Seminar Nasional Teknik Kimia Kejuangan
Not a member yet
    362 research outputs found

    Prediksi Data Kesetimbangan Cair-cair Pada Sistem Terner Air + Asam Laktat + Pelarut Menggunakan Model UNIFAC-DMD

    Get PDF
    Industrial lactic acid can be produced via chemical synthesis and fermentative production. However, due to the environmental issue and consumer preference, fermentative production of lactic acid is preferable. Lactic acid is used in many industries, including food processing, pharmaceutical, chemical and cosmetic industries. Various methods have been developed for separating lactic acid from its aqueous solution, and liquid-liquid extraction is considered as the most promising and efficient method. Liquid-liquid equilibrium data provide the basis for a rational design and optimal extraction operation. The objective of this study is to predict the liquid-liquid equilibria in the ternary systems of water+ lactic acid + solvent (MIBK, 2-pentanol, 1-hexanol) at temperatures of 303.15 K and 313.15 K and atmospheric pressure (101.3 kPa) using the UNIFAC-Dortmund (DMD) model. The distribution coefficients and separation factors were determined to evaluate the extraction performance of lactic acid. The extraction performance was in the order of MIBK > 1-hexanol > 2-pentanol. The prediction of lactic acid + water + MIBK system at 303,15 K was also compared with the experimental data with the RMSD 2,5 %. This result represented that UNIFAC-DMD was a reliable model for the prediction of liquid-liquid equilibria of system involving lactic acid

    Overview of BTX (Benzene, Toluene, Xylene) Production from Polyethylene Pyrolysis over Ga and Zn Modified HZSM-5 Catalyst

    Get PDF
    The increase in Indonesia's BTX chemical production was carried out to keep pace with global demand trends. The raw material for alternative production is household waste in Indonesia, of which 36% is plastic. Polyolefins make up 76% of the composition of household plastic waste. The rapidly developed BTX production process is the depolymerization of polyolefin plastics by pyrolysis and catalyst modification for catalysis. Polyolefin plastic in the form of polyethylene produces the highest aromatic yield and selectivity among other types of plastic in plastic waste. This study compared two scenarios with the highest yield of aromatics using different catalysts as base literature with an additional overview regarding the topic related. The process scenarios being compared are polyethylene pyrolysis over CaO with Ga/ZSM-5 catalyst and Zn-ZSM-5 catalyst. Literature overview obtained the overall BTX production progress over time and the potential of polyethylene catalytic pyrolysis for further stud

    Physical Separation Bahan Aktif Katoda dari Campuran Hasil CrushingBaterai Lithium-Ion Bekas

    Get PDF
    The increasing use of electric vehicles in the coming decades makes the recycling of spent li-ion batteries an important topic to develop. Recycling spent li-ion batteries is necessary to extract valuable materials from the battery cathode. Elutriation is one of the separation method to separate the cathode and anode from the blackmass resulting from crushing by utilizing differences in density and terminal velocity. The Elutriation method is attractive to develop because the separation is done by adjusting the fluid velocity and does not use chemicals. In this study, 4 variations of fluid load will be used, namely 24, 27, 30, and 34 mL/min. The blackmass to be elutriated has a size variation between -38 to +53 micrometers. From the results under the elutriator, the cathode mass obtained for fluid load variations of 24, 27, 30, and 34 mL/min are 0.8366, 0.4333, 0.3907, and 0.1349 grams. The highest cathode recovery at a load of 24 mL/min is 97.21% and the cathode fraction is 0.4091. Furthermore, it can increase the cathode composition in the mixture by 48.98% and reduce the anode composition by 18.54%

    Thermal Stability Test and Formulation of Sodium Lignosulfonate with Isoamyl Alcohol as EOR Surfactant

    Get PDF
    Sodium lignosulfonate (SLS) is a promising low-cost surfactant that can be prepared from biomass. There has been large interest to utilize SLS as a chemical Enhanced Oil Recovery (EOR) surfactant. For that purpose, SLS is often mixed with other chemicals such as alcohols. The aim of this study was to find the best formulation of mixed-surfactant and to perform its thermal stability. The resulting mixed-surfactant was then characterized with variety of tests: aqueous stability, phase behavior, and IFT values. We found that a mixture that consists of 50 wt.% SLS, 30 wt.% Isoamyl Alcohol, and 20 wt.% of Palm Fatty Acid Distillate (PFAD) soap gave ultralow IFT at 1.864 × 10-3 mN/m. Phase behavior test shows that 1 wt% of mixed-surfactant formed a Winsor Type III. Subsequently, thermal stability test was conducted at 70°C for 90 days. The results showed that the IFT value fluctuates within the range of 10-3 mN/m for the first three weeks. After three weeks, the IFT values tend to increase to 10-2 mN/m until the end of the test. Hence, although ultralow IFT was achieved in the beginning of the test, further study is needed to improve the long-term stability of the present mixed-surfactan

    Sintesis Surfaktan Non-ionik Berbasis Asam Palmitat Melalui Reaksi Esterifikasi dengan Gliserol

    Get PDF
    Esterification of glycerol using the fatty acids is one of methods that is widely used in the conversion of glycerol to synthesize products containing monoacylglycerol (MAG) and diacylglycerol (DAG). Among the various types of surfactants, monoacylglycerol (MAG) and diacylglycerol (DAG) are the most widely used of non-ionic surfactants in many industries such as food, pharmacy and cosmetic. This study aims to determine the effect of temperature on the conversion of palmitic acid and the concentration fraction of products. This research was conducted in a batch system with the temperature variations of 80°C, 100°C and 120°C; using 1% HCl catalyst concentration of palmitic acid mass, and reactant mole ratio of 1:1 (glycerol: palmitic acid). Samples were taken every 10 min during 120 min of reaction, to be analyzed by Thin Layer Chromatography (TLC) to determine the concentration fraction of products. The experimental results showed that increasing temperature enhanced the products formation, thus, increased the fraction concentration of products. However, the highest conversion of palmitic acid (80.14%) was obtained at 120°C, with concentration fraction of 1.67% monoacylglycerol (MAG), 10.96% diacylglycerol (DAG) and 6.01% triacylglycerol (TAG)

    Sintesis dan Karakterisasi Hidroksiapatit Cangkang Rajungan dengan Variasi Suhu Kalsinasi dan Konsentasi KH2PO4 menggunakan Metode Presipitasi Sebagai Sediaan Biomaterial Implan Tulang

    Get PDF
    Bone implants are mostly made of non-degradable metal materials that are toxic to the body. An alternative biodegradable material being developed is Poly-L-Lactic Acid (PLLA). However, PLLA has the disadvantage of being incompatible with bone tissue. So, materials that are biodegradable and biocompatible are needed, such as hydroxyapatite, which has similarities with the minerals in bone and teeth, it suitable as an alternative biomaterial in the biomedical. This research aims to determine the effect of synthesis conditions, with calcination temperature (850, 900, 950, 1000°C) and KH2PO4 concentration (0.25, 0.5, 0.75, 1 M), on the production of hydroxyapatite using raw materials from local blue crab shells, in terms of calcium content, functional group presence, and conformity of hydroxyapatite peaks with JCPDS 09-0432. The synthesized product was characterized using XRF, which showed a relatively high calcium in crab shells of 94.89% at calcination temperature 850°C. The FTIR test results after the mixing of KH2PO4 with CaO showed the formation of hydroxyapatite functional groups, namely OH- and PO43-, in all variables. The XRD test results showed that at 850°C and KH2PO4 concentration of 0.75 M the main peak of hydroxyapatite was closest to JCPDS 09-0432, at a diffraction angle (2θ) of 31.7634

    Pembuatan Biokompatibel Suture Anchor Berbasis 3D Printing Filament dari Nano Hidroksiapatit Berbahan Dasar Cangkang Keong Sawah

    Get PDF
    Suture anchor is used to attach soft tissues to the bone. One of the materials that can be used for making suture anchors is hydroxyapatite [Ca10(PO4)6(OH)2]. Hydroxyapatite (HAp)  has similarities with the properties of bone minerals, so it has the potential to be used as a material for making biocompatible suture anchors. However, HAp is brittle and has poor strength, so HAp is usually combined with polymers such as composites to overcome the limitations of its mechanical properties. One of the polymers that can be used is Polycaprolactone (PCL). In this study, HAp was synthesized from rice field snail shells, due to its high calcium contents.  Further, the combination of HAp and PCL in the manufacture of 3D printing filaments such as suture anchors was obtained. The variables used in this study were the mixing ratio of HAp:PCL in making filaments with a mixing ratio of 0.5:9.5; 1:9 ; 2:8. The results of various variables shows that the tensile strength most optimal composite in 7,3 % when mixing HAp:PCl is 0.5:9,5

    Pemodelan Dekomposisi Ammonium Carbamate pada Tekanan Tinggi di Pabrik Urea

    Get PDF
    Urea acts as a nitrogen-based fertilizer to boost crop production and prevent a worldwide hunger crisis. Considering ways to make urea production in existing plants more environmentally friendly, a detailed study has been conducted on the high-pressure stripper, in which the equipment uses intensive energy to decompose ammonium carbamate. The mathematical model was prepared using the two-film theory. The UNIQUAC and Redlich-Kwong equations of state have been used to express nonideality in the NH3-CO2-H2O-urea system under high pressure and temperature circumstances. Due to the lack of transport properties in extreme conditions, the properties were estimated using a theoretical method. The present study obtained the mass-transfer coefficient in dimensionless form  and . Moreover, the heat-transfer coefficient was calculated using the Chilton-Colburn analogy. The proposed model result matches what is expected with the commercial plant data. Furthermore, with less than 5% relative deviations, the model deserves significant consideration for any practical use in high-pressure stripper simulatio

    Prediksi Kesetimbangan Uap-Cair Sistem Biner 3-Pentanol + Asam Propionat Sebagai Basis Pada Proses Desain Pemurnian Biofuel

    Get PDF
    The depletion of fossil fuels has led to a turn toward renewable and cleaner diesel fuel. In recent years, research has focused on the development of green energy to replace fossil fuels. 3-Pentanol is the preferred alternative fuel because it has better fuel properties compared to other biofuels. 3-Pentanol, as a propionic acid derivative chemical platform, can be produced from renewable biomass through the lactic acid pathway. Therefore, to obtain 3-Pentanol with high purity, a purification process such as distillation is required. Vapor-liquid equilibrium data and the thermodynamic model parameters are needed as basis for designing a distillation column and optimizing the separation process. The aim of this study is to predict the vapor-liquid equilibria (VLE) of the binary systems of 3-Pentanol + propionic acid at 100 kPa, 200 kPa, and 300 kPa using the UNIFAC model in combination with the Hayden-O’Connell model. The prediction results showed no azeotropes found for the studied systems. This study can also open a scope for the thermodynamic studies of biofuel separation process

    Pengaruh Penambahan Silica Nanopartikel dan Surfaktan SLS (Sodium Lignosulfonat) terhadap Proses Adsorpsi pada Enhanced Oil Recovery (EOR)

    Get PDF
    Surfactant flooding is a chemically enhanced oil recovery (EOR) technique that removes trapped residual oil by lowering the oil-water interfacial tension. The success of surfactant flooding is strongly affected by surfactant loss through its adsorption process on reservoir mineral rocks. Surfactant adsorption is a test method to determine whether surfactant is adsorbed in the reservoir rocks. In the surfactant adsorption test, only static adsorption was carried out. The mixed-surfactant formulation used 70% surfactant SLS, 22% PFAD, and 8% 1-octanol (w/v). Mixed-surfactant concentration variations are 0.25, 0.5, 0.75, and 1% (w/v). The IFT test results showed that the smallest IFT value at a concentration of 1% is 3.15 x 10-3 mN/M. In this research, adding silica nanoparticles (SNPs) to the mixed-surfactant solution is expected to reduce the interfacial tension (IFT) value and the amount of surfactant adsorbed in the reservoir rocks. Variations of SNPs concentration used are 0.05, 0.09, 0.15, and 0.3% (w/v). The lowest IFT test result by adding concentration SNPs of 0.09% is 2.07 x 10-4 mN/M. The adsorption test result showed that by adding SNPs with concentration 0.09%  with adsorption time of 24h is effective to used for adsorption

    131

    full texts

    153

    metadata records
    Updated in last 30 days.
    Seminar Nasional Teknik Kimia Kejuangan
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇