33 research outputs found

    Costs and benefits of sub-lethal Drosophila C Virus infection

    Get PDF
    Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes we find that even apparently benign, sub-lethal infections with the horizontally transmitted Drosophila C Virus (DCV) can cause significant physiological and behavioral morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health, and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sub-lethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sub-lethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity

    La protéine CG4572 de Drosophile et la propagation du signal ARNi immun antiviral

    No full text
    During viral infection, cell survival will depend on adequately giving, receiving and processing information to establish an efficient antiviral immune response. Cellular communication is therefore essential to allow the propagation of immune signals that will confer protection to the entire organism.The major antiviral defense in insects is the RNA interference (RNAi) mechanism that is activated by detection of viral double-stranded RNA (dsRNA). The antiviral RNAi mechanism can be divided in cell- and non-cell- autonomous. In cell-autonomous RNAi, the silencing process is limited to the cell in which the viral dsRNA is produced. In non-cell-autonomous (systemic) RNAi, the interfering effect occurs in cells different from where the viral dsRNA was produced. In insects the systemic RNAi response remains poorly characterized. My PhD explores the role of the Drosophila CG4572/DORA protein in the establishment of systemic antiviral RNAi. It also investigates the nature of immune signals that trigger the antiviral response. I provide evidence for the existence of two different mechanisms of cell-cell communication that allow the spread of the immune signal: extracellular vesicles and tunneling nanotubes. I describe that DORA-positive extracellular vesicles carry fragments of viral RNAs that can spread and confer specific antiviral protection in flies. I also present the characterization of tunneling nanotubes (TNTs) containing components of the RNAi machinery, DORA and dsRNA and I hypothesize on the use of TNTs in the spread of the immune signal.Both mechanisms of cell-to-cell communication are coupled for the first time to the antiviral response in Drosophila melanogaster.Au cours d’une infection virale, la survie des cellules dépend d’informations adéquatement distribuées, reçues et traitées, permettant l’établissement d’une réponse antivirale performante. La communication cellulaire est donc essentielle pour permettre la propagation de signaux immuns protecteurs à tout l’organisme.Chez les insectes, la principale réponse antivirale est l’ARN interférent (ARNi), activé lors de la détection d’ARN double brin (ARNdb) d’origine virale. Le mécanisme antiviral de l’ARNi peut être cellulaire ou systémique. Dans la première catégorie, la régulation de l’expression génique est limitée à la cellule dans laquelle l’ARNdb est produit, alors que dans la seconde, cette même régulation s’effectue dans des cellules distinctes de celles produisant l’ARNdb. Chez les insectes, l’ARNi systémique reste très peu décrit.Ma thèse explore le rôle de la protéine de drosophile CG4572/DORA, dans les mécanismes permettant l’établissement de l’ARNi systémique. J’ai également cherché la nature des signaux déclencheurs de cette réponse antivirale. Nous montrons l’existence de deux mécanismes de communication cellulaire permettant la propagation de signaux antiviraux: des vésicules extracellulaires et des nanotubes. Nous mettons en évidence que des vésicules contenant DORA et des fragments d’ARN viraux peuvent se propager dans les mouches en leur conférant une protection antivirale spécifique. Nous montrons également pour la première fois la présence de nanotubes membranaires qui contiennent des protéines de la machinerie ARNi ainsi que DORA.Les mécanismes que nous proposons sont pour la première fois associés à la réponse antivirale chez Drosophila melanogaster

    RNAi and antiviral defense in Drosophila: Setting up a systemic immune response

    Get PDF
    International audienceRNA interference (RNAi) controls gene expression in eukaryotic cells and thus, cellular homeostasis. In addition, in plants, nematodes and arthropods it is a central antiviral effector mechanism. Antiviral RNAi has been well described as a cell autonomous response, which is triggered by double-stranded RNA (dsRNA) molecules. This dsRNA is the precursor for the silencing of viral RNA in a sequence-specific manner. In plants, systemic antiviral immunity has been demonstrated, however much less is known in animals. Recently, some evidence for a systemic antiviral response in arthropods has come to light. Cell autonomous RNAi may not be sufficient to reach an efficient antiviral response, and the organism might rely on the spread and uptake of an RNAi signal of unknown origin. In this review, we offer a perspective on how RNAi-mediated antiviral immunity could confer systemic protection in insects and we propose directions for future research to understand the mechanism of RNAi-immune signal sorting, spreading and amplification

    Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells.

    Get PDF
    International audienceTunnelling nanotubes and cytonemes function as highways for the transport of organelles, cytosolic and membrane-bound molecules, and pathogens between cells. During viral infection in the model organism Drosophila melanogaster, a systemic RNAi antiviral response is established presumably through the transport of a silencing signal from one cell to another via an unknown mechanism. Because of their role in cell-cell communication, we investigated whether nanotube-like structures could be a mediator of the silencing signal. Here, we describe for the first time in the context of a viral infection the presence of nanotube-like structures in different Drosophila cell types. These tubules, made of actin and tubulin, were associated with components of the RNAi machinery, including Argonaute 2, double-stranded RNA, and CG4572. Moreover, they were more abundant during viral, but not bacterial, infection. Super resolution structured illumination microscopy showed that Argonaute 2 and tubulin reside inside the tubules. We propose that nanotube-like structures are one of the mechanisms by which Argonaute 2, as part of the antiviral RNAi machinery, is transported between infected and non-infected cells to trigger systemic antiviral immunity in Drosophila

    A glucose meter interface for point-of-care gene circuit-based diagnostics

    No full text
    Getting synthetic biology circuit-based sensors into field applications is still a challenge. Here the authors combine a circuit sensor with a glucose meter for small analyte and nucleic acid detection
    corecore