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Summary  

Microorganisms, including Bacteria and Archaea, play a key role in denitrification, which is the 

major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. 

Whilst the enzymology of denitrification is well understood in Bacteria, the details of the last 

two reactions in this pathway, which catalyse the reduction of nitric oxide (NO) via nitrous 

oxide (N2O) to nitrogen (N2), are little studied in Archaea, and hardly at all in haloarchaea.  This 

work describes an extensive interspecies analysis of both complete and draft haloarchaeal 

genomes aimed at identifying the genes that encode respiratory nitric oxide reductases (Nors). 

The study revealed that the only nor gene found in haloarchaea is one that encodes a single 

subunit quinone dependent Nor homologous to the qNor found in bacteria.  This surprising 

discovery is considered in terms of our emerging understanding of haloarchaeal bioenergetics 

and NO management. 

 

1. INTRODUCTION 

1.1. Denitrification and nitric oxide reductases. 

Denitrification is a form of anaerobic respiration found in microorganisms and some 

fungi that plays an important role in the biogeochemical nitrogen cycle because of its potential 

to regenerate atmospheric nitrogen (N2) from oxidized inorganic nitrogen compounds such as 

nitrate (NO3
-) and nitrite (NO2

-) (Berks, 1995, Zumft, 1997; Zumft and Körner, 1997; Zumft and 

Kroneck, 2006). During the denitrification process, two nitrate ions are sequentially reduced to 

N2 in a series of four reactions, each catalysed by a metalloenzyme, that consume a total of ten 

electrons (Fig. 1). Under anaerobic conditions these four respiratory metalloenzymes, nitrate-

(Nar), nitrite-(Nir), nitric oxide-(Nor) and nitrous oxide-(Nos) reductases, replace the terminal 

oxidases of the aerobic electron transport chain (Richardson and Watmough, 1999; Lledó et al., 

2004). 
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Nitric oxide (NO), is the product of the reaction catalysed by the respiratory nitrite 

reductases (Nir) and a free intermediate in the bacterial denitrification pathway (Carr and 

Ferguson, 1990).  NO is also a potent cytotoxin and consequently bacteria must control the 

levels and activity of the NO-generating (Nir) and consuming (Nor) reactions to maintain 

steady-state [NO] at <50 nM (Poole, 2005; Bergaust et al., 2012). The absence of a functional 

Nor leads to accumulation of NO and has been reported as lethal (Poole, 2005; Falk et al., 

2010). However, this detoxification leads directly to the production of the potent greenhouse 

gas nitrous oxide (N2O). 

The bacterial respiratory Nors can be classified according to the number of subunits in 

the respiratory complex, the nature of the immediate electron acceptor and the length of the 

polypeptide harbouring the bimetallic heme/non-heme iron active site (Zumft, 2005). There 

are three main groups  

i)  short-chain respiratory NORs (scNORs) These are characterised by a catalytic 

subunit, NorB, that is an integral membrane protein of ca 450 amino acids which forms a 

complex with a membrane anchored c-type cytochrome (NorC) that is the electron receiving 

domain.  These NorBC complexes are also known as cNORs to reflect the fact that they receive 

their electrons from soluble c-type cytochromes and/or cuprodoxins (Hendriks et al., 2000; 

Thorndycroft et al., 2007).  

ii)  long-chain respiratory NORs (lcNors) These have a single subunit, NorZ, containing 

approximately 780 amino acids. Also referred as qNors, these enzymes accept electrons 

directly from the reduced quinol pool rather than from cytochrome c, and therefore lack the 

NorC subunit (Hendriks et al., 2000). The single subunit has a catalytic C-terminal domain that 

is substantially homologous to NorB, which is fused to a N-terminal extension that is proposed 

to mediate electron transfer from quinol (Cramm et al., 1999).  

iii)  CuANor This is a distinctive two-subunit enzyme recently described in Bacillus 

azotoformans that is characterised by a catalytic subunit whose structure is closer to that of 
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cytochrome ba3 terminal oxidase than to NorB. Instead of a c-type heme subunit II contains a 

dinuclear CuA site which receives electrons from the physiological donor, cytochrome c551 

(Suharti et al., 2001, Al-Attar and de Vries 2015).   

1.2. Denitrification in Archaea. 

The regulation and enzymology of denitrification have been extensively studied in 

Bacteria (Berks et al., 1995, Zumft, 1997, Richardson and Watmough, 1999, Spiro, 2012). In 

comparison, Archaeal denitrification remains poorly understood because of those species of 

Archaea grown in laboratory cultures only a few are capable of respiring NO3
- (Offre et al., 

2013), or NO2
- (Völkl et al., 1993; Martínez-Espinosa et al., 2006; Nájera-Fernández et al., 

2012). These NO3
- /NO2

- respiring Archaea include several species of an evolutionarily distinct 

class known as haloarchaea whose members express proteins that are adapted to enable them 

to thrive in hypersaline environments (Fukuchi et al., 2003; Oren, 2008; 2013a, 2013b; Longo 

et al., 2013; Reed et al., 2013; Ortega et al., 2015).  

With the exception of the nitrate (Nar) and nitrite reductases (Nir) from some members of 

the genera Haloferax and Haloarcula (Hochstein and Lang, 1991; Inatomi and Hochstein, 1996; 

Ichiki et al., 2001; Yoshimatsu et al., 2002; Lledó et al., 2004; Martínez-Espinosa et al., 2006; 

Martínez-Espinosa et al., 2007; Bonete et al., 2008; Esclapez et al., 2013; Torregrosa-Crespo et 

al., 2016), the enzymes of denitrification in the haloarchaea, and by extension  Archaea, have 

not been characterised to the same extent as their bacterial counterparts. For example, just 

one Archaeal NOR, a menoquinone dependent NO reductase from Pyrobaculum aerophilum 

that contains o-type rather than b-type hemes, is described in the literature (de Vries et al., 

2003).    

To date neither NO- (Nor) or N2O-reductase (Nos) has been isolated from any species of 

haloarchaea. However, both Haloferax denitrificans and Haloferax mediterranei grown 

anaerobically on NO3
-  can generate N2O and/or N2 (Tindall et al., 1989, Mancinelli & Hochstein 

1986, Bonete et al., 2008).  Gas formation is not only consistent with the ability of these two 
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species to reduce NO but also the presence of a gene encoding qNOR in the type species for 

the genus Haloferax volcanii (Zumft and Kroneck, 2006). Otherwise, the type(s) of respiratory 

Nor found in Haloarchaea and their relationship to the well-characterised bacterial enzymes 

has been uncertain.  

Over the past 15 years, an increasing number of completed or partially sequenced 

genomes have provided an alternative basis on which to understand the respiratory networks 

of haloarchea.  Direct interrogation of these genomes avoids the problems associated with 

erroneous and inconsistent automated annotations and reveals that the nor gene found in 96 

species of haloarchea may have been recently acquired and encodes a protein closely related 

to the bacterial qNORs. This discovery is considered in the context of both the bioenergetics of 

haloarcheal denitrification and the potential contribution of this class of micro-organism to 

N2O emission from hypersaline environments. 

 

2. RESULTS AND DISCUSSION 

2.1. The respiratory NOR of Hfx. mediterranei is a qNor related to bacterial qNors. 

Inspection of the annotated Hfx. mediterranei genome revealed a chromosomal gene 

encoding for a putative nitric oxide reductase that is annotated as norB (Han et al., 2012; 

Becker et al., 2014). This notation is usually reserved for genes that encode the catalytic 

subunit (NorB) of a bacterial scNOR.  Although, norB genes are invariably found in the same 

transcriptional unit as norC, (a gene that encodes NorC), there was no evidence of norC, or any 

homologue, in the Hfx. mediterranei genome. Moreover, the “norB” gene encodes a protein of 

761 amino acids, which has a molecular mass that is more typical of a long-chain bacterial 

qNor than NorB.  

To determine the relationship between the Hfx. mediterranei Nor and the bacterial 

lcNors the derived amino acid sequence of the Hfx. mediterranei respiratory NOR was used as 

a query in a BlastP search of the bacterial databases and a subsequent ClustalW alignment. 
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Several authentic bacterial qNORs exhibit significant homology (>72% identity) with the Hfx. 

mediterranei respiratory NOR (Fig. S1, supporting information). These include two 

biochemically well characterised enzymes from Cupriividus necator (Cramm et al. 1999) and 

Geobacillus stearothermophilus (Salomonson et al., 2012; Shiro, 2012; Matsumoto et al., 2012; 

Terasaka et al., 2014).   

The high degree of sequence conservation allowed the published coordinates of the G. 

stearothermophilus qNor (PDB 3AYF or 3 AYG (in complex with N-oxo-2-heptyl-4-

Hydroxyquinoline (HQNO)) to be used as the basis of a model of the Hfx. mediterranei enzyme. 

The model reveals that three key features observed in the G. stearothermophilus qNor 

structure are well conserved in the Hfx. mediterranei enzyme; (i) the residues contacting the 

bound inhibitor HQNO; (ii) a water channel lined by several conserved hydrophilic residues 

leading from the cytoplasm to the active site (Fig. 2A); (iii) a hydrophilic domain in the N-

terminus that lacks a consensus sequence for binding either a c-type heme or CuA (Fig. 2B).  

HQNO is an inhibitor of several quinone-dependent oxido-reductases and suggests the 

presence of a quinone binding site which along with the lack of a consensus sequence for a 

metal centre in the N-terminal domain suggest that the Hfx. mediterranei enzyme is a qNOR.  

Presumably the substrate protons are derived from the quinol substrate and the water channel 

is there to move the co-product water (Fig. 1) away from the active site.  These structural 

similarities along with the apparent absence of any proton conducting channels support the 

proposition that the Hfx. mediterranei respiratory NO-reductase is a non-electrogenic single 

subunit qNOR closely related to the bacterial NorZs that derive their electrons directly from 

the quinone pool.   

2.2. How widespread are qNors in haloarchaea? 

Interrogation of 141 complete and draft haloarchaeal genomes (Table S1, supporting 

information) using the Hfx. mediterranei qNOR protein sequence as a query revealed the 

presence of single norZ orthologue in 96 species (Fig. 3).  The outputs from these analyses 
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(Table S2, supporting information) showed that norZ of Hfx. mediterranei has >90% identity 

with the predicted sequences of the respiratory NOR found in other species of Haloferax (Fig. 

3; Fig. S2, supporting information), >85% identity to the enzymes found in the genus 

Haloarcula and between 60% and 83% identity to the derived amino acid sequences of the nor 

genes found in other haloarchaeal genera including Natrinema, Halobacterium, Halococcus, 

Halobiforma and Haloterrigena. Genes encoding NorZ like proteins were not identified in the 

following genera: Haloquadratum (6 strains analysed), Natronorrubrumi (6 strains analysed) 

and Halorrhabdus (3 species analysed). 

The gene encoding qNOR was correctly annotated in just 10 of the 96 genomes 

containing norZ.  For example, in the available genomes from the genus Haloarcula the 

annotations are essentially accurate (product="nitric oxide reductase, NorZ apoprotein"; 

function="nitric oxide reductase, NorZ apoprotein").  Examination of the annotated GeneBank 

files allowed the identification of three common errors that lead to the incorrect annotation or 

apparent absence of norZ:  i) the ORF is correctly identified as a respiratory Nor but incorrectly 

annotated; ii) the ORF is well described, but not annotated as a respiratory Nor; iii) the 

identification of other potential ORFs  in a region of the genome where there is clear evidence 

of a norZ gene due to errors in identifying initiation or termination codons (Table S1, 

supporting information).  It is suggested that the annotation “norZ” is used to identify a gene 

encoding qNor, the single subunit lcNor (NorZ) in both bacteria and haloarchaea, rather than 

the alternative qnorB (Cramm et al., 1997; Casciotti and Ward, 2005).  This avoids confusion 

with norB, an annotation that should be reserved for genes encoding the catalytic subunit 

(NorB) of the two-subunit bacterial scNORs. 

2.3. Organization of haloarchael genomes in the region of  norZ.  

The organization of ORFs around the norZ gene was examined in both fully sequenced 

and draft haloarchaeal genomes from ten species that are representative of the genera 

Haloarcula, Halobiforma, Halococcus, Haloferax, Halogeometricum, Halopiger, Halorubrum, 

This article is protected by copyright. All rights reserved.



Haloterigena, Natrialba and Natrinema.  Although there is little evidence of conservation in 

this region of the genome, it appears that a gene encoding the respiratory nitrite reductase 

(NirK) is frequently found close to norZ (Fig. 4) along with a gene coding for a peripheral 

membrane protein known as halocyanin which is a cupredoxin (Mr  15.5 kDa) that is believed 

to serve as a mobile electron carrier on outer face of the cytoplasmic membrane (Scharf and 

Engelhard, 1993; Mattar et al., 1994).  In principle, halocyanin could serve as the physiological 

electron donor to both NirK and other Cu-containing proteins involved in denitrification such 

as nitrous oxide reductase (Nos).  This arrangement is not entirely unexpected as co-

expression of nirK (its cognate electron donor) and norZ, as found in Bacteria, is desirable to 

avoid cytotoxic steady state levels of nitric oxide during active denitrification (Gómez-

Hernández et al., 2011).  

The considerable diversity in the organization of genes around norZ in haloarchea 

could be accounted for by the recent acquisition of norZ through horizontal gene transfer and 

subsequent recombination events.  Evidence for two potential examples of duplication 

through or homologous recombination were identified in the genera Halopiger, Haloterrigena 

and Natrialba (Tables S1 and S2, supporting information). Each of the species belonging to the 

genera Halopiger and Haloterrigena that were examined have a copy of norZ flanked by the 

same cluster of four genes involved in heme biosynthesis. One of these genes is hemL which 

encodes glutamate-1-semialdehyde aminotransferase and is incorrectly annotated as 

“product=nitric oxide reductase subunit B" (Tables S1 and S2, supporting information). Three 

species, Halopiger aswanensis DSM-13151 (scaffold Ga0074794_103), Halopiger sp. IIH3 

(scaffold Ga0036367_109) and Haloterrigena salina JCM-13891 (scaffold AOIS01000063) 

contain a second copy of norZ that is not surrounded by the heme biosynthesis genes. Given 

that duplication of norZ appears to be an infrequent event in haloarcheal genomes, it is 

suggested that where an extra copy exists it has arisen as the result of a recent incorporation.  
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In the case of the Natrialba aegyptia DSM-13077 (scaffold AOIP01000040) genome the 

genes located both upstream and downstream of each of the two copies of norZ are unlike 

those found in any other haloarchaeal species that we examined.  One copy of norZ is close to 

a nitrate reductase (nar) like gene, whilst the second copy is close to a gene encoding XerD 

which is a serine recombinase-like protein involved in intraspecific homologous recombination 

processes (Mau et al., 2006). Typically, XerD is found flanking a recombination target site or as 

part of the sequences to be recombined allowing it both to promote exchanges between the 

core genome and accessory regions and incorporating new genetic elements to synthetic 

regions. XerD-like proteins are also abundant in those regions of high genomic interchange, 

like those belonging to genomic islands (Fernández Gómez et al., 2012; Bellanger et al., 2014-

3). 

 2.4. Haloarchaea represents a significant class of NO-reducers/N2O producers. 

The increase in the number of available haloarchaeal genomes makes it possible to 

analyse their genetic organization and conduct in silico studies to identify functional proteins. 

Unfortunately, this is not straightforward for three reasons: i) most genome sequences are 

incomplete and/or not fully annotated; ii) the gene annotations are not always correct; iii) 

where nor genes are found the conventions of nomenclature are not consistently applied.  

Consequently, identifying genes based solely on inspection of the annotated genomes is not 

possible and it was necessary to adopt a rigorous two step ab initio bioinformatic approach to 

identify nor genes in haloarchaea and classify the proteins they express. 

Many existing gene annotations imply that haloarchaeal nitric oxide reductase genes 

are related to bacterial norB genes that encode the large subunit of the NorBC complex. The 

results presented here clearly show that this is not the case and that the respiratory nitric 

oxide reductases found in haloarchaea are closely related to the single subunit long-chain 

quinol-dependent bacterial enzymes (qNor) encoded by norZ.  Although norZ genes are widely 

distributed amongst the haloarchaea, the organisation of the genome around the norZ gene is 
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not conserved. These differences in genetic organization suggest that the ability to reduce NO 

to N2O is a trait that has been acquired recently and the genomic variation is due to 

subsequent recombination and duplication events.  It is suggested that the annotation of these 

haloarchaeal genomes is reviewed to clearly identify these nitric oxide reductase genes as 

norZ.   

It is not clear why haloarchaea express a qNOR rather than a NorBC complex, but there 

may be two important bioenergetic considerations.  Firstly, nitrate reduction in haloarchaea is 

catalysed by an energy conserving nitrate reductase (pNar) that has not been reported in 

bacteria (Martínez-Espinosa et al., 2007).  The product of this reaction, nitrite, is reduced 

either enzymatically by nirK, or abiotically to form NO which, in the absence of any NO-

consuming enzyme, would rapidly accumulate to cytoxic levels.  Co-expression of qNor and 

NirK counteracts this by catalysing the reduction of NO2
- via NO to form N2O which is relatively 

benign. The advantage for haloarchaea of nirK and norZ is that they are both discrete genetic 

units that express catalytically active enzymes that allow the organism to denitrify without any 

need for any complex maturation processes such as those associated with cytochrome c 

maturation and heme d1 biosythensis in mesophilic bacteria (Watmough et al., 2009). This 

feature may explain the abundance of qNOR in non-denitrifying strains of isolates from 

freshwater and marine sediments (Bracker and Tiedje, 2003).   

The second consideration is that although both qNOR and NorBC terminate electron 

transfer chains there is no evidence for either enzyme being electrogenic (Bell et al., 1992 

Salomonsson et al., 2012).  However, bacteria that express NorBC derive electrons for NO 

reduction from the cytochrome bc1 complex which catalyses a protonmotive Q-cycle that 

couples NO detoxification to energy conservation (Watmough et al., 2009).  A qNor deriving 

electrons directly from the quinone pool would bypass the bc1 complex limiting an organism’s 

ability to conserve energy when respiring NO.  This limitation may be overcome by 
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haloarchaea through expression of the energy conserving pNar (Martínez-Espinosa et al., 

2007). 

Haloarchaea inhabit large areas across the planet including salt marshes, salty ponds 

and saline lagoons and are the dominant group of microorganisms in these ecosystems. Saline 

environments are increasingly polluted by nitrate and nitrite because of anthropogenic 

activities (Martínez-Espinosa et al., 2011). The ability of haloarchea to respire nitrate and 

nitrite together with their potential to express a qNOR capable of reducing nitric oxide suggest 

they may contribute to the production of the potent greenhouse gas N2O. The ubiquity of nitric 

oxide reductases in a significant majority of haloarchaea genera along with the crucial role that 

this class plays in maintaining their ecosystems suggests that the contribution of haloarchaea 

to global N2O emissions may be greater than previously thought.   
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Legends to figures: 

Fig. 1: Summary of the fuor key reactions involved in denitrification. The pathway occurs 

under microaerobic/anaerobic conditions. The four respiratory metalloenzymes, nitrate-(Nar), 

nitrite-(Nir), nitric oxide-(Nor) and nitrous oxide-(Nos) reductases, replace the terminal oxidases 

of the aerobic electron transport chain (Richardson and Watmough, 1999; Lledó et al., 2004). 

 

Fig. 2: Structural model of the qNOR encoded by Haloferax mediterranei.  Panel A: Structure 

of the quinol binding site and the water channel. Panel B: Structure of the N-terminal 

hydrophilic domain. The published coordinates of the G. stearothermophilus qNOR as isolated 

(PDB 3AYF) or complexed with HQNO (PDB 3AYG) were used as the basis for the homology 

model of the Hfx. mediterranei enzyme (Matsumoto et al., 2012). 

 

Fig. 3: Cladogram of genes encoding Nor-like proteins in Haloarchaea. The outer circles 

represent norZ and the inner circles represent norB. The presence of a gene encoding a Nor 

like protein is indicate by filled symbol, whereas an open white circle indicates the absence of 
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such a gene. Note that the inner circles are open in most species indicating the absence of 

norB genes in most Haloarchaea.  Sulbolobus islandicus has been included as the root of the 

cladogram. 

 

Fig. 4: Organization of the genome around the genes encoding copper containing nitrite 

reductase (nirK) and qNor (norZ) in selected Haloarchaeal species. Arrows show the direction 

of transcription, but the genes are not drawn to scale. The genes shown are assigned as 

follows: arsR: Putative transcriptional regulator, ArsR family; cbr: Carotene biosynthesis 

associated membrane protein; cofG: FO synthase subunit 1; cox: Cytochrome c oxidase subunit 

I; csd: Cysteine desulfurase; fhu: ferrichrome-binding protein; gdhA1: Glutamate 

dehydrogenase (NAD(P)+); gluTR: Glutamil-tRNAGlu reductase; hcy: Halocyanin precursor-like 

protein; hth: HTH DNA binding domain family protein; HYP: Hypothetical protein; lclR: lclR-like 

transcriptional regulator; lip: Lipoprotein; mcoA: Multicopper oxidase; mscS: Mechanosensitive 

ion channel; nirK: Copper containing nitrite reductase ; norZ: quinol dependent nitric oxide 

reductase, NorZ apoprotein; oxr: Predicted Fe-S oxidoreductase; pbp: Pterin cluster protein; 

phd: Phytoene desaturase; pqqE: Coenzyme PQQ synthesis protein; sce: Sodium/calcium 

exchanger membrane region; sdr: Short-chain dehydrogenase/reductase; ubiA: UbiA 

prenyltransferase. The authors have retained the existing annotations found in the databases 

for the following genes: gdhA1 and arsR in Hfx. mediterranei; mcoA and nirK in Hfx. volcanii, 

and cofG in Halorubrum lacusprofundi. The remaining of the genes have been annotated by 

the authors in this work based on their predicted biological function to avoid confusion. 
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Supporting information 

Additional supporting information may be found in the online version of the article at the 

publisher’s website: 

 

Table S1. Genomes database. It summarises the main details about the haloarchaeal genomes 

included in this study (27 completely sequenced genomes and 114 draft or permanent drafts 

status) 

 

Table S2. BlastN and BlastP qNor results. 

 

Fig. S1: Comparison of nitric oxide reductase amino acid sequences A) Haloferax mediterranei 

nitric oxide reductase (Nor) sequence is aligned with five bacterial and one archaeal qNor. The 

enzymes from Geobacillus stearothermophilus (Matsumoto et al., 2012), Synechocystis sp. 

(Büsch et al., 2002) and the hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum 

(de Vries et al., 2003) have been isolated and characterized. The enzymes from Staphylococcus 

aureus, Cupriavidus necator, Neisseria sicca have been assigned as qNor by sequence similarity 

(Hendriks et al., 2000; Braker and Tiedje, 2003; Heylen et al., 2007); B) qNOR enzymes are also 

aligned with NorB and NorC from Pseudomonas aeruginosa and Paracoccus denitrificans (Hino 

et al., 2010). The residues involved in binding the c-type heme in cNor are highlighted in blue. 

The residues in red are in the same position as the bulky residues filling the potential c-type 

heme binding site in qNor from Geobacillus stearothermophilus (Matsumoto et al., 2012), and 

would hinder heme binding; C) The quinol binding site. The residues in the same position of 

thus involved in the interaction with the quinol analogue, 2-heptyl hydroxyquinoline N-oxide, 

in Geobacillus are highlighted in red stearothermophilus (Matsumoto et al., 2012). 
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Fig S2. qNor Heatmap. Summary of the percentage of strains per specie showing significative 

hits with regard to the 8 references considered (see experimental procedures. Supporting 

information). 

 

Experimental procedures section 
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Active site and water channel: G. sterarotermophilus qNor 

Active site and water channel: Hfx. mediterranei qNor 

G. stearotermophilus qNor hydrophilic domain 

Hfx. mediterranei qNor hydrophilic domain A 
B 

This article is protected by copyright. All rights reserved.



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 

This article is protected by copyright. All rights reserved.



 

 

 

  

This article is protected by copyright. All rights reserved.



Fig. 4 

 

Haloferax mediterranei R-4, ATCC 33500. Chromosome. 

 

 

Haloferax volcanii DS2, ATCC 29605. Chromosome.  

 

 

Halogeometricum borinquense PR3, DSM 11551  

 

 

Halorubrum lacusprofundi ATCC 49239 
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