439 research outputs found
Optimisation of composite bone plates for ulnar transverse fractures
Metallic bone plates are commonly used for arm bone fractures where conservative treatment (casts) cannot provide adequate support and compression at the fracture site. These plates, made of stainless steel or titanium alloys, tend to shield stress transfer at the fracture site and delay the bone healing rate. This study investigates the feasibility of adopting advanced composite materials to overcome stress shielding effects by optimising the geometry and mechanical properties of the plate to match more closely to the bone.
An ulnar transverse fracture is characterised and finite element techniques are employed to investigate the feasibility of a composite-plated fractured bone construct over a stainless steel equivalent. Numerical models of intact and fractured bones are analysed and the mechanical behaviour is found to agree with experimental data. The mechanical properties are tailored to produce an optimised composite plate, offering a 25% reduction in length and a 70% reduction in mass. The optimised design may help to reduce stress shielding and increase bone healing rates
Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control
This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York
Dynamic Assessment of Baroreflex Control of Heart Rate During Induction of Propofol Anesthesia Using a Point Process Method
In this article, we present a point process method to assess dynamic baroreflex sensitivity (BRS) by estimating the baroreflex gain as focal component of a simplified closed-loop model of the cardiovascular system. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by linear and bilinear bivariate regressions on both the previous RâR intervals (RR) and blood pressure (BP) beat-to-beat measures. The instantaneous baroreflex gain is estimated as the feedback branch of the loop with a point-process filter, while the RRBP feedforward transfer function representing heart contractility and vasculature effects is simultaneously estimated by a recursive least-squares filter. These two closed-loop gains provide a direct assessment of baroreflex control of heart rate (HR). In addition, the dynamic coherence, cross bispectrum, and their power ratio can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics. To illustrate the application, we have applied the proposed point process model to experimental recordings from 11 healthy subjects in order to monitor cardiovascular regulation under propofol anesthesia. We present quantitative results during transient periods, as well as statistical analyses on steady-state epochs before and after propofol administration. Our findings validate the ability of the algorithm to provide a reliable and fast-tracking assessment of BRS, and show a clear overall reduction in baroreflex gain from the baseline period to the start of propofol anesthesia, confirming that instantaneous evaluation of arterial baroreflex control of HR may yield important implications in clinical practice, particularly during anesthesia and in postoperative care.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP2- OD006454)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant T32NS048005)National Institutes of Health (U.S.) (Grant R01-DA015644)Massachusetts General Hospital (Clinical Research Center, UL1 Grant RR025758
An interlaboratory study of TEX86 and BIT analysis of sediments, extracts and standard mixtures.
Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3-4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the "true" (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values
Panethnic Differences in Blood Pressure in Europe: A Systematic Review and Meta-Analysis
BACKGROUND:
People of Sub Saharan Africa (SSA) and South Asians(SA) ethnic minorities living in Europe have higher risk of stroke than native Europeans(EU). Study objective is to provide an assessment of gender specific absolute differences in office systolic(SBP) and diastolic(DBP) blood pressure(BP) levels between SSA, SA, and EU.
METHODS AND FINDINGS:
We performed a systematic review and meta-analysis of observational studies conducted in Europe that examined BP in non-selected adult SSA, SA and EU subjects. Medline, PubMed, Embase, Web of Science, and Scopus were searched from their inception through January 31st 2015, for relevant articles. Outcome measures were mean SBP and DBP differences between minorities and EU, using a random effects model and tested for heterogeneity. Twenty-one studies involving 9,070 SSA, 18,421 SA, and 130,380 EU were included. Compared with EU, SSA had higher values of both SBP (3.38 mmHg, 95% CI 1.28 to 5.48 mmHg; and 6.00 mmHg, 95% CI 2.22 to 9.78 in men and women respectively) and DBP (3.29 mmHg, 95% CI 1.80 to 4.78; 5.35 mmHg, 95% CI 3.04 to 7.66). SA had lower SBP than EU(-4.57 mmHg, 95% CI -6.20 to -2.93; -2.97 mmHg, 95% CI -5.45 to -0.49) but similar DBP values. Meta-analysis by subgroup showed that SA originating from countries where Islam is the main religion had lower SBP and DBP values than EU. In multivariate meta-regression analyses, SBP difference between minorities and EU populations, was influenced by panethnicity and diabetes prevalence.
CONCLUSIONS:
1) The higher BP in SSA is maintained over decades, suggesting limited efficacy of prevention strategies in such group in Europe;2) The lower BP in Muslim populations suggests that yet untapped lifestyle and behavioral habits may reveal advantages towards the development of hypertension;3) The additive effect of diabetes, emphasizes the need of new strategies for the control of hypertension in groups at high prevalence of diabetes
Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis
Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes
It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidinâs role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - â vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
Controle alternativo de podridĂ”es pĂłsâcolheita de framboesas
O objetivo deste trabalho foi avaliar o efeito de tratamentos prĂ©-colheita sobre a ocorrĂȘncia de podridĂ”es pĂłs-colheita e sobre os atributos de qualidade de framboesas (Rubus idaeus L.) 'Heritage'. As frutas foram pulverizadas com um dos seguintes tratamentos: ĂĄgua destilada (controle), 6 g L-1 de quitosana, 100 mg L-1 de diĂłxido de cloro, Bacillus amyloliquefaciens, Curtobacterium pusillum ou Saccharomyces cerevisiae. Foram realizadas colheitas aos 3, 7 e 14 dias apĂłs a aplicação dos tratamentos. ApĂłs cada uma das colheitas, realizadas no estĂĄdio de maturação comercial (coloração rosa), as frutas foram inoculadas individualmente com suspensĂŁo de conĂdios (2x10(5) conĂdios mL-1) de Botrytis cinerea ou Rhizopus stolonifer. As frutas foram mantidas a 12±0,5ÂșC por sete dias e avaliadas quanto Ă incidĂȘncia de podridĂ”es e quanto aos principais atributos de qualidade. Bacillus amyloliquefaciens, C. pusillum e S. cerevisiae proporcionaram menor ĂĄrea abaixo da curva de progresso da incidĂȘncia das podridĂ”es por Botrytis e Rhizopus. Os agentes de controle biolĂłgico avaliados nĂŁo interferem negativamente sobre os atributos de qualidade das frutas, e, portanto, sĂŁo alternativas potenciais no controle de podridĂ”es pĂłs-colheita de framboesas
- âŠ