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Abstract
In this review of seamount ecology, we address a number of key scientific
issues concerning the structure and function of benthic communities, hu-
man impacts, and seamount management and conservation. We consider
whether community composition and diversity differ between seamounts
and continental slopes, how important dispersal capabilities are in seamount
connectivity, what environmental factors drive species composition and di-
versity, whether seamounts are centers of enhanced biological productivity,
and whether they have unique trophic architecture. We discuss how vul-
nerable seamount communities are to fishing and mining, and how we can
balance exploitation of resources and conservation of habitat. Despite consid-
erable advances in recent years, there remain many questions about seamount
ecosystems that need closer integration of molecular, oceanographic, and
ecological research.
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INTRODUCTION

Seamounts are widespread and prominent features of the world’s underwater topography, with
estimates of as many as 200,000 depending on the definition used with respect to elevation (e.g.,
Wessel 2001, Kitchingman et al. 2007, Hillier & Watts 2007)—here we adopt an “ecological”
definition that includes seamounts, knolls, and hills (Pitcher et al. 2007). An increasing amount of
research has described their biological communities and assessed patterns of benthic biodiversity
and marine biogeography. In parallel, concerns have developed about the vulnerability of seamount
communities to human impacts, especially with the development of large-scale bottom trawl
fisheries in the deep sea in recent decades and the prospect of future seabed mining.

A number of review papers have been published over the years that summarize an evolving
understanding of seamount ecology. Major compilations and reviews include those of Keating et al.
(1987), Rogers (1994), and Pitcher et al. (2007), with a recent paper by McClain (2007) addressing
a number of seamount issues. Since 2005, many studies have been coordinated by the international
Census of Marine Life program on seamounts, “CenSeam,” and in this review, we address some
of the most fundamental questions about seamount processes. These include patterns of benthic
biodiversity and connectivity, structural and functional aspects of seamount ecosystems, resource
use, and aspects of how to reconcile seamount exploitation and conservation. The review focuses
primarily on benthic communities and follows the framework of the eight principal scientific
questions developed and addressed during the CenSeam program.

THE SCIENCE QUESTIONS

(1) Differences in Community Composition and Diversity between Seamounts,
and Seamounts-Continental Slope

Seamounts are not all the same; they differ in form, size, depth, and location (Rowden et al. 2005),
and thereby alter local environmental and biogeographical conditions and faunal composition in
distinct ways. At macroecological scales, the benthic fauna broadly reflects the regional species pool
present on neighboring seamounts and continental margins (e.g., Ávila & Malaquias 2003, Samadi
et al. 2006, Hall-Spencer et al. 2007, McClain et al. 2009). Seamount faunas respond to many of the
same large-scale oceanographic gradients and anomalies as slope or abyssal faunas. They exhibit,
for example, the same latitudinal turnover in species composition from tropical to subantarctic
environments (O’Hara 2007), reduced species richness in oxygen-minimum zones (Wishner et al.
1990), and reduced coral habitat suitability in areas with shallow aragonite saturation horizons or
low primary production (Tittensor et al. 2009).

Benthic community composition on seamounts is depth stratified, reflecting environmental
gradients that correlate with depth, such as temperature, oxygen concentration, food availabil-
ity, and pressure (see section 3). Longhurst’s (1998) observation that there is as much marine
faunal change over 1000 m vertically as over 1000 km horizontally is likely to also apply to
seamounts.

The restriction of most marine animals to a limited bathymetric range (e.g., Rex et al. 1999)
implies that their available habitat will be fragmented over areas of undulating seafloor, including
isolated seamounts. This has led to speculation that seamounts may act as biogeographical islands
(Hubbs 1959), with their fauna assembled from the same processes and following the same assembly
rules that are theorized to occur on terrestrial islands (MacArthur & Wilson 1967, Simberloff &
Wilson 1969, Diamond 1975). Although many of these processes are difficult to test in the deep
sea, there have been attempts to estimate levels of endemicity on seamounts.
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A few studies have asserted that high-levels of endemicity may be a feature of seamounts (e.g.,
Richer de Forges et al. 2000, Koslow et al. 2001, Stocks & Hart 2007). However, it is difficult
to distinguish between true local endemicity and sampling biases, particularly those arising from
the occasional collection of rare but widespread species (O’Hara 2007, McClain 2007). Other
studies have reported relatively few endemic species (Samadi et al. 2006, Hall-Spencer et al.
2007), sometimes no more than expected from equivalent areas on the continental slope (O’Hara
2007), although this may be taxon specific (Xavier & van Soest 2007).

Many species found on seamounts are widely distributed within their preferred depth range
(Smith et al. 2004a, Samadi et al. 2006, McClain et al. 2009), suggesting that these species are good
dispersers. Some seamount species have global or near-global distributions, including reef-building
scleractinian corals (Lophelia pertusa, Solenosmilia variabilis, and Madrepora oculata) (Roberts et al.
2006) and fish such as orange roughy (Hoplostethus atlanticus) (Francis & Clark 2005). Many deep-
sea species are lecithotrophic, although the short larval phase (just a few days) that is common in
shallow water is not necessarily the case for deep-sea species. For example, Antarctic lecithotrophic
larvae have been maintained for over 100 days in cold water aquaria (Emlet et al. 1987). Never-
theless, species richness (e.g., Leal & Bouchet 1991) or the degree of similarity between seamount
assemblages (e.g., Parin et al. 1997) has been found to decrease with distance from the continental
margin for some seamount chains and taxonomic groups.

It has also been suggested that seamounts are diversity hotspots, possessing benthic assem-
blages with particularly high species richness (Samadi et al. 2006). Comparing species richness
of seamounts and the continental slope is often complicated by sampling artifacts, and to over-
come this O’Hara (2007) compared levels of ophiuroid species richness between seamount and
nonseamount areas, randomly generating nonseamount populations from areas and depth ranges
that reflected the typical sampling profile of seamounts. Seamounts did not show elevated levels of
species richness, and there were few species restricted only to seamounts. However, although they
share many species, assemblages differ between seamounts and slopes where equivalent samples
have been taken (e.g., Hall-Spencer et al. 2007, O’Hara et al. 2008, McClain et al. 2009). On
temperate NE Atlantic seamounts, many of the species are characteristic of oceanic islands in the
region and make up a significantly different coral assemblage to that recorded on the continental
slope (Hall-Spencer et al. 2007). Along the southern margins of Australia and New Zealand, the
cold-water coral Solenosmilia variabilis can form large reeflike thickets on the seamounts that are
largely absent from the continental slope (Figure 1). Coral thickets contain a distinctive ophi-
uroid fauna (O’Hara et al. 2008) that potentially benefits from the shelter or enhanced food supply
provided by the coral matrix (Roberts et al. 2006). Although these ophiuroids do not appear to
be obligate commensals of Solenosmilia, they are consistently associated with this coral over large
distances (i.e., thousands of kilometers) (O’Hara et al. 2008). In contrast to the coral thicket com-
munities, seamount samples dominated by octocorals, antipatharians, stylasterids, and/or sponges
were more similar to those found on hard substrata on continental slopes (O’Hara et al. 2008).
McClain et al. (2009) found Davidson seamount off the west coast of the United States had a sim-
ilar faunal composition to the adjacent slope area, but that the relative abundance of taxa differed
strongly between habitats.

Soft sediments dominate some seamounts, particularly flat-topped guyots and banks, and the
fauna of these habitats can be similar to neighboring continental slopes (e.g., Gillet & Dauvin
2000, Ávila & Malaquias 2003). However, these seamounts can be important for many species,
even though elements of the fauna may be shared with other habitats (Roberts et al. 2006, O’Hara
et al. 2008) and potentially serve as source populations for neighboring environments (McClain
et al. 2009).
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Figure 1
Stony coral faunal community at 950 m depth on a small seamount off New Zealand. Patches of Solenosmilia
variabilis host featherstars and sponges, with orange roughy swimming close to the seafloor (Photo: NIWA).
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(2) Connectivity of Fauna on Seamounts

Understanding patterns of evolution, species richness, and population dynamics of the biologi-
cal communities of seamounts requires an understanding of connectivity between seamounts at
a range of temporal and spatial scales. The factors that influence dispersal and connectivity be-
tween populations include a range of extrinsic factors, such as (a) the physical structure of the
oceans (hydrographic retention mechanisms, currents, etc.), (b) environmental factors influencing
development time and larval survival (e.g., temperature, availability of food, presence of preda-
tors), (c) the presence of suitable habitat when larvae become competent to settle, and (d ) factors
influencing postsettlement survivorship, which may be partially determined by larval condition
(Cowan & Sponaugle 2009). Interactions of intrinsic biological features of taxa with the biophys-
ical features of the environment are responsible for large variations in dispersal distances between
species. Whether a species is sessile, whereby dispersal is through advection of eggs, larvae, and
postlarvae, or is mobile, with dispersal also possible through juveniles or adults, is an important
driver of dispersal distance (e.g., Bradbury et al. 2008) and subsequently seamount community
composition.

The connectivity of seamount populations has been considered primarily in the context of
seamounts resembling island systems with elevated levels of endemism per prevailing theory (see
section 1). However, some precautions apply. First, present levels of connectivity, apparent from
genetic studies of limited seamount fauna, may not represent the broader taxonomic composition
of a given seamount. The presence of shared taxa among seamounts and other habitats does not
automatically imply modern connectivity, which requires direct genetic testing to confirm (see
Rogers et al. 2006, von der Heyden et al. 2007). Second, it is clear that despite a large number
of studies, connectivity is poorly understood in nearshore or even littoral communities, let alone
in offshore seamounts. Hence, making generalizations about connectivity and levels of endemism
among seamounts is difficult and can be misleading. The discussion here of genetic connectivity
studies on seamounts recognizes explicitly that additional research is needed.

The majority of studies on the genetic connectivity of seamount populations have been un-
dertaken on commercially fished species. These studies have generally shown patterns of genetic
homogeneity at oceanic or at regional geographic scales among populations sampled on seamounts,
as well as the slopes of oceanic islands and continental margins (e.g., Martin et al. 1992, Sedberry
et al. 1996, Hoarau & Borsa 2000). However, at the regional scale, genetic differentiation has
been identified between populations of fish and cephalopod species located on the continental
margin of Europe and the Azores Islands on the Mid-Atlantic Ridge (e.g., Logvinenko et al. 1983,
Brierley et al. 1995, Shaw et al. 1999, Aboim et al. 2005, Stockley et al. 2005). It has also been
shown for Patagonian toothfish, Dissostichus eleginoides, in the Southern Ocean, where genetic dif-
ferentiation was detected between seamount and nonseamount populations (Rogers et al. 2006),
and separation distance appeared useful in explaining some of the results from Ob, Speiss, and
Meteor seamounts in the Indian Ocean. Distance was also a likely factor for significant genetic
differentiation between populations of the lobster Jasus tristani on Vema Seamount compared to
those on the Tristan da Cunha Archipelago and Gough Island (von der Heyden et al. 2007).

For noncommercial seamount invertebrates, there are also mixed patterns of genetic connectiv-
ity. Analyses of mitochondrial genes from corals of the family Keratoisidae from across the Pacific
Ocean revealed widespread occurrence of haplotypes over large oceanic distances (Smith et al.
2004a). In contrast, the precious coral, Corallium lauuense, on Hawaiian seamounts and islands
showed low but significant genetic differentiation within continuous coral beds, between beds on
the slopes of the same island or seamount, and between islands or islands and seamounts (Baco
& Shank 2005). This suggests largely self-recruiting populations, with occasional long-distance
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dispersal. Samadi et al. (2006) found genetic homogeneity in four species of squat lobster from
nine seamounts and the slope of New Caledonia. Only one gastropod species, with a nonplank-
totrophic developmental mode, showed significant genetic differentiation among the sampled
seamounts, suggesting that early life history is important in determining the levels of connectiv-
ity among seamounts. Studies of populations of invertebrates inhabiting hydrothermal vents on
ridges, seamounts, and knolls also demonstrate significant genetic differentiation at scales from
thousands of kilometers (e.g., Wantanabe et al. 2005), to small distances (<100 km) when strong
hydrographic barriers limit dispersal (e.g., Smith et al. 2004b).

Genetic studies on connectivity among seamount and other populations, while critical for the
design and implementation of conservation and management efforts, must be interpreted with
caution. Studies based on conserved genetic loci and/or on distant populations may reflect largely
historical patterns of species dispersal and colonization, and may not resolve current levels of
genetically effective migration. However, genetic studies do provide evidence that populations
of organisms on seamounts demonstrate a large variation in distances over which dispersal may
occur. Life history clearly influences connectivity, and complex hydrography around seamounts
and/or larval behavior can lead to larval retention and less consistent patterns of connectivity
compared to deeper waters, where currents are considered more uniform and predictable (Cowan
& Sponaugle 2009).

(3) The Role of Environmental Factors in Diversity and Species Composition
of Seamount Fauna

Benthic assemblages on seamounts differ across multiple spatial scales, ranging from compositional
differences among habitat patches on a single seamount to totally different faunal assemblages
between seamounts on different ridges and ocean basins. Some of the main factors that determine
the overall environmental conditions for seamount biota (here considering principally mega- and
macroinvertebrates) include light levels; the productivity of the overlying water; the hydrodynamic
regime; the chemical nature of the water column; the geomorphology of the seamount; geological
origin and age, which can dictate substratum type; and volcanic/hydrothermal activity. Some of
these factors are related to water depth, making depth a frequently invoked proxy for describing
differences in assemblage composition among seamounts (e.g., O’Hara 2007, Rogers et al. 2007)
and elsewhere in the deep sea (Carney 2005). In fact, at the scale of the individual seamount,
perhaps the most obvious changes in the composition of benthic assemblages are related to depth.
Typically, light, temperature, oxygen, and labile organic matter decrease with depth, whereas
pressure increases (Thistle 2003). Because each of the environmental factors that varies with
depth can influence the settlement, survival, and growth of benthic organisms, it is not surprising
that depth-related changes in the seamount biota are prominent.

Seamount habitats have diverse environmental conditions reflected in hydrodynamic regimes,
substratum types, and deposition dynamics. Differences in seabed morphology influence hydro-
dynamic flow patterns and therefore the deposition of sediment and organic matter. For example,
conical seamounts can have steep rocky surfaces swept by relatively fast currents, and creviced
slopes with patches of soft sediment. In contrast, flat-topped guyots can have low relief and rela-
tively quiescent summits covered with soft sediment, and steep slopes that are mostly bare rock.
This in turn affects the distribution and abundance of benthic fauna; for example, corals and other
filter feeders are clustered on elevated features where swifter currents prevail (e.g., Genin et al.
1986). Such patchiness can also be evident for soft-sediment infauna where there are differences in
topographically induced currents and sediment coarseness (Levin & Thomas 1989). These sorts
of observations have recently been confirmed by a detailed depth-related photographic study of
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megafauna on contrasting seamounts off California (Lundsten et al. 2009). The distinctiveness of
the depth-faunal assemblage pattern is related to elevation of the seamount and its relative posi-
tion in the water column. If the summit extends into the photic zone, phytoplankton production
may directly support a rich and diverse benthic fauna on the shallower regions. If a seamount
penetrates into an oxygen-minimum zone (OMZ), the fauna can be sparse on the summit (where
they are physiologically controlled) but more abundant on the slope below the OMZ (Wishner
et al. 1990, Levin et al. 1991a).

Pratt (1967) showed that the type and characteristics of the substratum can control the ben-
thos, with attached corals and sponges being restricted by the availability of hard substrata and few
organisms occurring on manganese crusts. On three seamounts in the Gulf of Alaska, Raymore
(1982) demonstrated the role that habitat diversity plays in controlling faunal diversity, finding the
highest megafaunal diversity associated with the greatest variety of topography (and microrelief ).
Kaufmann et al. (1989) found that some taxa have random distributions while others are more
patchily distributed at scales of 10–1000 m, possibly the result of random distribution of food re-
sources, random foraging behavior, and/or current strength (related to rates of food supply and/or
effects of increased sediment transport). Megaepifaunal assemblages on Great Meteor Seamount
showed distributional patterns at the scale of 10 km, possibly due to topographically induced flow
patterns that affected sedimentation rates, in turn influencing food supply, retention/accumulation
of planktonic larvae, and seabed composition (Piepenburg & Müller 2004).

Infaunal assemblages on seamounts have not often been studied. Levin et al. (1994) found that
two sedimentary sites on the summit of Fieberling Guyot differed in composition and explained this
by the contrasting sediment transport regimes. Perhaps at the smallest spatial scale yet examined,
Levin et al. (1986) showed changes in the meio- and macrofauna at scales of <15 cm that were
related to sediment-agglutinating xenophyophores (giant protozoans), which may have altered
local hydrodynamic conditions, increased particle flux of fine-grained material to the seabed, and
provided associated fauna with a substratum, food, and refuge.

Like xenophyophores, corals and other large sessile organisms provide biogenic structure that
influences associated fauna on seamounts. Matrix-forming stony corals, in particular, can provide
structure on the scale of 1–1000 m. These living structures, and their broken skeletal remains (i.e.,
coral rubble) provide habitat that can locally increase benthic diversity (Henry & Roberts 2007)
and contribute to larger scale differences in the composition of seamount assemblages (O’Hara
et al. 2008). Biogenic structures are also associated with bioturbating fauna of soft sediments. These
lebenspuren, such as feeding pits, burrow openings, mounds, trails, and fecal casts are typically
centimeters to meters in dimension. Kaufman et al. (1989) found these features varied in abundance
and distribution on a seamount. Bioturbation (via physical disturbance of sediment, nutrient recy-
cling, etc.) likely influences seamount fauna as it does fauna elsewhere (Widdicombe et al. 2000).

Most seamounts are of volcanic origin and can support active hydrothermal venting. Venting
creates unique physicochemical conditions with distinct benthic assemblages (e.g., chemosyn-
thetic species, often with high biomass) that extend from centimeters to hundreds of meters (e.g.,
Tunnicliffe et al. 2003). The elevated productivity associated with venting also influences the
composition and abundance of background assemblages (Van Dover 2000). Levin et al. (1991b)
observed on eastern Pacific seamounts polychaete densities consistently lower at the hydrothermal
field setting than elsewhere on the seamounts. Because of the dramatic nature of hydrothermal
venting, its presence or absence will likely result in large-scale differences in faunal composition
among seamounts (Limén et al. 2006).

Despite considerable advances in understanding the environmental drivers of the seamount
benthos, specific relationships and interactions between drivers have not always been well resolved.
Most data have come from observations, but experiments are required to test specific hypotheses
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about faunal-environmental coupling. There are also some potentially important environmental
drivers that have received little attention to date, such as submarine landsliding and explosive
submarine eruptions (Kayen et al. 1989, Wright et al. 2008), the chemical properties of rock and
sediment (e.g., Pratt 1967, Grigg et al. 1987), and discrete pulses of organic matter/debris (or
flocs) to the seafloor (Reimers & Wakefield 1989).

(4) Biological Productivity of Seamounts

Seamounts are locations for a broad range of current-topography interactions and biophysical cou-
pling, with implications for both phyto- and zooplankton. Seamounts appear to support relatively
large planktonic and higher consumer biomass when compared to surrounding ocean waters, par-
ticularly in oligotrophic oceans. It has been a widely held view that in situ enhancement of primary
production fuels this phenomenon, but this has recently been challenged (Genin & Dower 2007).
Productivity in oceanic settings depends on light and nutrient availability, while overall produc-
tion is the result of productivity and accumulation of the phytoplankton. At a seamount, either
(a) a seamount-generated, vertical nutrient flux has to be shallow enough to reach the euphotic
zone and the ensuing productivity retained over the seamount long enough to allow transfer to
higher trophic levels, or (b) the seamount must rely on allochthonous inputs of organic material
to provide a trophic subsidy to resident populations.

A classical view of the biophysical coupling leading to enhanced primary productivity is nutrient
upwelling associated with the presence of a Taylor cone over a shallow seamount. Taylor cones
form as a result of steady flow over a seamount, which may create both an anticyclonic flow
and isopycnal doming over the seamount, bringing nutrient rich waters shallower. The vertical
extent of Taylor cones is inversely proportional to the density stratification (White et al. 2007a).
If the seamount summit is shallow enough, or vertical stratification is not too strong, doming may
reach the euphotic zone. Additional nutrient fluxes to the euphotic zone may be achieved through
enhanced turbulent mixing at the seamount, associated with internal waves and other baroclinic
wave motions (Toole et al. 1997, Kunze & Stanford 1997).

Genin & Dower (2007), however, argue that observational evidence for such local aug-
mentation of primary production at seamounts is inconclusive. While enhanced phytoplankton
concentrations have been observed on seamounts such as Cobb (Dower et al. 1992), Great Meteor
(Mouriño et al. 2001), and Minima-Kasuga (Genin & Boehlert 1985), long-lasting elevated
levels of plankton over seamounts have not generally been recorded. A maximum retention
time for high plankton concentrations of three weeks has been reported (Dower et al. 1992).
Such short residence times for phytoplankton stocks will not allow substantial transfer to higher
trophic levels, but the variability in the local seamount dynamics may instead shed plankton from
the seamount downstream. Thus seamounts may provide significant downstream patchiness in
plankton production and distribution.

The lack of retention of passive material at seamounts is a result of mesoscale variability
in dynamic forcing (White et al. 2007a). Taylor cone generation and persistence is based on
the stability of steady-forcing flow meeting certain criteria. The ocean has significant mesoscale
variability, such as ocean eddies, internal tides, and variable meteorological forcing, and hence is
likely to make any local seamount dynamic response both variable and complex. Surface forcing
would be particularly important for shallow or intermediate-depth seamounts, where the seasonal
thermocline would act to decouple local dynamics with the overlying near-surface layer (C. Mohn
& M. White, unpublished paper).

Steady forcing, however, is not the only mechanism that can generate both anticyclonic flow
and isopycnal doming. Tidal forcing, particularly at a period greater than the local inertial period
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(2π/f ), may also generate rectified flow around the upper flanks of a seamount (Kunze & Stanford
1997). Tidally forced circulation may be a potent retention mechanism for intermediate or deep
seamounts, especially near the level of the permanent thermocline where diurnal tides may be
intensified at the seafloor (Brink 1995, White et al. 2007b). In addition, this can cause large
organic matter fluxes through current acceleration and turbulent mixing, which is important for
suspension-feeding benthic communities on deeper seamounts (e.g., Genin et al. 1986, Mienis
et al. 2007).

This high retention potential of intermediate-depth seamounts may be important for the second
mechanism—input of allochthonous fluxes of organic material (discussed above)—to enhance
production at seamounts. Numerous studies have indicated the importance of seamount trapping
of vertically migrating zooplankton (see review by Genin & Dower 2007), which occurs when
zooplankton in the deep scattering layer rise to surface waters at night and a portion is advected by
the surface flows over the seamount. The zooplankton are trapped at the seamount summit during
the subsequent dawn descent and are then preyed on by fish or other planktivores. This mechanism
may be a key trophic pathway to support the biological enrichment of pelagic (and subsequently
benthic) seamount communities where in situ primary production alone would be insufficient.

Biophysical coupling, therefore, can have a profound effect on the production at seamounts.
Localized dynamic responses may promote productivity through nutrient fluxes and also pro-
duction through retention processes (Figure 2). Inherent variability in the dynamic forcing,

X

X

Euphotic zone

Nutrient
flux

Enhanced production and
downstream loss with patch

development

Trapping of DSL

during dawn descent

over seamount summit

and predation

DSL DSL

a b

Figure 2
Schematic showing the processes contributing to organic matter fluxes at (a) shallow and (b) intermediate/
deep seamounts. (a) Vertical nutrient fluxes promote surface primary productivity, which is lost due to weak
retention over the seamount. (b) Seamount-trapped, vertically migrating zooplankton are preyed on by
higher trophic levels. (Abbreviations: DSL, deep scattering layer; the circled X and black dot represent flow
direction into, and out of, the plane of the page, respectively.)
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particularly at shallow seamounts, can prevent plankton accumulation and contribute to mesoscale
variability in the surrounding ocean. Tidally driven responses are thought to be more robust, es-
pecially at depths where mesoscale variability may be reduced or where tidally forced responses
result in strong rectified flows and stronger currents. However, recent modeling studies (C. Mohn
& M. White, unpublished paper) have indicated that variable forcing can sometimes retain pas-
sive organic material close to a seamount. Steady, and amplitude-modulated, inflow generated a
downstream particle loss, but changes in the inflow direction caused some limited aggregation of
tracers in the immediate vicinity of the summit. Such variability over relatively short time- and
space scales, in an already variable ocean, limits interpretation of one-off or local field surveys.
Future research will need to synthesize process models, include a full range of physical forcing
characteristics, and validate results with long-term monitoring programs at key seamount sites.
Research that examines the nature and control of benthic production, and the extent and mecha-
nisms of coupling between pelagic and benthic productivity, will also be required.

(5) Seamount Trophic Architecture

Biological production on seamounts is often manifested in dense aggregations of benthopelagic
and demersal fish that represent concentrations of high biomass for these species (Koslow 1997,
Koslow et al. 2000). It is also thought that the biomass of benthic consumers on seamounts is
elevated (e.g., Rogers 1994), but there are no studies that provide specific evidence of this. Three
energetic processes have been proposed to support the large biomass of seamount consumers
(reviewed by Genin 2004, Genin & Dower 2007) (see section 4): (a) phytoplankton production:
the classical view that enhanced primary production on seamounts fuels higher-order predators
through bottom-up subsidy of consumer biomass; (b) topographic trapping: summits and flanks
of seamounts can block the descent of vertically migrating zooplankters, which are intercepted
and preyed on by seamount consumers; and (c) trophic subsidy: when flow regimes impinge with
seamount topographies, the accelerated currents amplify the horizontal food supply to seamount
communities.

Filter feeders, such as sponges, corals, and crinoids, generally dominate the benthic invertebrate
assemblages (Samadi et al. 2007). This observation suggests that benthic food chains are short and
that their structure is simple. While there are very few trophic studies for seamounts, findings
to date indicate that benthic food webs on seamounts display a diverse trophic architecture that
in terms of food-chain length rivals that of other marine communities, both shallow and deep
(Samadi et al. 2007). Trophic diversity in the benthos arises from evolutionary differentiation of
feeding modes among higher taxa that range from deposit feeders (e.g., holothurians) to predators
(e.g., asteroids). Feeding flexibility is also instrumental in enhancing trophic heterogeneity; for
example, sponges are highly efficient at capturing ultraplankton (Pile & Young 2006) but also
include carnivorous forms that prey on copepods (Watling 2007).

Intense grazing pressure on zooplankton over seamounts (Haury et al. 1995) indicates their
important role in the transfer of energy within the seamount food web. Major predators of zoo-
plankton are midwater fish, which probably form an important trophic link to higher predators,
including squids, piscivorous fishes, seabirds, and marine mammals (Morato et al. 2008). Midwa-
ter fish include micronektivores feeding primarily on shrimps and/or cephalopods (Porteiro &
Sutton 2007, Pusch et al. 2004, Sutton & Hopkins 1996). Pelagic prey is also the main energy
supply for many benthopelagic and demersal fish (Porteiro & Sutton 2007), and modeling indi-
cates that advection of mesopelagic fish and crustaceans is necessary to support aggregations of
fish such as orange roughy and oreostomatids on seamounts (Williams & Koslow 1997, Bulman
2002).Thus, pelagic food webs associated with seamounts play pivotal roles in channeling energy
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to fish species and attracting top pelagic predators to seamounts (Haury et al. 1995, Morato et al.
2008).

High-productivity seamount ecosystems operate via a trophic architecture composed of diverse
pelagic and benthic consumers whose biomass is often elevated compared with the surrounding
ocean. Energetic subsidies that operate via trapping of migrating zooplankton and interception of
horizontally advected micronekton are much more likely to underpin food webs on most seamounts
(Genin & Dower 2007, Morato et al. 2009) than is localized enhancement of plankton production
that propagates to higher consumers in a classic bottom-up mechanism (see section 4). Thus, food
webs are probably supported largely by imports of allochthonous material, making seamounts
spatially subsidized systems (sensu Polis et al. 1997) where cross-boundary fluxes of matter and
energy are the pivotal processes at the base of food webs.

In conclusion, it appears that the trophic architecture for seamounts has a relatively unique
character, comprising a diverse array of consumers, loosely coupled pelagic and benthic compo-
nents, and multiple bases for the food web, all of which can be influenced by topographic and
oceanographic driving forces. These combine in ways that can support high biological produc-
tion. However, few detailed trophic studies have been conducted for seamounts (particularly those
that involve isotopic investigative tools) and future research is required to advance our general
understanding.

(6) The Vulnerability of Seamounts to Human Activities

Biological communities on seamounts face a number of threats from human activities. The most
widely known of these is fishing, especially trawling, although in recent years the potential has
increased for exploitation of mineral resources.

Historically, seamounts have supported fisheries for pelagic tunas, mackerels, and smaller-scale
line fisheries (e.g., black scabbardfish Aphanopus carbo) for many decades (da Silva & Pinho 2007),
but in the 1970s, extensive trawling began on seamounts as fleets discovered large aggregations
associated with them. There are now major seamount fisheries for alfonsino (Beryx splendens),
pelagic (slender) armorhead (Pseudopentaceros wheeleri ), black cardinalfish (Epigonus telescopus), or-
ange roughy (Hoplostethus atlanticus), roundnose grenadier (Coryphaenoides rupestris), oreos (smooth
oreo Pseudocyttus maculatus, black oreo Allocyttus niger), and toothfish (Dissostichus eleginoides,
D. antarcticus) (e.g., Morato & Clark 2007, Clark et al. 2007).

At least 2 million metric tons of deep-sea species are known to have been trawled from
seamounts since the late 1960s (Clark et al. 2007), although much has not been officially reported
and therefore the United Nation’s Food and Agriculture Organization (FAO) statistics give lower
estimates (Watson et al. 2007). The main fisheries have been for pelagic armorhead and alfonsino
on the Hawaiian and Emperor seamount chains in the Pacific Ocean. Orange roughy, oreos, and
alfonsino continue to support locally important fisheries in the SW Pacific. Orange roughy have
been targeted on seamounts worldwide, with roundnose grenadier being a major seamount fishery
in the North Atlantic. Smaller fisheries for alfonsino, mackerel, and cardinalfish have occurred in
the Mid-Atlantic, SE Pacific, SW Indian Ocean, and off the west coast of North Africa. In the
Southern Ocean, fisheries for toothfish, notothenids, and icefish can occur on seamounts (Clark
et al. 2007).

Few of these large-scale seamount trawl fisheries have proved sustainable, with many showing
a boom-and-bust pattern (e.g., Uchida & Tagami 1984, Vinnichenko 2002). Sissenwine & Mace
(2007) listed 44 area-species combinations globally, and 27 of these included stocks classed as
overexploited or depleted. Many deep-sea commercial species have characteristics that generally
make them more vulnerable to fishing pressure than shallower shelf species. They can form large
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Figure 3
Large catches can still be taken on seamounts, but only if effort and overall catch levels are tightly controlled.
This shows a catch of about 50 metric tons of orange roughy taken off New Zealand (Photo: NIWA).

and stable aggregations over seamounts for spawning or feeding, which enables very large catches
(Figure 3) and rapid depletion of stock size. Biological factors such as longevity, low fecundity,
and slow growth rates make recovery from fishing impacts slow (e.g., Clark 2001, Morato et al.
2008). Seamount fisheries have typically proven difficult to research and manage sustainably (e.g.,
Francis & Clark 2005, Morato & Pitcher 2008). Once overexploited, it is uncertain if deep-sea
fisheries on seamounts can recover, and irregular recruitment levels may be a key factor (Clark
2001, Dunn 2007). Successful seamount fisheries today are typically low-volume and based on
high-value species (Clark 2009). The low effort and catch levels in current trawl fisheries may
make them more sustainable, similar to small catches of a number of artisanal seamount fisheries
that have existed for centuries. About a quarter million metric tons of fish are caught annually in
hook-based fisheries (handline, and pole and line) conducted from small boats in Madeira, Hawaii,
and the Azores, Seychelles, and Pacific Islands (Marques da Silva & Pinho 2007).

There have been numerous advances in fishing technology that have enabled extensive bottom
trawling on seamounts. Ground gear now features large bobbins and discs to roll over the rough
seafloor that previously would have snagged and damaged lighter gear and nets. Advances in
navigation and electronic technology (e.g., GPS, echosounders, sonars, net sensors, automatic
winch control) mean that vessels can easily locate a seamount, find fish aggregations, and trawl
repeatedly (Clark & Koslow 2007). The catch of orange roughy taken from seamounts rose from
20 to over 70% of the total New Zealand orange roughy catch between the 1980s and mid-1990s
(Clark & O’Driscoll 2003). As with catch, effort levels on seamounts can also be very high. Soviet
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fishing effort for pelagic armorhead on North Pacific seamounts was about 18,000 trawler days
between 1969 and 1975 (Borets 1975). Hundreds to thousands of trawls have been carried out
on small seamounts in the SW Pacific, and O’Driscoll & Clark (2005) estimated a median total
trawl distance on New Zealand seamounts of 130 km per square kilometer of seamount area. The
bottom impact of trawling on seamounts can therefore be much greater and more concentrated
than for slope fisheries where effort is spread out over larger areas.

Many bottom fishing operations can have serious physical and biological impacts on seamount
habitats and communities, but bottom trawling is the most damaging (see review by Clark &
Koslow 2007). There are direct impacts on benthic communities caused by physical disturbance
from the trawl but also indirect effects through selective removal of particular species and sediment
resuspension and mixing that can change the structure of the habitat and alter community compo-
sition. There have been few research studies on deepwater fishing impacts (see review by Gage et al.
2005), but studies on seamounts off Australia and New Zealand have demonstrated differences in
the structural complexity of benthic habitats, species numbers and abundance, and overall com-
munity composition and structure between fished and unfished/lightly fished seamounts (Koslow
et al. 2001, Clark & Rowden 2009). Sessile fauna, such as sponges, echinoids, and corals, are
particularly vulnerable to damage because they can be large, fragile, and long-lived (Probert et al.
1997).

Although fishing has generally been the main human activity on seamounts, the potential for
mining to impact seamount habitats and biological communities is increasing. The deep sea is
of interest for oil and gas exploration, to sequester carbon dioxide, and for mining manganese
nodules, cobalt-rich crusts, and polymetallic sulfides (e.g., Glover & Smith 2003, Davies et al.
2007). Seamounts can have thick deposits of cobalt-rich ferromanganese crusts (Hein 2002),
especially in the Pacific Ocean (e.g., around Hawaii, Micronesia, Marshall Islands), and technology
is developing to enable recovery of such deposits (Sharma 2007). Precious metals are deposited
at sites of hydrothermal activity (Scott 2007), and polymetallic sulfide deposits are of current
commercial interest in the SW Pacific (e.g., Papua New Guinea, New Zealand, Vanuatu). The
effects of mining are uncertain because so few studies have been carried out, but direct physical
disturbance and sediment plumes (e.g., Amann 1993, Van Dover 2007) would be similar to, and
potentially greater than, trawling effects. Careful controls will be needed to restrict the impact on
benthic fauna (e.g., Baker et al. 2001, Glover & Smith 2003, Shank 2009) of seamounts, especially
those with vent communities that may be geographically isolated.

Whether from fishing or mining, biological communities on seamounts are highly vulnerable
to human activities. The small area of many seamounts, the concentration of both resources (fish
aggregations, high mineral densities), and exploitation (e.g., numerous trawls) mean that human
impact can be more severe than in habitats such as the continental slope where communities and
human activities are more dispersed.

(7) The Resilience of Seamount Communities to Human-Induced Disturbance

Several aspects of resilience are useful in considering human-induced disturbances of seamount
habitats and fauna: (a) amount of disturbance the ecosystem can withstand without changing
self-organized processes and structure (Holling 1973, Gunderson 2000); (b) speed of recovery
following disturbance (Hall 1994); (c) possibility of multiple stable states along a recovery tra-
jectory (Knowlton 2004); (d ) nested spatial scales that stable states may occupy (Peterson et al.
1998); (e) reduced resilience of communities adapted to lower natural environmental disturbances
( Jennings & Kaiser 1998); and ( f ) changes occurring with natural episodic “disturbance” over
longer timescales (e.g., Wright et al. 2008).
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Table 1 Examples of age estimates of seamount invertebrate megabenthos

Faunal group Age (years) Method Reference
Glass sponge 440 Ring count Samadi et al. 2007
Stalked crinoid 340 14C dating Samadi et al. 2007
Zoanthid (Gerardia spp.) 400–900 14C dating Roark et al. 2006
Zoanthid (Gerardia spp.) 1800 14C dating and ring count Rogers et al. 2007
Gorgonian coral 67–2377 14C dating Roark et al. 2006
Bamboo coral 35–197 14C and 120Pb dating Rogers et al. 2007
Biogenic habitat (accumulated) 1000–50,000 U/Th dating Rogers et al. 2007

Only a few studies have examined impacts of fishing on the benthic communities of seamounts.
Koslow et al. (2001), Clark & O’Driscoll (2003), and Clark & Rowden (2009) inferred cause-
and-effect of trawling by comparing areas subject to different intensities of disturbance (from
untrawled to heavily trawled), while Althaus et al. (2009) examined seamounts in quantitative
repeat surveys. In contrast, there are many studies of fishing impacts in shallow continental-
shelf environments that have demonstrated recovery (of species richness, abundance, population
biomass and production) can take several years and is dependent on both the type and extent of
impact and the natural levels of disturbance that characterize a community (see reviews by Collie
et al. 2000, Kaiser et al. 2006, Pitcher et al. 2008). Many seamount taxa are extremely long-lived
and grow very slowly, especially those forming biogenic habitats (some scleractinian corals) and
those adding structural complexity (e.g., large erect anthipatharian and gorgonian corals, sponges,
and crinoids) (Table 1). Some of these low-productivity components of benthic ecosystems on
seamounts can therefore be expected to have less capacity to absorb human disturbance and take
much longer to recover than their shallower, more productive counterparts.

Habitat type is a key determinant of recovery rate of the benthos in shallow environments,
with those that are associated with biogenic structures the slowest to recover (Collie et al. 2000,
Kaiser et al. 2006). Deep biogenic habitats can be major components of benthic community
composition on seamounts where patchy thickets of framework-building scleractinian corals can
provide interstices for a diverse mobile fauna (O’Hara et al. 2008) and attachment sites for a great
variety of sessile filter feeders (Rogers et al. 2007). These biogenic habitats may accumulate over
geological time (many millennia) (Table 1) but can be rapidly reduced by bottom trawling (e.g.,
Koslow et al. 2001, Clark & Rowden 2009). On an Australian seamount that had been heavily
trawled, structure-forming taxa showed no signs of recolonization 10 years after trawling had
ceased (Althaus et al. 2009). However, this study, as well as repeated surveys on New Zealand
seamounts (M.R. Clark, unpublished data), also found some species that were more abundant
on trawled rather than unfished seamounts. Their ecological traits (Table 2) indicate potential
for rapid or local-scale recolonization or resistance to direct physical impacts (Figure 4). Repeat
surveys also found isolated patches of diverse fauna, including coral-associated communities in
natural refuges (i.e., very rough areas) inaccessible to trawls. Benthic communities in impacted
seamount areas are a mix of early recolonizing species (e.g., stylasterid corals), possibly including
some that respond positively to trawling as competition for living space or food is reduced, and
others that survived the direct impact of trawling (e.g., gold corals).

The relative rates and sources of recruitment and immigration of benthic species to dis-
turbed areas are highly uncertain because of variation in suitable settlement substrate on and
between individual seamounts, irrespective of trawling history (Althaus et al. 2009). This varia-
tion can be expected to be greater on larger, more topographically complex seamounts than on
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Table 2 Examples of megabenthic taxa on seamounts that appear more resilient to trawling impacts

Taxon Ecological traits and observations
Hydrocorals: Stylaster sp.a

Calyptopora reticulatab

Lepidotheca fascicularisb

Small size (�100 mm height)a,b; many (most) species brood with possibly continuous or
protracted spawning; possibly short-lived larvae; most slow growing d, but some (emergent)
species fast growinge; ubiquitous in survey areasa,b

Gold corals: Chrysogorgia spp.a,f Small size (�200 mm height), compact (bottle-brush), and flexiblec

Chrysogordidae (undescribed
species)a

Small size (�300 mm height), whiplike, robustly stiff but flexiblec; abundant on heavily fished
seamount in 1997 and 2007 surveysc

Bryozoan: Lagenipora sp.b Small encruster considered opportunistic in disturbed environmentsb

Anemone: ?Actinernidaec Anemones have capacity for local-scale mass colonization by larvae or brooded juveniles; not
colony forming but have propensity for clustered distributions in shallow waterf; on a single
heavily trawled seamount, uncommon in 1993 but highly abundant in 2008c

aF. Althaus, A. Williams, T.A. Schlacher, R.J. Kloser, M.A. Green, unpubl. paper; bClark & Rowden 2009; cA. Williams (CSIRO), unpubl. data; dBrooke
& Stone 2007; eMiller et al. 2003; fK. Gowlett-Holmes (CSIRO), pers. commun.

a b

c d

Figure 4
Photographs from southeastern Australian seamounts showing (a) apparent early colonization by an anemone (Fam. ?Actinernidae) at
800 m depth on the heavily fished St. Helens Seamount three years after fishing ceased; (b) the small whiplike, stiff but flexible, gold
coral (undescribed species of Fam. Chrysogordidae) at 1118 m depth on the heavily trawled Pedra Seamount; (c) rock overhang
providing a natural refuge at 1183 m depth on the heavily trawled Mongrel Seamount; (d ) sharp interface showing apparent removal of
stony coral and associated megafauna from passage of single trawl at 1338 m depth on lightly fished Dory Hill.
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small conical features. Natural patterns of connectivity between seamounts are also variable (see
section 2). Many seamount species are nonplanktotrophic (Parker & Tunnicliffe 1994), indicating
that dispersal beyond closely spaced seamounts may be limited or slow. Althaus et al. (2009) found
no evidence of widespread recruitment from external sources, indicating that initial recovery may
occur only in small patches.

Based on the limited number of seamount studies and the knowledge gained by research from
shallower shelf and slope areas, it is likely that recovery trajectories for benthic communities on
seamounts will span decades or centuries, especially for widely separated seamounts. Stable states
of recovery have not yet been recognized, it is uncertain whether systems will recover to their
original ecological structure, and the effects of episodic natural disturbance are unknown. There is
clearly a need for further research to adequately determine the resilience of seamount habitats to
human-induced disturbance, but at present it is reasonable to consider the biological communities
of seamounts to be among the least resilient in the marine environment.

(8) Balancing Exploitation and Conservation of Seamounts

The characteristics of deep-sea ecosystems present a different set of conservation challenges from
shallow-water ecosystems (Glover & Smith 2003) and the scientific basis necessary for the suc-
cessful management, protection, and restoration of deep-sea habitats such as seamounts is limited
at national and international levels (Davies et al. 2007). However, with issues of deep-sea conser-
vation being considered at the level of the United Nations General Assembly in 2007 and 2008,
science has to provide information to help guide the conservation and sustainable management of
seamounts.

There is extensive legislation and a variety of management tools that can be applied to
seamounts (e.g., Probert 1999, Alder & Wood 2004, Molenaar 2007, Probert et al. 2007). Broadly
speaking, seamount conservation strategies may be apportioned into activity-specific measures
(short-term) and site-specific measures (long-term), with seamounts being regarded as appropri-
ate for the latter (Gubbay 2005). Most countries have a variety of legislative options (e.g., under
fisheries, minerals, transport and navigation, protected areas legislation) that can be used to manage
seamounts. Hence the instruments to protect seamounts exist (e.g., MPAs, closed areas, site-based
effort control, licensing, gear restrictions) but examples of their implementation are rare (Alder
& Wood 2004, Probert et al. 2007). Of an estimated 155 countries that contain seamounts within
their maritime jurisdictions, in 2004 only 22 had legislature in place to protect all or a portion
of seamounts (Alder & Wood 2004), although that has probably increased in recent years (Anon.
2008).

Despite numerous calls for high-seas seamount management, there is no unified, single man-
aging authority or mechanism in place that can provide fully for the management/protection of
seamounts from the most pressing threat, fishing. Regional fisheries management organizations
provide the best option for seamount protection, and although there are 12 of these (with several
more developing), there are gaps in global coverage and inconsistent measures to prevent damage
or destruction to vulnerable habitats like seamounts. Recent FAO guidelines (Rogers et al. 2008,
FAO 2009) should increase effective management of biological communities on seamounts. The
Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) is one of
the agreements that extends past fisheries-only management and employs highly precautionary,
ecosystem-based management. CCAMLR is implementing a system to identify vulnerable marine
ecosystems, such as cold-water coral and sponge communities, when encountered by fishing op-
erations and to protect them when reported. They are also developing a network of MPAs across
the Southern Ocean/Antarctic region.
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Just as potential threats to seamounts can vary in scale, so too can physical characteristics (see
section 3) and biological communities of seamounts (see section 1). Thus, no single management
model can be applicable to all seamounts. Management strategies must incorporate natural vari-
ability over time and space, crossing major jurisdictional divisions to ultimately feed into a larger
regional or global framework (Probert et al. 2007).

An increase in basic ecological research is crucial to assist the design of marine reserves and
networks. However, limitations to knowledge or data should not restrict efforts toward seamount
conservation. A useful first step is the development of biologically meaningful seamount descrip-
tion/classification schemes (Stocks et al. 2004); one such classification exists for the seamounts
of New Zealand (Rowden et al. 2005). Increasingly, predictive modeling of species distributions
and/or suitable habitat that extrapolate from better-known areas will offer information about
data-poor areas (e.g., Tittensor et al. 2009). Classifications and species/habitat models can be
used, together with selection tools, to design a network of MPAs that can provide protection
for benthic communities while allowing access to areas for resource exploitation (e.g., Leathwick
et al. 2008). However, MPA success in the deep sea is largely untested, and researchers need op-
portunities to study these communities to inform future management strategies (Alder & Wood
2004).

As society strives to reconcile human exploitation and conservation, it is clear that balancing
economic and ecological considerations is not a simple task. For example, biologically sustainable
deep-sea fish catches could prove uneconomical (Davies et al. 2007). Options to manage fisheries
versus those for benthic conservation (e.g., Rogers et al. 2008) may conflict over decisions to
continue exploiting already fished seamounts while closing unfished regions. The ultimate success
of seamount management relies on open dialogue and free exchange of information between
all seamount stakeholders. Management organizations and state governments must work with
resource users to support scientists in addressing information gaps to better inform approaches to
seamount management (Probert et al. 2007).

THE FUTURE

Seamount research has progressed substantially over the last decades. However, despite the in-
creased geological, oceanographic, and biological sampling of seamounts, data are only available
from a small percentage of the oceans’ seamounts. Future research can best build upon the ex-
isting knowledge by strategically targeting understudied regions, types of seamounts, and critical
ecological processes; by employing new sampling and analysis technologies; by using modeling
approaches to extrapolate from the known to the unknown; and by standardizing data collection
and sharing.

Some seamount types and locations are understudied, including deep seamounts, and those at
high-latitudes and in equatorial regions, particularly in the Indian Ocean, southern Atlantic Ocean,
and western and southern central Pacific Ocean (Figure 5). The summits of seamounts are much
more intensively sampled, especially on deep seamounts (Stocks 2009). What little work has been
done on the deep slopes and bases of seamounts, however, indicates that these support distinct
assemblages (e.g., Baco 2007). Some of this uneven sampling effort is due to technical limitations;
seamounts deeper than ∼2000 m cannot be easily sampled by trawls and require specialized gear
such as remotely operated vehicles (ROVs) or submersibles.

Biological sampling also has some taxonomic bias, especially toward larger animals such as
fishes, crustaceans, and corals; these are the most commonly reported groups in SeamountsOn-
line (Stocks 2009). Other macrofaunal groups and the meiofauna are less well covered, and many
of the smaller organisms are identified at higher taxonomic levels only (but see Gad 2004, Gofas
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Figure 5
Seamounts for which SeamountsOnline (http://seamounts.sdsc.edu) has species occurrence information. Circle size is proportional
to the number of species records, a proxy for sampling intensity, with sizes scaling from 1 to 1500 records. CenSeam has identified
priority regions for future research due to undersampling: Indian Ocean, western and southern central Pacific, and southern Atlantic.

& Beu 2002). The microbial communities of seamounts without hydrothermal vents are virtually
unknown. New methods, such as barcoding and metagenomics, may make inventories of taxonom-
ically difficult organisms more tractable, but the restricted number of trained taxonomic experts
will remain a major limiting factor.

Seamount sampling to date has focused largely on species inventories, and in fewer instances, on
documenting the structure of whole assemblages. These latter programs have been instrumental
in shaping and advancing our understanding of seamount ecology. In the future, process-oriented
studies (e.g., OASIS, http://www1.uni-hamburg.de/OASIS/) and genetic and functional ap-
proaches will be important complements. For example, one of the key questions about seamounts
is to what degree they act as isolated habitats that can give rise to potentially endemic species
and distinct communities (see section 1) and should thus be managed as discrete habitats. Genetic
techniques can indicate the levels of population isolation on seamounts, and cross-disciplinary
studies comparing the hydrography of individual seamounts to larval characteristics can predict
potential connectivity (see section 2). Recent advances in ocean-observing technologies, such as
moored instrument arrays and gliders, make long-term observation on seamounts possible. Such
time-series sampling is likely to provide new insights into temporally variable processes, such
as the dynamics of Taylor cones and their effects on productivity and plankton distribution (see
section 4).

The many seamounts in the world’s oceans make it impossible to biologically survey even a
good proportion of them adequately. Hence, predictive modeling is a useful tool to enable an
expansion of the spatial coverage of ecological information as well as develop hypotheses to direct
future sampling. The recent work of Clark et al. (2006) and Tittensor et al. (2009) provides an
example of habitat suitability modeling capable of predicting which understudied regions are most
likely to have seamounts supporting cold-water corals in fishable depths.
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Greater uniformity in collection methods, data processing, and data sharing has substantial
potential for advancing seamount knowledge. To date, the large variety of sampling approaches,
combined with a lack of good documentation and variable taxonomic attention, has meant limited
data to support robust studies of large-scale biogeographic patterns on seamounts or to compare
seamount to nonseamount habitats. Where possible, standard protocols for sample collection
and processing should be developed and adopted. Complete biological data sets from expeditions
should be contributed to global databases such as CenSeam’s data repository, SeamountsOnline
(Stocks 2009), and the Ocean Biogeographic Information System (http://www.iobis.org), with
geological data feeding the Seamount Catalog (http://earthref.org).

In conclusion, future seamount research should target current gaps in geographic and bathy-
metric coverage, explore relatively undersampled habitats (e.g., deep slopes and bases) and com-
munities (e.g., plankton, meiofauna, microbes), and use a combination of molecular tools and
traditional taxonomy to produce high-quality and comparable biodiversity inventories and con-
nectivity metrics. Major advances in our understanding of seamounts will emerge from increased
multidisciplinary studies that operate across levels of biological organization—from genes to whole
ecosystems—and that merge physicochemical processes with structural and functional aspects of
seamounts within the deep-sea environment. Science will then be in a much stronger position to
inform global seamount management and conservation.

SUMMARY POINTS

1. Seamounts can host diverse and abundant benthic communities, but in many cases the
composition is broadly similar to that of adjacent continental slope. Several studies have
suggested high levels of endemism on seamounts, but this assertion is problematic because
of limited sampling. The prevailing concept of “islands in the sea” is not well supported.

2. Connectivity levels between seamounts vary considerably. Some taxa have limited dis-
persal capabilities and hence localized distributions. Others can disperse hundreds to
thousands of kilometers and occur on widely separated seamounts.

3. Environmental drivers of biological communities on seamounts are not well known.
Depth and substrate type are key elements in determining the composition and distri-
bution of benthic fauna. Biogenic structures (e.g., coral, sponges) are also important for
their associated communities.

4. Seamounts support aggregations of higher consumers (e.g., fish), but enhanced in situ
primary production and a bottom-up process does not appear to be common. The en-
hanced production is probably due to the transfer and trapping of zooplankton from
beyond the seamount itself and to interception of horizontally advected particles pro-
duced away from the seamount.

5. Seamounts have a diverse trophic architecture that is no simpler than that of other marine
communities despite the dominance of filter feeders in the benthos. Complex topographic
and oceanographic patterns may cause food-web structures to be variable.

6. Benthic biological communities on seamounts are highly vulnerable to human activi-
ties, especially fishing. Many benthic species are long-lived and slow-growing, and not
resilient to human impacts. Management of fishing or mining must consider habitat
conservation, and a network of MPAs is one option to achieve a balance.
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