104 research outputs found

    Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals

    Get PDF
    Mixed-phase clouds (MPCs) are key players in the Arctic climate system due to their role in modulating solar and terrestrial radiation. Such radiative interactions rely, among other factors, on the ice content of MPCs, which is regulated by the availability of ice-nucleating particles (INPs). While it appears that INPs are associated with the presence of primary biological aerosol particles (PBAPs) in the Arctic, the nuances of the processes and patterns of INPs and their association with clouds and moisture sources have not been resolved. Here, we investigated for a full year the abundance of and variability in fluorescent PBAPs (fPBAPs) within cloud residuals, directly sampled by a multiparameter bioaerosol spectrometer coupled to a ground-based counterflow virtual impactor inlet at the Zeppelin Observatory (475 m a.s.l.) in Ny-Ålesund, Svalbard. fPBAP concentrations (10−3–10−2 L−1) and contributions to coarse-mode cloud residuals (0.1 to 1 in every 103 particles) were found to be close to those expected for high-temperature INPs. Transmission electron microscopy confirmed the presence of PBAPs, most likely bacteria, within one cloud residual sample. Seasonally, our results reveal an elevated presence of fPBAPs within cloud residuals in summer. Parallel water vapor isotope measurements point towards a link between summer clouds and regionally sourced air masses. Low-level MPCs were predominantly observed at the beginning and end of summer, and one explanation for their presence is the existence of high-temperature INPs. In this study, we present direct observational evidence that fPBAPs may play an important role in determining the phase of low-level Arctic clouds. These findings have potential implications for the future description of sources of ice nuclei given ongoing changes in the hydrological and biogeochemical cycles that will influence the PBAP flux in and towards the Arctic.</p

    Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol

    Get PDF
    The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH=85% and λ=550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters

    Highly Active Ice-Nucleating Particles at the Summer North Pole

    Get PDF
    The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at\ua0&gt;−20\ub0C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change

    Highly Active Ice‐Nucleating Particles at the Summer North Pole

    Get PDF
    The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >−20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change

    Characteristics and sources of fluorescent aerosols in the central Arctic Ocean

    Get PDF
    The Arctic is sensitive to cloud radiative forcing. Due to the limited number of aerosols present throughout much of the year, cloud formation is susceptible to the presence of cloud condensation nuclei and ice nucleating particles (INPs). Primary biological aerosol particles (PBAP) contribute to INPs and can impact cloud phase, lifetime, and radiative properties. We present yearlong observations of hyperfluorescent aerosols (HFA), tracers for PBAP, conducted with a Wideband Integrated Bioaerosol Sensor, New Electronics Option during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (October 2019–September 2020) in the central Arctic. We investigate the influence of potential anthropogenic and natural sources on the characteristics of the HFA and relate our measurements to INP observations during MOSAiC. Anthropogenic sources influenced HFA during the Arctic haze period. But surprisingly, we also found sporadic “bursts” of HFA with the characteristics of PBAP during this time, albeit with unclear origin. The characteristics of HFA between May and August 2020 and in October 2019 indicate a strong contribution of PBAP to HFA. Notably from May to August, PBAP coincided with the presence of INPs nucleating at elevated temperatures, that is, &amp;gt;−9°C, suggesting that HFA contributed to the “warm INP” concentration. The air mass residence time and area between May and August and in October were dominated by the open ocean and sea ice, pointing toward PBAP sources from within the Arctic Ocean. As the central Arctic changes drastically due to climate warming with expected implications on aerosol–cloud interactions, we recommend targeted observations of PBAP that reveal their nature (e.g., bacteria, diatoms, fungal spores) in the atmosphere and in relevant surface sources, such as the sea ice, snow on sea ice, melt ponds, leads, and open water, to gain further insights into the relevant source processes and how they might change in the future.</jats:p

    Differing mechanisms of new particle formation at two Arctic sites.

    Get PDF
    New particle formation in the Arctic atmosphere is an important source of aerosol particles. Understanding the processes of Arctic secondary aerosol formation is crucial due to their significant impact on cloud properties and therefore Arctic amplification. We observed the molecular formation of new particles from low-volatility vapors at two Arctic sites with differing surroundings. In Svalbard, sulfuric acid (SA) and methane sulfonic acid (MSA) contribute to the formation of secondary aerosol and to some extent to cloud condensation nuclei (CCN). This occurs via ion-induced nucleation of SA and NH3 and subsequent growth by mainly SA and MSA condensation during springtime and highly oxygenated organic molecules during summertime. By contrast, in an ice-covered region around Villum, we observed new particle formation driven by iodic acid but its concentration was insufficient to grow nucleated particles to CCN sizes. Our results provide new insight about sources and precursors of Arctic secondary aerosol particles.Peer reviewe
    • 

    corecore