221,297 research outputs found

    High intensity solar cell radiometer

    Get PDF
    Device can be employed under high intensity illumination conditions such as would occur in a close-solar-approach space mission or in monitoring high intensity lamps. Radiometer consists of silicon solar cells with thin semi-transparent coatings of aluminum deposited on the front surfaces to permit transmission of small percentage of light and reflect the remainder

    High-Intensity Synchrotron Radiation Effects

    Full text link
    Various effects of intense synchrotron radiation on the performance of particle accelerators, especially for storage rings, are discussed. Following a brief introduction to synchrotron radiation, the basic concepts of heat load, gas load, electron emission, and the countermeasures against these effects are discussed.Comment: 20 pages, contribution to the 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection, Newport Beach, CA, USA , 5-14 Nov 201

    High intensity neutrino oscillation facilities in Europe

    Get PDF
    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive

    Experimental high-intensity three-photon entangled source

    Full text link
    We experimentally realize a high-intensity three-photon Greenberger-Horne-Zeilinger (GHZ) entanglement source directly following the proposal by Rarity and Tapster [J. G. Rarity and P. R. Tapster, Phys. Rev. A 59, R35 (1999)]. The threefold coincidence rate can be more than 200 Hz with a fidelity of 0.811, and the intensity can be further improved with moderate fidelity degradation. The GHZ entanglement is characterized by testing the Bell-Mermin inequality and using an entanglement witness operator. To optimize the polarization-entangled source, we theoretically analyze the relationship between the mean photon number of the single-photon source and the probability of parametric down-conversion.Comment: 4 pages, 4 figure

    The high-intensity hyperon beam at CERN

    Get PDF
    A high-intensity hyperon beam was constructed at CERN to deliver Sigma- to experiment WA89 at the Omega facility and operated from 1989 to 1994. The setup allowed rapid changeover between hyperon and conventional hadron beam configurations. The beam provided a Sigma-flux of 1.4 x 10^5 per burst at mean momenta between 330 and 345 Gev/c, produced by about 3 x 10^10 protons of 450 GeV/c . At the experiment target the beam had a Sigma-/pi- ratio close to 0.4 and a size of 1.6 x 3.7 cm^2. The beam particle trajectories and their momenta were measured with a scintillating fibre hodoscope in the beam channel and a silicon microstrip detector at the exit of the channel. A fast transition radiation detector was used to identify the pion component of the beam.Comment: 20 pages, 13 figures. Submitted to Nucl. Instr. Meth.

    Rapidly pulsed, high intensity, incoherent light source

    Get PDF
    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit

    Production of High-Intensity, Highly Charged Ions

    Full text link
    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now represent the most effective and reliable machines for modern accelerators.Comment: 42 pages, contribution to the CAS-CERN Accelerator School: Ion Sources, Senec, Slovakia, 29 May - 8 June 2012, edited by R. Baile

    Axion-like-particle search with high-intensity lasers

    Full text link
    We study ALP-photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV\mathrm{eV} mass range and can thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure
    corecore