230 research outputs found

    Understanding non-ideal paleointensity recording in igneous rocks: Insights from aging experiments on lava samples and the causes and consequences of ‘fragile’ curvature in Arai plots

    Get PDF
    The theory for recording of thermally blocked remanences predicts a quasilinear relationship between low fields like the Earth's in which rocks cool and acquire a magnetization. This serves as the foundation for estimating ancient magnetic field strengths. Addressing long-standing questions concerning Earth's magnetic field requires a global paleointensity data set, but recovering the ancient field strength is complicated because the theory only pertains to uniformly magnetized particles. A key requirement of a paleointensity experiment is that a magnetization blocked at a given temperature should be unblocked by zero-field reheating to the same temperature. However, failure of this requirement occurs frequently and the causes and consequences of failure are understood incompletely. Recent experiments demonstrate that the remanence in many samples typical of those used in paleointensity experiments is unstable, exhibiting an “aging” effect in which the (un)blocking temperature spectra can change over only a few years resulting in nonideal experimental behavior. While a fresh remanence may conform to the requirement of equality of blocking and unblocking temperatures, aged remanences may not. Blocking temperature spectra can be unstable (fragile), which precludes reproduction of the conditions under which the original magnetization was acquired. This limits our ability to acquire accurate and precise ancient magnetic field strength estimates because differences between known and estimated fields can be significant for individual specimens, with a low field bias. Fragility of unblocking temperature spectra may be related to grain sizes with lower energy barriers and may be detected by features observed in first-order reversal curves

    Palaeomagnetism of the Ordovician dolerites of the Crozon Peninsula (France)

    Full text link
    In order to obtain a Lower Palaeozoic pole for the Armorican Massif and to test the origin of the Ibero-Armorican arc, the Ordovician dolerites of the Crozon peninsula have been palaeomagnetically studied. The samples show a multicomponent magnetization which has been revealed by AF and thermal demagnetization and thoroughly investigated with rock magnetic experiments, polished section examinations and K/Ar dating. Four groups of directions have been recognized, often superimposed on each other in an individual sample. One component (D) has always the lowest blocking temperatures and coercivities and is considered to be of viscous origin, acquired recently in situ or in the laboratory during storage. Two components (A and B) are interpreted to be of secondary origin and to correspond to the observed K/Ar age distribution between 300 and 190 Myr. These ages represent the time interval between two regional thermo-tectonic events, associated with the Hercynian orogeny and the intrusion of dykes related to the early opening of the Central Atlantic Ocean and the Bay of Biscay. A fourth component (C) could be of Ordovician or younger Palaeozoic age; it is not clear whether the age of the magnetization is pre- or post-folding, but a pre-folding age would yield a direction of magnetization similar to Ordovician results from the Iberian peninsula. The latter interpretation suggests a fairly high palaeolatitude, which is in agreement with a glacio-marine postulated for sediments overlying the dolerite sills.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73214/1/j.1365-246X.1983.tb03785.x.pd

    Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis

    Get PDF
    This study describes a new method for analyzing microcirculatory videos. It introduces algorithms for quantitative assessment of vessel length, diameter, the functional microcirculatory density distribution and red blood-cell (RBC) velocity in individual vessels as well as its distribution. The technique was validated and compared to commercial software. The method was applied to the sublingual microcirculation in a healthy volunteer and in a patient during cardiac surgery. Analysis time was reduced from hours to minutes compared to previous methods requiring manual vessel identification. Vessel diameter was detected with high accuracy (>80%, d > 3 pixels). Capillary length was estimated within 5 pixels accuracy. Velocity estimation was very accurate (>95%) in the range [2.5, 1,000] pixels/s. RBC velocity was reduced by 70% during the first 10 s of cardiac luxation. The present method has been shown to be fast and accurate and provides increased insight into the functional properties of the microcirculation

    Fossils from Mille-Logya, Afar, Ethiopia, elucidate the link between Pliocene environmental changes and Homo origins

    Get PDF
    Several hypotheses posit a link between the origin of Homo and climatic and environmental shifts between 3 and 2.5 Ma. Here we report on new results that shed light on the interplay between tectonics, basin migration and faunal change on the one hand and the fate of Australopithecus afarensis and the evolution of Homo on the other. Fieldwork at the new Mille-Logya site in the Afar, Ethiopia, dated to between 2.914 and 2.443 Ma, provides geological evidence for the northeast migration of the Hadar Basin, extending the record of this lacustrine basin to Mille-Logya. We have identified three new fossiliferous units, suggesting in situ faunal change within this interval. While the fauna in the older unit is comparable to that at Hadar and Dikika, the younger units contain species that indicate more open conditions along with remains of Homo. This suggests that Homo either emerged from Australopithecus during this interval or dispersed into the region as part of a fauna adapted to more open habitats.info:eu-repo/semantics/publishedVersio

    Government Influence on Patient Organizations

    Get PDF
    Patient organizations increasingly play an important role in health care decision-making in Western countries. The Netherlands is one of the countries where this trend has gone furthest. In the literature some problems are identified, such as instrumental use of patient organizations by care providers, health insurers and the pharmaceutical industry. To strengthen the position of patient organizations government funding is often recommended as a solution. In this paper we analyze the ties between Dutch government and Dutch patient organizations to learn more about the effects of such a relationship between government and this part of civil society. Our study is based on official government documents and existing empirical research on patient organizations. We found that government influence on patient organizations has become quite substantial with government influencing the organizational structure of patient organizations, the activities these organizations perform and even their ideology. Financing patient organizations offers the government an important means to hold them accountable. Although the ties between patient organizations and the government enable the former to play a role that can be valued as positive by both parties, we argue that they raise problems as well which warrant a discussion on how much government influence on civil society is acceptable

    Detection of SARS-CoV-2 in Air and on Surfaces in Rooms of Infected Nursing Home Residents

    Get PDF
    There is an ongoing debate on airborne transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a risk factor for infection. In this study, the level of SARS-CoV-2 in air and on surfaces of SARS-CoV-2 infected nursing home residents was assessed to gain insight in potential transmission routes. During outbreaks, air samples were collected using three different active and one passive air sampling technique in rooms of infected patients. Oropharyngeal swabs (OPS) of the residents and dry surface swabs were collected. Additionally, longitudinal passive air samples were collected during a period of 4 months in common areas of the wards. Presence of SARS-CoV-2 RNA was determined using RT-qPCR, targeting the RdRp- and E-genes. OPS, samples of two active air samplers and surface swabs with Ct-value ≤35 were tested for the presence of infectious virus by cell culture. In total, 360 air and 319 surface samples from patient rooms and common areas were collected. In rooms of 10 residents with detected SARS-CoV-2 RNA in OPS, SARS-CoV-2 RNA was detected in 93 of 184 collected environmental samples (50.5%) (lowest Ct 29.5), substantially more than in the rooms of residents with negative OPS on the day of environmental sampling (n = 2) (3.6%). SARS-CoV-2 RNA was most frequently present in the larger particle size fractions [>4 μm 60% (6/10); 1-4 μm 50% (5/10); <1 μm 20% (2/10)] (Fischer exact test P = 0.076). The highest proportion of RNA-positive air samples on room level was found with a filtration-based sampler 80% (8/10) and the cyclone-based sampler 70% (7/10), and impingement-based sampler 50% (5/10). SARS-CoV-2 RNA was detected in 10 out of 12 (83%) passive air samples in patient rooms. Both high-touch and low-touch surfaces contained SARS-CoV-2 genome in rooms of residents with positive OPS [high 38% (21/55); low 50% (22/44)]. In one active air sample, infectious virus in vitro was detected. In conclusion, SARS-CoV-2 is frequently detected in air and on surfaces in the immediate surroundings of room-isolated COVID-19 patients, providing evidence of environmental contamination. The environmental contamination of SARS-CoV-2 and infectious aerosols confirm the potential for transmission via air up to several meters

    Updated Iberian archeomagnetic catalogue: new full vector paleosecular variation curve for the last three millennia

    Get PDF
    In this work, we present 16 directional and 27 intensity high‐quality values from Iberia. Moreover, we have updated the Iberian archeomagnetic catalogue published more than 10 years ago with a considerable increase in the database. This has led to a notable improvement of both temporal and spatial data distribution. A full vector paleosecular variation curve from 1000 BC to 1900 AD has been developed using high‐quality data within a radius of 900 km from Madrid. A hierarchical bootstrap method has been followed for the computation of the curves. The most remarkable feature of the new curves is a notable intensity maximum of about 80 μT around 600 BC, which has not been previously reported for the Iberian Peninsula. We have also analyzed the evolution of the paleofield in Europe for the last three thousand years and conclude that the high maximum intensity values observed around 600 BC in the Iberian Peninsula could respond to the same feature as the Levantine Iron Age Anomaly, after travelling westward through Europe
    corecore