from plant and animal oils by transesterification reaction using homogeneous or heterogeneous catalysts. In this study, we prepare a biochar-based catalyst, as a heterogeneous catalyst, for transesterification of used cooking oil. The biochar was made by the pyrolysis of the solid waste from the oil extraction of Papuan red fruit (Pandanus conoideus). After the pyrolysis, the solid was immersed in KOH solution to provide the kalium in the produced biochar. The biochar was then sulfonated by H2SO4 5M for 15h at 120°C. Afterwards, the catalysts were characterized by BET for surface area measurement, FTIR for functional groups on the catalyst surface determination and XRD for successive crystallography characterization. The catalytic performance was studied by conducting transesterification of used cooking oil using methanol with the prepared biochar-based catalysts. The transesterification optimum conditions were found to be oil to methanol molar ratio of 1:15, temperature of 60°C, reaction time of 2 hours and the catalyst amount of 3% of the oil weight. Furthermore, the highest biodiesel yield was obtained by the catalyst prepared from biochar that was sulfonated with 5M H2SO4 solutio

    Hemicellulose hydrolysis catalysed by solid acids

    Get PDF
    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running reactions in water, under neutral pH and relatively mild temperature and pressure (120 °C and 10 bar) conditions. Sulphonated resins are highly active, but they leach out sulphonic groups. Sulphonated silicas are less active, but more stable. They have weakly and strongly bound sites and the strongly bound ones do not leach. Zeolites are moderately active and stable. Among them, H-ferrierite especially, despite its small pores, exhibited high activity as well as good recyclability

    Characterization of rice husk-based catalyst prepared via conventional and microwave carbonisation

    Get PDF
    © 2017 Elsevier Ltd. Carbon-based sulphonated catalysts (CBSCs) were made from rice husk for biodiesel production. The CBSCs were prepared by microwave (MW) and conventional heating processes from the same feedstock. In both heating systems, the preparation was a two-step process: carbonisation and sulphonation. The aim of this study was to use MW heating to reduce the conventional CBSC preparation time and enhance the -SO 3 H group attachment to the solid catalyst. The biomass based solid acid catalysts from the two systems were characterised and compared in terms of physicochemical properties including: sulphonation, morphology, surface area and structure. The reaction times for MW assisted carbonisation and for sulphonation were significantly reduced compared to the conventional heating system; these were 30 min vs 4 h and 20 min vs 12 h, respectively. The MW prepared catalyst showed higher sulphur content (4.91%) as compared to the conventional catalyst (2.10%). The FTIR analysis showed well distinguished peaks for -SO 3 H for the MW prepared catalyst suggesting the solid catalyst was successfully sulphonated, while these peaks were very weak for the conventional catalyst. SEM analysis revealed a highly porous structure in the MW prepared catalyst, whilst a denser solid resulted for its conventionally prepared analogue, owing to the higher temperatures applied and longer sulphonation time. The surface area for the MW was higher than the conventionally prepared catalysts (43.63 m 2 /g and 37.01 m 2 /g, respectively). The structure of the samples was identified as amorphous for both catalysts as confirmed by XRD. The prepared CBSC is expected to catalyse biodiesel production reaction as evidenced by its total acidity and surface area
    • …
    corecore