1,474,507 research outputs found

    Too sick to drive : how motion sickness severity impacts human performance

    Get PDF
    There are multiple concerns surrounding the development and rollout of self-driving cars. One issue has largely gone unnoticed - the adverse effects of motion sickness as induced by self-driving cars. The literature suggests conditionally, highly and fully autonomous vehicles will increase the onset likelihood and severity of motion sickness. Previous research has shown motion sickness can have a significant negative impact on human performance. This paper uses a simulator study design with 51 participants to assess if the scale of motion sickness is a predictor of human performance degradation. This paper finds little proof that subjective motion sickness severity is an effective indicator of the scale of human performance degradation. The performance change of participants with lower subjective motion sickness is mostly statistically indistinguishable from those with higher subjective sickness. Conclusively, those with even acute motion sickness may be just as affected as those with higher sickness, considering human performance. Building on these results, it could indicate motion sickness should be a consideration for understanding user ability to regain control of a self-driving vehicle, even if not feeling subjectively unwell. Effectiveness of subjective scoring is discussed and future research is proposed to help ensure the successful rollout of self-driving vehicles

    Natural and Human Impacts Bookmark

    Get PDF
    This bookmark on natural and human impacts on climate includes a Web address for additional information and resources. Educational levels: Middle school, High school, Informal education

    Human-triggered earthquakes and their impacts on human security

    Get PDF
    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and earthquake hazards. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. However, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. This type of geohazard has impacts on human security on a regional and national level. For example, the 1989 Newcastle earthquake caused 13 deaths and US$3.5 billion damage (in 1989). The monetary loss was equivalent to 3.4 percent of Australia’s national income (GDI) or 80 percent of Australia’s GDI per capita growth of the same year. This article provides an overview of global statistics of human-triggered earthquakes. It describes how geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes or trigger new seismic events. Lastly, defense-oriented strategies and tactics are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping

    Socio‐economic impact classification of alien taxa (SEICAT)

    Get PDF
    1 Many alien taxa are known to cause socio‐economic impacts by affecting the different constituents of human well‐being (security; material and non‐material assets; health; social, spiritual and cultural relations; freedom of choice and action). Attempts to quantify socio‐economic impacts in monetary terms are unlikely to provide a useful basis for evaluating and comparing impacts of alien taxa because they are notoriously difficult to measure and important aspects of human well‐being are ignored. 2 Here, we propose a novel standardised method for classifying alien taxa in terms of the magnitude of their impacts on human well‐being, based on the capability approach from welfare economics. The core characteristic of this approach is that it uses changes in peoples' activities as a common metric for evaluating impacts on well‐being. 2 Impacts are assigned to one of five levels, from Minimal Concern to Massive, according to semi‐quantitative scenarios that describe the severity of the impacts. Taxa are then classified according to the highest level of deleterious impact that they have been recorded to cause on any constituent of human well‐being. The scheme also includes categories for taxa that are not evaluated, have no alien population, or are data deficient, and a method for assigning uncertainty to all the classifications. To demonstrate the utility of the system, we classified impacts of amphibians globally. These showed a variety of impacts on human well‐being, with the cane toad (Rhinella marina) scoring Major impacts. For most species, however, no studies reporting impacts on human well‐being were found, i.e. these species were data deficient. 2 The classification provides a consistent procedure for translating the broad range of measures and types of impact into ranked levels of socio‐economic impact, assigns alien taxa on the basis of the best available evidence of their documented deleterious impacts, and is applicable across taxa and at a range of spatial scales. The system was designed to align closely with the Environmental Impact Classification for Alien Taxa (EICAT) and the Red List, both of which have been adopted by the International Union of Nature Conservation (IUCN), and could therefore be readily integrated into international practices and policies

    Life cycle assessment of biosolids land application and evaluation of the factors impacting human toxicity through plants uptake

    Get PDF
    Due to the increasing environmental concerns in the wastewater treatment sector, the environmental impacts of organic waste disposal procedures require careful evaluation. However, the impacts related to the return of organic matter to agricultural soils are difficult to assess. The aim of this study is to assess the environmental impacts of land application of two types of biosolids (dried and composted, respectively) from the same wastewater treatment plant in France, and to improve the quantification of human toxicity. A Life Cycle Assessment (LCA) was carried out on a case study based on validated data from an actual wastewater treatment plant. Numerous impacts were included in this analysis, but a particular emphasis was laid on human toxicity via plant ingestion. For six out of the height impact categories included in the analysis, the dried biosolids system was more harmful to the environment than the composting route, especially regarding the consumption of primary energy. Only human toxicity via water, soil and air compartments and ozone depletion impacts were higher with the composted biosolids

    Ancient harbour infrastructure in the Levant: tracking the birth and rise of new forms of anthropogenic pressure

    No full text
    Beirut, Sidon and Tyre were major centres of maritime trade from the Bronze Age onwards. This economic prosperity generated increased pressures on the local environment, through urbanization and harbour development. Until now, however, the impact of expanding seaport infrastructure has largely been neglected and there is a paucity of data concerning the environmental stresses caused by these new forms of anthropogenic impacts. Sediment archives from Beirut, Sidon and Tyre are key to understanding human impacts in harbour areas because: (i) they lie at the heart of ancient trade networks; (ii) they encompass the emergence of early maritime infrastructure; and (iii) they enable human alterations of coastal areas to be characterized over long timescales. Here we report multivariate analyses of litho- and biostratigraphic data to probe human stressors in the context of their evolving seaport technologies. The statistical outcomes show a notable break between natural and artificial sedimentation that began during the Iron Age. Three anchorage phases can be distinguished: (i) Bronze Age proto-harbours that correspond to natural anchorages, with minor human impacts; (ii) semi-artificial Iron Age harbours, with stratigraphic evidence for artificial reinforcement of the natural endowments; and (iii) heavy human impacts leading to completely artificial Roman and Byzantine harbours

    Analysis of prehistoric brown earth paleosols under the podzol soils of Exmoor, UK

    Get PDF
    The deforestation of the upland landscapes in southwest Britain during prehistory is an established archaeological narrative, documenting human impacts on the environment and questioning the relationship of prehistoric societies to the upland landscapes they inhabited. Allied to the paleoenvironmental analyses of pollen sequences, which have provided the evidence of this change, there has been some investigation of prehistoric paleosols fossilized under principally Bronze Age archaeological monuments. These analyses identified brown earth soils that were originally associated with temperate deciduous woodland, on occasion showing evidence of human impacts such as tilling. However, the number of analyses of these paleosols has been limited. This study presents the first analysis of a series of pre‐podzol brown earth paleosols on Exmoor, UK, two of which are associated with colluvial soil erosion sediments before the formation of peat. This study indicates these paleosols are spatially extensive and have considerable potential to inform a more nuanced understanding of prehistoric human impacts on the upland environments of the early‐mid Holocene and assess human agency in driving ecosystem change

    Impacts of Climate Change on Human Development

    Get PDF
    human development, climate change
    • 

    corecore