1,386 research outputs found

    Sequence analysis of an internal 9.72-kb segment from the 30-kb denitrification gene cluster of Pseudomonas stutzeri

    Get PDF
    AbstractThe DNA segment was sequenced that links the nir-nor and nos gene clusters for denitrification of Pseudomonas stutzeri ATCC 14405. Of 10 predicted gene products, four are putative membrane proteins. Sequence similarity was detected with the subunit III of cytochrome-c oxidase (ORF175), PQQ3 of the biosynthetic pathway for pyrrolo-quinoline quinone (ORF393), S-adenosylmethionine-dependent uroporphyrinogen-III C-methyltransferase (ORF278), the cytochrome cd1 nitrite reductase and the NirF protein involved in the biosynthesis of heme d1 (ORF507), LysR type transcriptional regulators (ORF286), short-chain alcohol dehydrogenases (ORF247), and a hypothetical protein, YBEC, of Escherichia coli (ORF57). The current data together with previous work establish a contiguous DNA sequence of 29.2 kb comprising the supercluster of nos-nir-nor genes for denitrification in this bacterium

    The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins

    Get PDF
    AbstractGenes for respiratory nitrite reduction (denitrification) of Pseudomonas stutzeri are clustered within 7 kbp. A 4.6-kbp Hind III-Kpn I fragment carrying nirS, the structural gene for cytochrome cd1, was sequenced. An open reading frame immediately downstream of nirScodes for a 22.8-kDa protein with four heme c-binding motifs. Mutagenesis of this gene causes an apparent defect in electron donation to cytochrome cd1. Following this ORF are the structural genes for cytochrome c552, cytochrome c551, and ORF5 that codes for a 11.9-kDa monoheme protein. All cytochromes have a signal sequence for protein export

    Profiling Gene Expression to Distinguish the Likely Active Diazotrophs from a Sea of Genetic Potential in Marine Sediments

    Get PDF
    Nitrogen (N) cycling microbial communities in marine sediments are extremely diverse, and it is unknown whether this diversity reflects extensive functional redundancy. Sedimentary denitrifiers remove significant amounts of N from the coastal ocean and diazotrophs are typically regarded as inconsequential. Recently, N fixation has been shown to be a potentially important source of N in estuarine and continental shelf sediments. Analysis of expressed genes for nitrite reductase (nirS) and a nitrogenase subunit (nifH) was used to identify the likely active denitrifiers and nitrogen fixers in surface sediments from different seasons in Narragansett Bay (Rhode Island, USA). The overall diversity of diazotrophs expressing nifH decreased along the estuarine gradient from the estuarine head to an offshore continental shelf site. Two groups of sequences related to anaerobic sulphur/iron reducers and sulphate reducers dominated libraries of expressed nifH genes. Quantitative polymerase chain reaction (qPCR) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) data shows the highest abundance of both groups at a mid bay site, and the highest nifH expression at the head of the estuary, regardless of season. Several potential environmental factors, including water temperature, oxygen concentration and metal contamination, may influence the abundance and nifH expression of these two bacterial groups

    \u3csup\u3e1\u3c/sup\u3eH NMR Studies on the CuA Center of Nitrous Oxide Reductase from \u3cem\u3ePseudomonas stutzeri\u3c/em\u3e

    Get PDF
    1H NMR spectra of the CuA center of N2OR from Pseudomonas stutzeri, and a mutant enzyme that contains only CuA, were recorded in both H2O- and D2O-buffered solution at pH 7.5. Several sharp, well-resolved hyperfine-shifted 1H NMR signals were observed in the 60 to āˆ’10 ppm chemical shift range. Comparison of the native and mutant N2OR spectra recorded in H2O-buffered solutions indicated that several additional signals are present in the native protein spectrum. These signals are attributed to a dinuclear copper(II) center. At least two of the observed hyperfine-shifted signals associated with the dinuclear center, those at 23.0 and 13.2 ppm, are lost upon replacement of H2O buffer with D2O buffer. These data indicate that at least two histidine residues are ligands of a dinuclear Cu(II) center. Comparison of the mutant N2OR 1H NMR spectra recorded in H2O and D2O indicates that three signals, c (27.5 ppm), e (23.6 ppm), and i (12.4 ppm), are solvent exchangeable. The two most strongly downfield-shifted signals (c and e) are assigned to the two NĪµ2H (N-H) protons of the coordinated histidine residues, while the remaining exchangeable signal is assigned to a backbone N-H proton in close proximity to the CuA cluster. Signal e was found to decrease in intensity as the temperature was increased, indicating that proton e resides on a more solvent-exposed histidine residue. One-dimensional nOe studies at pH 7.5 allowed the histidine ring protons to be definitively assigned, while the remaining signals were assigned by comparison to previously reported spectra from CuA centers. The temperature dependence of the observed hyperfine-shifted 1H NMR signals of mutant N2OR were recorded over the temperature range of 276āˆ’315 K. Both Curie and anti-Curie temperature dependencies are observed for sets of hyperfine-shifted protons. Signals a and h (cysteine protons) follow anti-Curie behavior (contact shift increases with increasing temperatures), while signals bāˆ’g, i, and j (histidine protons) follow Curie behavior (contact shift decreases with increasing temperatures). Fits of the temperature dependence of the observed hyperfine-shifted signals provided the energy separation (Ī”EL) between the ground (2B3u) and excited (2B2u) states. The temperature data obtained for all of the observed hyperfine-shifted histidine ligand protons provided a Ī”EL value of 62 Ā± 35 cm-1. The temperature dependence of the observed cysteine CĪ²H and CĪ±H protons (a and h) were fit in a separate experiment providing a Ī”EL value of 585 Ā± 125 cm-1. The differences between the Ī”EL values determined by 1H NMR spectroscopy and those determined by EPR or MCD likely arise from coupling between relatively low-frequency vibrational states and the ground and excited electronic states

    Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment

    Get PDF
    The accumulation of the denitrification intermediates in wastewater treatment systems is highly undesirable, since both nitrite and nitric oxide (NO) are known to be toxic to bacteria, and nitrous oxide (N2O) is a potent greenhouse gas and an ozone depleting substance. To date, two distinct concepts for the modelling of denitrification have been proposed, which are represented by the Activated Sludge Model for Nitrogen (ASMN) and the Activated Sludge Model with Indirect Coupling of Electrons (ASM-ICE), respectively. The two models are fundamentally different in describing the electron allocation among different steps of denitrification. In this study, the two models were examined and compared in their ability to predict the accumulation of denitrification intermediates reported in four different experimental datasets in literature. The N-oxide accumulation predicted by the ASM-ICE model was in good agreement with values measured in all four cases, while the ASMN model was only able to reproduce one of the four cases. The better performance of the ASM-ICE model is due to that it adopts an ā€œindirect couplingā€ modelling concept through electron carriers to link the carbon oxidation and the nitrogen reduction processes, which describes the electron competition well. The ASMN model, on the other hand, is inherently limited by its structural deficiency in assuming that carbon oxidation is always able to meet the electron demand by all denitrification steps, therefore discounting electron competition among these steps. ASM-ICE therefore offers a better tool for predicting and understanding intermediates accumulation in biological denitrification

    Analysis of multiple haloarchaeal genomes suggests that the quinone-dependent respiratory nitric oxide reductase is an important source of nitrous oxide in hypersaline environments

    Get PDF
    Microorganisms, including Bacteria and Archaea, play a key role in denitrification, which is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Whilst the enzymology of denitrification is well understood in Bacteria, the details of the last two reactions in this pathway, which catalyse the reduction of nitric oxide (NO) via nitrous oxide (N2O) to nitrogen (N2), are little studied in Archaea, and hardly at all in haloarchaea. This work describes an extensive interspecies analysis of both complete and draft haloarchaeal genomes aimed at identifying the genes that encode respiratory nitric oxide reductases (Nors). The study revealed that the only nor gene found in haloarchaea is one that encodes a single subunit quinone dependent Nor homologous to the qNor found in bacteria. This surprising discovery is considered in terms of our emerging understanding of haloarchaeal bioenergetics and NO management

    Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils

    Get PDF
    Denitrifying prokaryotes use NOx as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N2O and N2, depending on the relative activity of the enzymes catalysing the stepwise reduction of NO3āˆ’ to N2O and finally to N2. Cultured denitrifying prokaryotes show characteristic transient accumulation of NO2āˆ’, NO and N2O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N2O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N2O produced (N2O/(N2+N2O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N2O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N2O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level

    Electron paramagnetic resonance studies on nitrogenase. III. Function of magnesium adenosine 5'-triphosphate and adenosine 5'-diphosphate in catalysis by nitrogenase

    Full text link
    The electron paramagnetic resonance spectra of azoferredoxin and molybdoferredoxin, components of the nitrogenase of Clostridium pasteurianum, disappear when the proteins are oxidized by certain dyes. When molybdoferredoxin and azoferredoxin were mixed in a 1 to 2 molar ratio, the electron paramagnetic resonance spectrum of the mixture was the sum of the two spectra with the exception of a slight change in the azoferredoxin signal. Addition of magnesium ATP and dithionite to this reconstituted nitrogenase resulted in a rapid change in the spectrum of both nitrogenase components; the molybdoferredoxin spectrum at all g-values decreased with a half-life less than 70 ms to 40% of its original size whereas the azoferredoxin signal changed in shape and size with a half-life of less than 40 ms. If an ATP-generating system was added instead of MgATP so that no ADP accumulated, then the molybdoferredoxin signal almost completely disappeared and the azoferredoxin signal changed in shape and slightly in size. These changes occurred at molar ratios of molybdoferredoxin to azoferredoxin from 1:14 to 1:0.2. If the reaction was allowed to consume the reductant, then the molybdoferredoxin signal(s) was restored but the azoferredoxin signal disappeared. The signal of azoferredoxin was restored and the signal of molybdoferredoxin again disappeared on addition of more reductant. The data suggest that for nitrogenase to catalyze the reduction of substrates, the magnesium ATP-reduced azoferredoxin complex is formed first and this complex then reacts with molybdoferredoxin to allow electron flow. In addition the data suggests that the rate-limiting reaction is an ATP-mediated electron flow from azoferredoxin to molybdoferredoxin. Finally the results show that no flow of electrons from azoferredoxin or molybdoferredoxin occurs when a mixture of ADP and ATP in a molar ratio of 2:1 is added initially or is reached by conversion of ATP to ADP and inorganic phosphate during reduction of protons. A mechanism consistent with these findings is proposed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33941/1/0000208.pd
    • ā€¦
    corecore