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Abstract This paper presents a branch-and-lift algorithm for solving optimal
control problems with smooth nonlinear dynamics and potentially nonconvex
objective and constraint functionals to guaranteed global optimality. This al-
gorithm features a direct sequential method and builds upon a generic, spatial
branch-and-bound algorithm. A new operation, called lifting, is introduced
which refines the control parameterization via a Gram-Schmidt orthogonal-
ization process, while simultaneously eliminating control subregions that are
either infeasible or that provably cannot contain any global optima. Condi-
tions are given under which the image of the control parameterization er-
ror in the state space contracts exponentially as the parameterization order
is increased, thereby making the lifting operation efficient. A computational
technique based on ellipsoidal calculus is also developed that satisfies these
conditions. The practical applicability of branch-and-lift is illustrated in a nu-
merical example.
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1 Introduction

Finding globally optimal solutions to nonlinear optimal control problems is a
practically relevant, yet challenging task. Although nonlinear optimal control
methods and tools based on local optimization are satisfactory for many prac-
tical purposes, they can get trapped into local optima, possibly suboptimal by
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a large margin. For example in controlling a car or a robot in the presence of
obstacles, a local solver typically fails to determine whether passing a given
obstacle on the right or left is optimal. Similar situations can occur in the field
of control of (bio)chemical processes, as these processes can present complex
and highly nonlinear behavior leading for instance to steady-state multiplicity.
For such problems, it is often unclear how to initialize a local solver in order to
find a control input leading to the best possible performance. Moreover, there
are important classes of problems for which obtaining a certificate of global
optimality is paramount. In the field of robust and scenario-integrated opti-
mization for instance, a global solution of the lower-level program is required
to check the feasibility of an upper-level point; see, e.g., [1].

Local optimization theory for optimal control problems is well developed and
there is a wide variety of local optimization algorithms for such problems [2–4].
As far as global optimization is concerned, only a few numerical approaches
exist, however. The focus of this paper is on deterministic global optimiza-
tion methods, and therefore we do not elaborate further on stochastic global
optimal control algorithms, referring the reader to [5–7] for an overview. Con-
cerning deterministic global optimal control algorithms, we distinguish two
classes of algorithms next, namely indirect and direct methods.

Indirect optimal control methods have in common that they first analyze an
optimal control problem in terms of its optimality conditions, prior to apply-
ing a numerical discretization. Two of the most important classes of indirect
methods are:

1. The Hamilton-Jacobi-Bellman (HJB) equation approach, which leads to a
global optimal control algorithm known under the name dynamic program-
ming. This technique is based on Bellman’s optimality principle, named
after the work by Bellman in the late 1950’s [8]. In practice, dynamic pro-
gramming involves back-propagating the so-called optimal value function
in the state space, which limits application to optimal control problems
having no more than a few state variables. Nevertheless, the dynamic pro-
gramming approach is advantageous in that it can deal with time-varying
controls directly and, most importantly, it can determine globally opti-
mal solutions. For an overview of state-of-the-art global optimal control
based on dynamic programming we refer the reader to [9–11]. Note also
that some optimal control problems, for instance problems with coupled
boundary conditions, cannot be addressed easily within this approach.

2. The Pontryagin Maximum Principle (PMP), which leads to a boundary
value problem that is amenable to numerical solution [2, 12, 13]. This ap-
proach relies on variational analysis in order to derive first-order necessary
conditions for optimality [14]. However, the PMP only provides local opti-
mality conditions and, to the authors’ best knowledge, no global optimal
control algorithm has been developed based on this technique to date. Al-
though it should be possible, at least in principle, to use the PMP to single
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out a set of candidate optimal controls, perhaps the major difficulty with
this approach would be of combinatorial nature since the sequence and
types of arcs in an optimal solution are not known a priori.

Direct optimal control methods approximate the optimal control problem by
a finite-dimensional nonlinear programming (NLP) problem, which is then
solved using standard numerical optimization algorithms. Three main vari-
ants of this approach are single shooting, multiple shooting, and orthogonal
collocation.

1. The idea behind the single shooting approach, also known as the direct se-
quential method, is to parameterize the control trajectories. The response
of the dynamic systems is regarded as a function of the control parameter-
ization coefficients, which are the decision variables in a finite-dimensional
NLP problem. The evaluation of the objective and constraint functions
in the discretized NLP is via the numerical integration of the differential
equations. This approach was originally introduced in a local optimiza-
tion context [4, 15, 16], but it has more recently been extended to global
optimization, see for example [17–23]. Note that all of these approaches
have in common that they rely on branch-and-bound search [24] to solve
the resulting NLP problem to guaranteed global optimality. Their prac-
tical applicability is currently limited to optimal control problems with a
small number of decision variables only, up to about 10 variables. This is
attributed to the fact that a fine control parameterization leads to an NLP
problem with a large number of degrees of freedom, and also that state-of-
the-art enclosure methods for nonlinear parametric differential equations
can result in rather conservative bounds or convex relaxations due to the
wrapping effect. We note that such enclosure methods can scale poorly with
the number of state variables as well, especially if no particular structure
can be exploited in the equations.

2. The multiple shooting approach differs from single shooting in that the
time horizon is first divided into a number of subintervals [25]. The state
variables at the initial time of each subinterval become additional deci-
sion variables in the NLP problem, state continuity at the transition times
is enforced by imposing extra constraints, and the rest of the approach
remains analogous to single shooting. The multiple shooting approach is
available in state-of-the-art optimal control software based on local opti-
mization solvers [26, 27], where the block structure of the NLP problem is
exploited within the underlying linear algebra routines for efficiency. This
approach has not been used in a global optimization context to date, pre-
sumably due to the fact that larger NLP problems are usually more difficult
to solve using branch-and-bound search.

3. In the orthogonal collocation approach both the control and the state tra-
jectories are parameterized and the residuals of the differential equations
are enforced as constraints at specified collocation times [28, 29]. In the
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context of local optimization, this approach is frequently used in combi-
nation with large-scale NLP solvers that exploit the block structure of
the discretized optimization problem efficiently [3]. Concerning global op-
timization, the collocation approach presents the advantage that all of the
objective and constraint functions become factorable, so that in principle
standard global optimization solvers such as BARON [30, 31] can be ap-
plied directly. The attendant drawback of this approach, however, is the
large number of variables and constraints, which often leads to prohibitive
computational times as discussed in [32].

Summarizing the previous considerations, existing global optimal control algo-
rithms based on dynamic programming have run-times that scale exponentially
with the number of differential states. Global optimization algorithms based
on direct methods, on the other hand, present worst-case run-times that scale
exponentially with the number of optimization variables in the discretized NLP
problem approximating the solution of the original optimal control problem.
Moreover, a priori parameterization of the control functions in direct meth-
ods does not allow control over the accuracy of a given parameterization, and
therefore this approach is not suitable for rigorous search of globally optimal
solutions in optimal control problems.

This paper develops a new algorithm, named branch-and-lift, in order to mit-
igate these limitations. This algorithm features a direct sequential approach
and involves refining the control parameterization during the search as a means
to control the error introduced by the control parameterization. Similar to
the work by Galperin and Zheng [33], the parameterization refinement pro-
cess is based on Gram-Schmidt orthogonalization. We extend Galperin and
Zheng’s idea in two ways here: (i) the spatial branch-and-bound algorithm
is equipped with a new lifting step that enables systematic branching in an
infinite-dimensional space, namely the space of bounded Lebesgue-integrable
control functions; and, (ii) conditions are given under which the image of
the control parameterization error in the state space contracts exponentially
as the parameterization order is increased, thereby making the lifting opera-
tion efficient (see Theorem 4.1). Put together, these contributions lead to a
global optimization algorithm for optimal control problems that is rigorous in
the sense that it brackets the solution value of the optimal control problem.
Moreover, finite convergence to an ǫ-suboptimal solution is established for cer-
tain classes of optimal control problems (see Theorem 5.1 and Corollaries 5.1
and 5.2). With regard to the contribution (ii), it is worth mentioning the con-
vex relaxation technique for optimal control problems developed by [34], which
could also be used to compute valid lower bounds in the proposed branch-
and-lift algorithm. Concerning the contribution (i), mention should be made
of the so-called ‘Russian Doll Algorithm’ (RDA) proposed by [35] as a variant
of branch-and-bound for constraint satisfaction problems. In RDA, the opti-
mization is performed sequentially over subsets of increasing dimensions, thus
presenting some similarities with the lifting operation in the branch-and-lift
algorithm.
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The remainder of this paper is organized as follows. A mathematical problem
statement is given in Sect. 2. In Sect. 3 we review existing control parameteri-
zation strategies as well as branch-and-bound search applied to direct optimal
control methods. In Sect. 4 we define the image of the control discretization
error in state space and discuss its properties. The first main contribution
of the paper is presented in Theorem 4.1, where exponential convergence of
the image of the control discretization error is established under mild condi-
tions. The proof is reported in Appendix A and a computational technique
based on ellipsoidal calculus that satisfies these conditions is discussed in Ap-
pendix B. The second principal contribution follows in Sect. 5, where the new
lifting operation is introduced as a means to refine the control parameteriza-
tion during the search and where the branch-and-lift algorithm is described.
The convergence properties of the branch-and-lift algorithm are also analyzed.
We illustrate the practical applicability of branch-and-lift in Sect. 6 through
a detailed numerical case study, before concluding the paper in Sect. 7.

2 Problem Statement

We consider nonlinear optimal control problems (OCPs) of the form

V := min
x,u

Ψ(x(T )) s.t.























ẋ(t) = f(x(t)) +G(x(t))u(t)

x(0) = x0

x(t) ∈ Fx(t)

u(t) ∈ Fu(t) ,

(1)

where the constraints have to be satisfied for all t in a given time horizon
[0, T ]. Here, x : [0, T ]→ Rnx denotes the state vector, with given initial value
vector x0 ∈ Rnx , and u : [0, T ] → Rnu is a Lebesgue-integrable control input
vector. Moreover, we introduce the following technical blanket assumptions:

A1: The Mayer term Ψ : Rnx → R is a Lipschitz-continuous function.

A2: The functions f : Rnx → Rnx and G : Rnx → Rnx×nu are smooth and
globally Lipschitz-continuous.

A3: The constraint sets Fx(t) ⊆ Rnx are closed in Rnx for all t ∈ [0, T ].

A4: The constraint sets Fu(t) ⊂ Rnu are compact in Rnu for all t ∈ [0, T ].

The problem formulation (1) and the blanket assumptions A1-A4 are intro-
duced in an objective to keep the notation and analysis in the paper as simple
as possible, although the methods presented in the following sections can be
generalized to a wider class of problems. This includes OCPs having additional
finite-dimensional parameters or the initial value as additional optimization
variables; OCPs with periodic or more generally coupled boundary conditions
and with mixed control-state path constraints; OCPs with non-autonomous
right-hand side functions f and G; as well as OCPs having an additional La-
grange term in the objective function.
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Assumption A2 that f andG are globally Lipschitz continuous is introduced so
as to guarantee existence and uniqueness of the differential equation solutions,
thereby ruling out the possibility of a finite escape time. A discussion about
how to extend the developed algorithms to the case that f andG are locally, yet
not globally, Lipschitz continuous is provided at the end of Sect. 5. Moreover,
the sets Fx(t) in Assumption A3 are assumed to be closed, but not necessarily
compact. In particular, this includes the case that no state constraints are
present in the problem.

The problem formulation (1) assumes that the control function u enters the
right-hand side function affinely. While the reasons for making this assump-
tion will be explained later, it is worth mentioning at this point that many
controlled physical systems are naturally affine in their control variables. In
mechanical systems, for instance, typical control inputs are forces or torques
which enter affinely in the dynamic system via Newton’s law, even in the pres-
ence of nonlinear centrifugal, friction, or Coriolis effects; in controlled chemical
reactors too, feed rates normally enter the conservation equations affinely, de-
spite the possible presence of nonlinear reaction or transfer terms; and similarly
in electrical circuits, controlled potential differences enter charge conservation
equations affinely, regardless of the presence of resistances, diodes or other
electric devices with nonlinear characteristics. Moreover, in the case that we
encounter a nonlinear differential equation in u, a reformulation as (1) can be
made under the additional assumption that u is Lipschitz continuous. This
way, the original control u can be regarded as an extra state satisfying an
auxiliary ODE of the form u̇(t) = v(t), where v is the new control variable
subject to −L ≤ v(t) ≤ L, with L the Lipschitz constant of u on [0, T ].

2.1 Notation

Besides standard mathematical notation, we write R+ := {x ∈ R | x ≥ 0} and
R++ := {x ∈ R | x > 0}. Moreover, we denote by Sn+ ⊆ Rn×n the set of all
symmetric positive-semidefinite (n× n) matrices, and by Sn++ ⊆ Sn+ the set of
symmetric positive-definite (n× n) matrices. We use

E(c,Q) :=
{

c+Q
1
2 v
∣

∣

∣ v ∈ Rn , vTv ≤ 1
}

⊆ Rn

to denote an ellipsoid with center c ∈ Rn and positive-semidefinite matrix
Q ∈ Sn+, and we denote by

I(c, r) := {v ∈ Rn | −r ≤ v − c ≤ r } ⊆ Rn

an interval with midpoint c ∈ Rn and width 2r, with r ∈ Rn
+. Moreover, the

function mid (I(c, r)) = c returns the midpoint of an interval.

Given a compact set X ⊆ Rn and a norm ‖ · ‖ : Rn → R, we use the notation

diam (X) := max
x,y∈X

‖x− y‖
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for the associated diameter of the set X . Moreover, the power set of X , namely
the set of subsets of X including the empty set, is denoted by P(X). The
Minkowski sum and the Minkowski difference of two sets X and Y are defined,
respectively, as

X ⊕ Y := { x+ y | x ∈ X , y ∈ Y } and X ⊖ Y := { x | {x} ⊕ Y ⊆ X } .

Throughout the paper, all (time) trajectories are understood to be Lebesgue
integrable and all integrals are understood in the sense of Lebesgue; we denote
by L2[0, T ]n the set of n-dimensional, L2-integrable functions on the interval
[0, T ]. By an abuse of language, we say that a statement holds for all t ∈ [0, T ]
at times, but mean that this statement holds for all t ∈ [0, T ] \ L0, where L0

can be any subset of [0, T ] with Lebesgue-zero measure.

By convention, the optimal value of a minimization (resp. maximization) prob-
lem is taken as +∞ (resp. −∞) if the constraints are infeasible; that is, V =∞
whenever Problem (1) is infeasible.

3 Background

This section reviews and formalizes concepts for the direct sequential approach
of optimal control as well as its application within spatial branch-and-bound.
The formalism introduced in this section is used throughout the paper.

3.1 Control Parameterization

It has already been mentioned that direct methods parameterize the con-
trol trajectories, so that an optimal control problem is approximated by
a finite-dimensional NLP. To formalize the concept of control parameter-
ization, we start by introducing a sequence of L2-integrable basis func-
tions Φ0, Φ1, . . . ΦM : [0, T ] → R, which are orthogonal with respect to
a given bounded weighting function µ : [0, T ] → R++ and scaling factors
σ0, σ1, . . . σM ∈ R++:

∀i, j ∈ {0, . . . ,M} ,
1

σi

∫ T

0

Φi(τ)Φj(τ)µ(τ) dτ = δi,j :=

{

0 , if i 6= j,
1 , otherwise.

The Gram-Schmidt coefficients a0, . . . , aM ∈ Rnu for an L2-integrable function
ω : [0, T ]→ Rn on the interval [0, T ] are defined as

∀i ∈ {0, . . . ,M} , ai :=
1

σi

∫ T

0

ω(τ)Φi(τ)µ(τ) dτ.

When it is clear from the context on which time interval the integral is evalu-
ated, we make use of the following short-hand notation for the component-wise
scalar product:

∀ω ∈ L2[0, T ]n , ∀ζ ∈ L2[0, T ] , 〈ω, ζ〉µ :=

∫ T

0

ω(τ)ζ(τ)µ(τ) dτ .
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The first M +1 Gram-Schmidt coefficients of a control input are ordered into
the vector a of dimension na = (M + 1)nu < ∞ as follows:

a :=
(

aT0 , . . . , aTM
)T

∈ Rna , with ai = 1
σi
〈u, Φi〉µ . (2)

Fundamental properties of orthogonal decompositions of L2 integrable func-
tions are recalled in the next proposition.

Proposition 3.1 Let u be L2-integrable on [0, T ], and let the vector a be de-
fined as in (2). The following statements hold:

1. The first M +1 Gram-Schmidt coefficients of the control parameterization

defect term
(

u−
∑M

i=0 aiΦi

)

are all equal to zero:

∀i ∈ {0, . . . ,M} ,

〈

u−

M
∑

j=0

ajΦj , Φi

〉

µ

= 0 .

2. Bessel’s inequality for the coefficient sequence a0, a1, . . . , aM is satisfied:

∀j ∈ {1, . . . , nu} ,

M
∑

i=0

σi(ai)
2
j ≤ 〈uj , uj〉µ .

Example 3.1 A piecewise constant control parameterization over M + 1
stages of equal duration h := T

M+1 can be obtained by using the orthogo-
nal functions

∀i ∈ {0, . . . ,M} , Φi(t) =

{

1 , if ih ≤ t ≤ (i+ 1)h ,
0 , otherwise ,

together with the weighting function µ(t) = 1 and scaling factors σi = h for
all indices i ∈ {0, . . . ,M}. ⋄

The direct single-shooting algorithm presented in the following section relies
on control parameterization using orthogonal basis functions.

3.2 Direct Single Shooting Revisited

The main idea behind single-shooting algorithms is to approximate the infinite-
dimensional optimal control problem (1) with a finite dimensional NLP prob-
lem in the variables a, as defined previously in Sect. 3.1. In order to formalize
this concept, we denote by y(t, a) the solution of the parametric differential
equation

∀t ∈ [0, T ] , ẏ(t, a) = f(y(t, a)) +G(y(t, a))

(

M
∑

i=0

aiΦi(t)

)

, (3)

with y(0, a) = x0 .
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Note that y(t, a) is well-defined if the blanket assumption A2 is satisfied. For
any closed domain A ⊆ Rna , we introduce the finite-dimensional optimization
problem

VM (A) := min
a∈A

Ψ(y(T, a)) s.t.

{

y(t, a) ∈ Fx(t)
∑M

i=0 aiΦi(t) ∈ Fu(t) ,
(4)

where the constraints have to be satisfied for all t ∈ [0, T ]. The single-shooting
approach computes the optimal value VM (Rna), and this value yields an upper
bound on the actual optimal value V of optimal control problem (1):

VM (Rna) ≥ V . (5)

Moreover, because Problem (4) yields an optimization problem with a finite
number of decision variables, it can in principle be tackled with any existing
local or global optimization algorithm. The focus in the next subsection is on
spatial branch-and-bound.

3.3 Spatial Branch-and-Bound for Direct Single Shooting

Spatial branch-and-bound [36, 37] for direct single shooting starts with an
initial partition A = {A0}, where A0 ⊆ Rna is a compact set satisfying

A0 ⊇ D∗ :=

{

a ∈ Rna

∣

∣

∣

∣

∣

∀t ∈ [0, T ] ,
M
∑

i=0

aiΦi(t) ∈ Fu(t)

}

. (6)

Note that the set D∗ is compact if Assumption A4 is satisfied, and therefore the
branch-and-bound method can always be initialized by choosing a sufficiently
large interval vector A0 containing the set D∗. Branching and fathoming, the
two main operations in spatial branch-and-bound, are reviewed next.

Branching Operation This operation updates a non-empty partitionA by sub-
dividing any set A ∈ A into two1 compact subsets Al and Ar, with Al ∪Ar = A,
and defining

A ← A+ := (A \ {A }) ∪ {Al,Ar} .

Many heuristics can be applied for deciding which set in A should be subdi-
vided in priority and how to make the subdivision—see for instance [38, 39].
From a theoretical standpoint, the basic requirement for convergence is that
the subdivision process is exhaustive, which requires that

diam (A) := max
A∈A

diam(A) → 0 . (7)

1 In a more general implementation of the branching operation, the set A can be subdi-
vided into more than two subsets. This is useful, for instance, when running the algorithm
on a multiprocessor computer, thereby enabling multiple branches to be analyzed in parallel.
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Fathoming Operation Suppose that upper and lower bounds UM (A) and
LM (A) can be computed such that

LM (A) ≤ VM (A) ≤ UM (A) ,

for any compact set A in a non-empty partition A. If any element A ∈ A is
such that

LM (A) = ∞ or ∃A′ ∈ A : LM (A) > UM (A′) ,

then it can be safely discarded from the partition A by applying the fathoming
operation:

A ← A+ := A \ {A } .

It can be established [24] that the spatial branch-and-bound algorithm for
direct single shooting will converge to the optimal value VM (Rna), if the fol-
lowing two conditions are satisfied:

1. The subdivision process is exhaustive; that is, condition (7) is satisfied.

2. The upper and lower bounds are converging for every sequence
A1,A2, . . . ⊆ Rna of compact sets with limi→∞ diam (Ai) = 0 and
lim supi→∞ LM (Ai) <∞; that is, the following condition is satisfied:

lim
i→∞

UM (Ai)− LM (Ai) = 0 .

It is common practice to interrupt the spatial branch-and-bound algorithm as
soon as the condition

min
A∈A

{UM (A)} − min
A∈A

{LM (A)} ≤ ε

is met for a desired finite accuracy ε > 0, hence providing so-called
ε-suboptimal solutions of Problem (4) after a finite number of branch-and-
bound iterations.

3.4 Lower and Upper Bounding Strategy for Direct Single Shooting

For a given compact set A, a lower bound LM (A) and an upper bound UM (A)
on the optimal value VM (A) can be found using Algorithm 1. Note that these
bounds can be either finite or infinite.

A number of comments are in order regarding the steps in Algorithm 1.

– In Step 1, computing the set D∗ as defined in (6) involves checking a semi-
infinite inequality of the form

∀t ∈ [0, T ] ,
M
∑

i=0

aiΦi(t) ∈ Fu(t) .
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Algorithm 1: Computing lower and upper bounds LM (A) and UM (A) for VM (A)

Input: Compact set A ∈ A.

Algorithm:

1. If A ∩ D∗ = ∅, return LM (A) = UM (A) = ∞.

2. Compute compact inner and outer approximations Y(t,A),Y(t,A) ⊆ Rnx such
that

∀t ∈ [0, T ] , Y(t,A) ⊆
⋃

a∈A

{y(t, a)} ⊆ Y(t,A) .

3. If there exists t ∈ [0, T ] with Y(t,A) ∩ Fx(t) = ∅, return LM (A) = ∞ and
UM (A) = ∞; otherwise, solve the lower-bounding problem

LM (A) = min
y

Ψ(y) s.t. y ∈ Y(T,A) .

4. If Y(t,A) ⊆ Fx(t) for all t ∈ [0, T ], solve the upper-bounding problem

UM (A) = min
y

Ψ(y) s.t. y ∈ Y(T,A) ;

otherwise, return UM (A) = ∞.

Output: Lower and upper bounds LM (A) ≤ VM (A) ≤ UM (A).

Although a hard problem in general, this semi-infinite inequality can be
rewritten equivalently as a linear matrix inequality (LMI) in the coefficients
a0, . . . , aM when the Φi’s are polynomial functions and the sets Fu(t) are
intervals, e.g., by using the sum-of-squares approach [40]. This way, the
feasibility check can be performed using efficient convex optimization tech-
niques.

– A major difficulty in Step 2 is the computation of the outer-approximation
function Y(·,A) on the solution set of the parametric ODE (3) on [0, T ].
The quality of such enclosure functions contributes significantly to the per-
formance of the branch-and-bound algorithm, as poor state bounds gener-
ally lead to an explosion in the size of the partition A. Major differences
between the existing techniques for global optimal control based on direct
single shooting are in the way these bounds are generated. In [21], the state
bounds are obtained based on the theory of differential inequalities [41]. In
contrast, pointwise-in-time, convex and concave bounds on the parametric
ODE solutions are considered in [42–45] based on the McCormick relax-
ation technique [46]. In another approach, interval enclosures are derived
from a Taylor model of the parametric ODE solutions [20, 47, 48]. This lat-
ter approach was recently extended to enable convex and concave bounds
in [49] using so-called McCormick-Taylor models [50]. The computation of
guaranteed state bounds has also been considered in different contexts, in-
cluding reachability analysis and robust control [51–53]. In principle, such
ellipsoidal bounds could be used in global optimal control methods too,
although there seems to be no literature on this yet. We also note that,
in order for the branch-and-bound algorithm to converge, the enclosures
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Y(t,A) must be convergent, i.e.,

lim
i→∞

diam
(

Y(t,Ai)
)

= 0 , (8)

for all t ∈ [0, T ], and for all sequences A1,A2 . . . ⊆ Rna of compact sets
such that limi→∞ diam (Ai) = 0 and lim supi→∞ LM (Ai) <∞.

– The computation of inner-approximation functions Y(·,A) on the solution
set of the parametric ODE (3) on [0, T ] presents less difficulty than Y(·,A).
One such function can always be obtained as

Y(t,A) = {y(t,mid (A))} .

In another variant, a feasible point or a local minimizer of the single-
shooting problem (4) can be sought by linking to a suitable (local) optimal
control solver, and this solution point can then be used to construct Y(t,A)
instead of mid (A) in (8). Multiple points in A could be used to construct
the inner-approximation sets Y(t,A) likewise. Note that all of these variants
satisfy the condition that

lim
i→∞

diam (Y(t,Ai)) = 0 ,

for all t ∈ [0, T ], and for all sequences A1,A2 . . . ⊆ Rna of compact sets
such that limi→∞ diam (Ai) = 0.

– The minimization problems in Steps 3 and 4 are nonconvex in general. Var-
ious strategies have been developed, which determine a convergent lower
bound LM (A) without the need for solving this optimization problem ex-
actly. This includes interval analysis and constraint propagation [54, 55];
an extension of the αBB method [56] through the use of second-order
state sensitivity and/or adjoint information [21, 57]; McCormick’s relax-
ation technique [17, 22, 58]; and, more recently, polyhedral relaxations from
Taylor or McCormick-Taylor models [23]. Depending on the expression of
the sets Fx(t), the feasibility checks that are part of Steps 3 and 4 may
be nontrivial to implement as well. We refer the reader to [59–61] for a
discussion of reliable strategies for the determination and verification of
feasible points.

A major shortcoming of direct single shooting and its variants for global opti-
mal control is that no guarantee can be provided on the error (VM (Rna)−V)
introduced by the control parameterization in general. In other words, while
ε-optimality can be guaranteed for the discretized NLP problem (4) this is
not the case for the original optimal control problem (1). In principle, it is of
course possible to progressively refine the control parameterization, but then
the lower bounding problems have to be reconstructed ab initio every time.
This quickly becomes computationally intractable within a standard branch-
and-bound approach, especially when the domain of the decision variables is
large. Moreover, a lower bound on the actual optimal value V cannot be deter-
mined with this näıve refinement approach. A principal aim of the bounding
techniques and branch-and-lift algorithm developed in the following sections
is to address these shortcomings.
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4 Image of the Control Parameterization Error in the State Space

This section aims at examining the response mismatch that is associated with
a given parameterization a of the control input u. Specifically, we compare
the solution y(t, a) of the parametric ODE (3) with the solution x(t, u) of the
original ODE

∀t ∈ [0, T ] , ẋ(t, u) = f(x(t, u)) +G(x(t, u))u(t) , (9)

with x(0, u) = x0 .

In this notation, the state vector x(t, ·) : L2[0, T ]nu → Rnx is regarded as a
functional of the control input u, defined implicitly as the solution of the ODE
(9). In order to analyze the difference between x(t, u) and y(t, a), we start
by defining the set of admissible controls associated with a parameterization
a ∈ Rna as

UM (a) :=

{

u ∈ L2[0, T ]nu

∣

∣

∣

∣

∣

ai = 1
σi
〈u, Φi〉µ , ∀ i ∈ {0, . . . ,M}

u(t) ∈ Fu(t) , ∀ t ∈ [0, T ]

}

. (10)

We also define the domain DM ⊆ Rna of UM as

DM := { a ∈ Rna | UM (a) 6= ∅ } .

The following definition makes use of this notation.

Definition 4.1 The set-valued function EM : [0, T ] × DM → P(R
nx), with

M ≥ 0, given by

∀(t, a) ∈ [0, T ]× DM , EM (t, a) := {x(t, u)− y(t, a) |u ∈ UM (a) } ,

is called the image of the control parameterization error in the state space.

At this point, it is worth recalling that the solution trajectories x and y of
the ODEs (3) and (9) are guaranteed to exist and be unique for all possible
choices of a ∈ DM and all feasible control inputs u according to the blanket
assumption A2. Therefore, the sets EM (·, a) are well defined. The following
proposition is merely a reinterpretation of Definition 4.1.

Proposition 4.1 Let u ∈ L2[0, T ]nu, with u(t) ∈ Fu(t) for all t ∈ [0, T ], and
let M ≥ 0. The response x(t, u) of the original ODE (9) with input function
u is bounded as

∀t ∈ [0, T ] , x(t, u) ∈ {y(t, a)} ⊕ EM (t, a) ,

with ai =
1
σi
〈u, Φi〉µ, for all i ∈ {0, . . . ,M}.

The image set EM is illustrated in a simple example next.
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Example 4.1 Consider the scalar ODE ẋ(t) = u(t) with initial condition
x(0) = 0, T = 1, and Fu(t) = [−1, 1]. For simplicity, consider the constant
control parameterization Φ0(t) = 1, with µ(t) = 1, σ0 = 1, and M = 0. The
construction of an explicit representation of the image set E0(t, a0) proceeds
as follows:

1. The set U0(a0) takes the form

∀a0 ∈ R ,

U0(a0) =

{

u ∈ L2[0, T ]nu

∣

∣

∣

∣

∣

a0 =
∫ 1

0
u(t) dt

−1 ≤ u(t) ≤ 1 , for all t ∈ [0, t]

}

. (11)

Since the average value of a function whose range is enclosed in [−1, 1] is
itself in [−1, 1], we have U0(a0) = ∅ for all a0 with |a0| > 1, and it follows
that D0 = [−1, 1].

2. Consider the special case that a0 = 1. It follows from (11) that the set U0(1)
is comprised of all functions u ∈ L2[0, T ]1 such that u(t) ∈ [−1, 1] for all
t ∈ [0, 1], and u(t) = 1 for almost all t ∈ [0, 1]. Thus, for all u ∈ U0(1), we
have

∀t ∈ [0, 1] , x(t, u) =

∫ t

0

u(t) dt = t .

Since y(t, 1) = a0t = t, we obtain E0(t, 1) = {0}, for all t ∈ [0, 1]. By a
similar argument, it is shown that E0(t,−1) = {0}, for all t ∈ [0, 1].

3. Before discussing the general case, consider the sets E0(t, a0) for a0 ∈
[−1, 1] and t = 1. Since y(1, a0) = a0 and

∀u ∈ U0(a0) , x(1, u) =

∫ 1

0

u(t) dt = a0 ,

we have E0(1, a0) = {0}, for all a0 ∈ [−1, 1].

4. Finally, consider the general solution set E0(t, a0) for any given a0 ∈ [−1, 1]
and any t ∈ [0, 1]. Since the ODE is linear and the sets Fu(t) := [−1, 1] are
convex, it follows that the sets U0(a0) and E0(t, a0) are themselves convex
at each t ∈ [0, 1]. Consequently, E0(t, a0) is an interval, whose lower and
upper bounds EL

0 (t, a0), E
U
0 (t, a0) are given by

E
L/U
0 (t, a0) = min

u
/max

u

∫ t

0

u(t) dt− a0t s.t.

{

∫ 1

0
u(t) dt = a0

−1 ≤ u(t) ≤ 1 .
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E0(·, a)

x(t, u)− y(t, a)

t

E3(·, a)

x(t, u)− y(t, a)

t

Fig. 1 Left: Image set E0(·, a) on [0, 1] for a = 1
2

as introduced in Example 4.1. Right:

Image set E3(·, a) on [0, 1] for a =
(
1
2
, 0, 0

)T
for the same example illustrating that the

diameter of the set EM (t, a) shrinks for increasing M (see Theorem 4.1).

These linear optimization problems can be solved explicitly by applying
Pontryagin’s Maximum Principle, giving:

∀(a0, t) ∈ [0, 1]× [0, T ] ,

E0(t, a0) =











[−(1 + a0)t , (1− a0)t] if t ∈
[

0, 1−a0

2

]

,

[−(1− a0)(1 − t) , (1− a0)t] if t ∈
]

1−a0

2 , 1+a0

2

[

,

[−(1− a0)(1− t) , (1 + a0)(1 − t)] if t ∈
[

1+a0

2 , 1
]

,

∀(a0, t) ∈ [−1, 0]× [0, T ] ,

E0(t, a0) =











[−(1 + a0)t , (1− a0)t] if t ∈
[

0, 1+a0

2

]

,

[−(1 + a0)t , (1 + a0)(1− t)] if t ∈
]

1+a0

2 , 1−a0

2

[

,

[−(1− a0)(1− t) , (1 + a0)(1 − t)] if t ∈
[

1−a0

2 , 1
]

.

The left plot on Figure 1 represents the set E0(t, a0) for a0 = 1
2 . ⋄

In general, explicit and exact characterizations of the image sets EM (t, a) can-
not be obtained as in Example 4.1. Instead, conservative approximations for
these sets are sought, which can be characterized explicitly and in a computa-
tionally tractable way. We start by noting that, under the blanket assumptions
A2 and A4, the sets EM (t, a) are compact [62]. The following additional as-
sumption concerns the family of orthogonal basis functions {Φi}i∈N.

Assumption 4.1 The functions {Φi}i∈N are smooth and define an orthogonal
basis on [0, T ] with respect to the weighting function µ and the scaling factors
{σi}i∈N such that

∑∞

i=0 σi =∞. Moreover, for any piecewise smooth function
ω : [0, T ] → R, there exist constants C0

ω ∈ R and C1
ω ∈ R++, together with a

sequence of functions ϕ1, ϕ2, . . . ∈ L2[0, T ] with ϕM ∈ span (Φ1, . . . , ΦM ) for
all M ∈ N, such that

∀M ∈ N , log ( |ω(t)− ϕM (t) | ) ≤ C0
ω − C1

ωM , (12)

for almost all t ∈ [0, T ].
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Remark 4.1 One way to construct orthogonal basis functions {Φi}i∈N on
[0, T ] that satisfy Assumption 4.1 is by applying a Gram-Schmidt process to
the monomial function basis {1, x, x2, . . .}. This yields the Legendre polyno-
mials

∀i ∈ N , Φi(t) = (−1)i
i
∑

j=0

(

i
j

)(

i+ j
j

)(

−
t

T

)j

,

which are orthogonal with respect to the unit measure µ(t) = 1. The associ-
ated scaling factors are σi := T

2i+1 and satisfy
∑∞

i=0 σi = ∞, as required by
Assumption 4.1. Although we keep our considerations general in deriving the
theoretical results, Legendre polynomials present many computational advan-
tages and are the method of choice for control parameterization here. ⋄

Example 4.1 (continued) The right plot on Figure 1 represents the set
E3(t, a) at a =

(

1
2 , 0, 0

)

for the same differential equation and control con-
straints as in Example 4.1, using the first three Legendre polynomials Φ0, Φ1

and Φ2. ⋄

Remark 4.2 The exponential convergence condition (12) holds for any or-
thogonal polynomial basis, since for any given piecewise smooth function
ω : [0, T ]→ R there exists a sequence of polynomials which approximate ω
with exponentially converging accuracy, as proven in [63]. The exponential
convergence condition (12) can also be established in the case of trigonometric
Fourier expansions [64]. ⋄

Before stating the main result of this section, we discuss a technical detail,
namely the need to introduce the condition

∑∞

i=0 σi = ∞ for the sequence
{σi}i∈N in Assumption 4.1.

Lemma 4.1 Let Assumption 4.1 and the blanket assumption A4 be satisfied.
Then, there exists a constant α < ∞ such that ‖ai‖∞ < α for all i ∈ N and
for all a ∈ D∞.

Proof Since Fu(t) is compact (Assumption A4), there exists a constant γ <∞
such that 〈uj , uj〉µ ≤ γ for all L2-integrable u with u(t) ∈ Fu(t) and all
j ∈ {1, . . . , nu}. By contradiction, assume that there exists a sequence a ∈ D∞

for which lim supi→∞ |(ai)j | 6= 0. Since
∑∞

i=0 σi = ∞ (Assumption 4.1),
Bessel’s inequality (see Proposition 3.1) gives

∞ =
∞
∑

i=0

|(ai)j |
2σi ≤ 〈uj , uj〉µ ≤ γ < ∞

for any u ∈ U∞(a), which is a contraction. Therefore, we have
lim supi→∞ |(ai)j | = 0, and there exists an upper bound α < ∞ such that
‖ai‖∞ < α for all i ∈ N and all coefficient sequences a ∈ D∞. ⊓⊔

The following theorem provides a condition under which EM (t, a) converges
to {0} as M →∞. A proof of this theorem is given and discussed in Sect. A.
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Theorem 4.1 Let Assumption 4.1 and the blanket Assumptions A2 and A4
be satisfied. Then, there exist constants C0

E ∈ R and C1
E ∈ R++ such that the

condition

∀a ∈ DM , log ( diam (EM (t, a)) ) ≤ C0
E − C1

EM

is satisfied for all M ∈ N, and for all t ∈ [0, T ].

A major implication of Theorem 4.1 is that, for any sequence a ∈ D∞, the
associated sequence of image sets satisfies

∀t ∈ [0, T ] , lim
M→∞

EM

(

t,
(

aT0 , . . . , a
T

M

)T
)

= {0} .

Nonetheless, this convergence property of the image set relies crucially on the
assumption that the right-hand side of the ODE is affine in u. This property
is not satisfied, in general, by those dynamic systems that are nonlinear in the
control input u, as illustrated in the following example.

Example 4.2 Consider the scalar ODE ẋ(t) = u(t)2 with initial condition
x(0) = 0 and Fu(t) = [−1, 1]. For any M ≥ 0, the image of the control
parameterization error at a0 = · · · = aM = 0 is given by

∀t ∈ [0, T ] , EM (t, 0) =

{∫ t

0

u(τ)2 dτ

∣

∣

∣

∣

u ∈ UM (0)

}

= [0, t] .

The right-most equality follows from the fact that, for any order M ≥ 0, the
set UM (0) contains bang-bang control functions u with u(t) ∈ {−1, 1} for
which x(t) = t. Consequently, we have limM→∞ EM (t, 0) ) {0} for t > 0. ⋄

5 Spatial Branch-and-Lift Algorithm for Global Optimal Control

This section presents the branch-and-lift algorithm, which builds upon a
generic, spatial branch-and-bound algorithm and is rigorous in its account-
ing of the control parameterization error. The basic idea is to bracket the
solution of the original optimal control problem and progressively refine these
bounds via a lifting mechanism that increases the control parameterization
order.

To describe the algorithm, it is useful to consider for any compact and finite-
dimensional coefficient set A ⊆ Rna an auxiliary (infinite-dimensional) optimal
control problem of the form

V∗
M (A) := min

u
Ψ(x(T, u)) s.t.

{

x(t, u) ∈ Fx(t) , ∀ t ∈ [0, T ] ,

u ∈ UM (A) .
(13)

Here, UM (A) :=
⋃

a∈A
UM (a) stands for the set of all control functions

u ∈ L2[0, T ]nu that satisfy the control constraints u(t) ∈ Fu(t) for all t ∈ [0, T ],
as well as the condition

(

1
σ0
〈u, Φ0〉

T

µ , . . . , 1
σM
〈u, ΦM 〉

T

µ

)T

∈ A .

The following properties are readily verified:
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P1. V∗
M (A) ≥ V for all A ⊆ Rna ; that is, V∗

M (A) yields an upper bound on
the optimal value V of Problem (1).

P2. There exists a global optimizer u∗ of Problem (1) whoseM+1 first Gram-
Schmidt coefficients are in the set A ⊆ Rna if and only if V∗

M (A) = V <∞.

Remark 5.1 The key difference between the optimal value functions V∗
M of

Problem (13) and the optimal value functions VM of the single-shooting ap-
proximation in Problem (4) is that V∗

M (Rna) = V , whereas VM (Rna) 6= V
in general. ⋄

Procedures for computing lower and upper bounds on V∗
M (A) are described

next (Sect. 5.1), before introducing the new lifting step (Sect. 5.2) and its
integration within branch-and-bound search (Sect. 5.3) as well as discussing
convergence aspects (Sect. 5.4).

5.1 Lower- and Upper-Bounding Procedures

This section aims at deriving lower and upper bounds on the optimal value
V∗
M (A) of the optimal control problem (13). The idea is to approximate the

state x(t, u) with the parametric function y(t, a) and at the same time keep
track of the parameterization error. Specifically, we use the image sets EM (t, a)
defined in Sect. 4 in order to define relaxed and tightened feasible sets FM (t, a)
and FM (t, a), respectively, as

∀t ∈ [0, T ] , FM (t, a) := Fx(t) ⊕ EM (t, a) , and

∀t ∈ [0, T ] , FM (t, a) := Fx(t) ⊖ EM (t, a) .

In turn, auxiliary, finite-dimensional optimization problems can be stated as

VM (A) := min
a

min
e∈EM (T,a)

Ψ(y(T, a) + e) (14)

s.t.

{

y(t, a) ∈ FM (t, a) , ∀ t ∈ [0, T ]

a ∈ A ∩ DM ,

VM (A) := min
a

max
e∈EM (T,a)

Ψ(y(T, a) + e) (15)

s.t.

{

y(t, a) ∈ FM (t, a) , ∀ t ∈ [0, T ]

a ∈ A ∩ DM .

These auxiliary optimization problems enjoy the following property by con-
struction.

Proposition 5.1 The inequality VM (A) ≤ V∗
M (A) ≤ VM (A) holds for all

compact sets A ⊆ Rna , and for all M ∈ N.
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Proof Let u∗ ∈ UM (A) be a minimizer of the optimal control problem (13),
so that V∗

M (A) = Ψ(x(T, u∗)) and x(t, u∗) ∈ Fx(t) for all t ∈ [0, T ]. Define the
coefficients a∗i := 〈u∗, Φi〉µ for all i ∈ {0, . . . ,M}, so that a∗ ∈ A, as well as
the response defect d∗(t) := x(t, u∗) − y(t, a∗). It follows from the definitions
of the sets UM (A) and EM (t, a∗) that

V∗
M (A) = Ψ(x(T, u∗)) = Ψ(y(T, a∗) + d∗(T )) , and

y(t, a∗) ∈ Fx(t)⊕ EM (t, a∗) .

Therefore, the pair (a∗, d∗(T )) is a feasible point of the optimal control prob-
lem (14) and we have

VM (A) ≤ Ψ(y(T, a∗) + d∗(T )) = V∗
M (A) .

Concerning the upper-bounding part, if the pair (a∗, e∗) is an optimizer (min-
max point) of Problem (15), then there exists a function u∗ ∈ UM (a∗) with
y(T, a∗)+ e∗ = x(T, u∗). Since y(t, a∗) ∈ Fx(t)⊖EM (t, a∗) for all t ∈ [0, T ], we
have that any function u∗ ∈ UM (a∗) satisfies x(t, u∗) ∈ Fx(t) for all t ∈ [0, T ].
Therefore, u∗ is a feasible point of Problem (13) and it follows that

V∗
M (A) ≤ Ψ(x(t, u∗)) = Ψ(y(t, a∗) + e∗) = VM (A) .

⊓⊔

Remark 5.2 The right-hand inequality V∗
M (A) ≤ VM (A) in Proposition 5.1

could be tightened by replacing the inner maximization problem in (15) with
a minimization problem. The reason for using (15) here is because only a
conservative enclosure of EM (T, a) can be computed in practice, instead of
the exact set EM (T, a). ⋄

In general, direct solution of the optimal control problems (14) and (15) is
not possible since an exact characterization of EM is typically unavailable.
Instead, lower and upper bounds UM (A) ≥ VM (A) and LM (A) ≤ VM (A) are
sought in order to make the problem computationally tractable. A procedure
for computing such bounds is presented in Algorithm 2. This procedure relies
on the generic capability to compute enclosure functions Y(t,A),Y(t,A) ⊆ Rnx

and EM (t,A) ⊆ Rnx for every compact set A ⊂ Rna , which satisfy

∀t ∈ [0, T ] ,

Y(t,A) ⊆
⋃

a∈A

{y(t, a)} ⊆ Y(t,A) and
⋃

a∈A

EM (t, a) ⊆ EM (t,A) .

Methods and tools to generate the enclosure functions Y(·,A) and Y(·,A) have
been discussed earlier in connection with direct single shooting (Sect. 3.4)
and Algorithm 1. Computing the enclosure functions EM (·,A) can be rather
involved too, and one possible approach based on ellipsoidal techniques is
discussed in Appendix B.
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Algorithm 2: Computing lower and upper bounds LM (A) and UM (A) for V∗
M (A)

Input: Compact set A ∈ A.

Algorithm:

1. If A ∩ DM = ∅, return LM (A) = UM (A) = ∞.

2. Compute compact inner and outer approximations Y(t,A) and Y(t,A) and an
enclosure EM (t,A) such that

∀t ∈ [0, T ] ,

Y(t,A) ⊆
⋃

a∈A

{y(t, a)} ⊆ Y(t,A) and
⋃

a∈A

EM (t, a) ⊆ EM (t,A).

3. If there exists t ∈ [0, T ] with Y(t,A)∩
(
Fx(t) ⊕ EM (t,A)

)
= ∅, return LM (A) =

UM (A) = ∞; otherwise, solve the lower-bounding problem

LM (A) := min
y

min
e

Ψ(y + e) s.t. y ∈ Y(T,A) , e ∈ EM (T,A) .

4. If Y(t,A) ⊆ Fx(t)⊖EM (t,A) for all t ∈ [0, T ], solve the upper-bounding problem

UM (A) := min
y

max
e

Ψ(y + e) s.t. y ∈ Y(T,A) , e ∈ EM (T,A) ;

otherwise, return UM (A) = ∞.

Output: Lower and upper bounds LM (A) ≤ V∗
M (A) ≤ UM (A) .

5.2 Lifting Operation

Similar to the spatial branch-and-bound algorithm described in Sect. 3.3, the
proposed branch-and-lift algorithm updates a partition A := {A1, . . . ,Ak} of
sets A1, . . . ,Ak ⊆ Rna by applying branching and fathoming operations. In
addition, the branch-and-lift algorithm increases the control parameterization
order M during the search using a new type of operation, called lifting.

Given a control parameterization order M ≥ 0 and an associated a partition
A = {A1, . . . ,Ak}, the lifting operation constructs a new partition

A ← A+ := {A+
1 ,A

+
2 , . . . ,A

+
k } (16)

by increasing the dimension M ← M+ := M + 1. The lifted sets A+
i , i =

1, . . . , k, are defined as

A+
i :=

{

(

aT0 , . . . , a
T

M , aTM+1

)T

∣

∣

∣

∣

∣

(

aT0 , . . . , a
T

M

)T

∈ Ai

aM+1 ∈ [aM+1(Ai), aM+1(Ai)]

}

, (17)

with

aM+1,j(A) / aM+1,j(A) = min
u

/max
u

1
σM+1

〈uj , ΦM+1〉µ (18)

s.t. u ∈ UM (A) ,

for all j ∈ {1, . . . , nu}.
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Remark 5.3 The optimization problems (18) are infinite-dimensional prob-
lems and therefore difficult to solve in general. However, in the special case
that the sets Fu(t) are interval vectors—a case that is frequently encountered
in practice—these problems become linear and methods from the field of con-
vex optimization can be used to solve them both reliably and efficiently. In the
general case, one possibility for a practical implementation consists in bound-
ing the sets Fu(t) with intervals first, and then solving the relaxed counterparts
of (18) to obtain upper and lower bounds on aM+1,j(A) and aM+1,j(A), re-
spectively. ⋄

The lifting operation is illustrated in an example next.

Example 5.1 Consider a dynamic system with a single control variable
u(t) ∈ Fu(t) = [−1, 1], for t ∈ [0, 1], and assume that a partition A is available
for a control parameterization of order M = 1 based on Legendre polynomials
such that

A = {A1,A2} , with

{

A1 = [−1,−0.4]× [0.6, 1] ,

A2 = [0.3, 1]× [0, 0.7] .

The optimization problems (18) can be solved by using convex optimization
techniques. For instance, solving

a2(A1) = min
u

∫ 1

0

5(6t2−6t+1)u(t) dt s.t.















−1 ≤
∫ 1

0
u(t) dt ≤ −0.4 ,

0.6 ≤ 3
∫ 1

0
(2t− 1)u(t) dt ≤ 1 ,

u(t)2 ≤ 1 , for all t ∈ [0, 1] ,

gives a2(A1) ≥ −0.87. Likewise, the other bounds are computed as

a2(A1) ≤ 1.58 , a2(A2) ≥ −1.88 , and a2(A2) ≤ 1.54 ,

and the result of the lifting operation is thus given by

A+ = {A+
1 ,A

+
2 } , with

{

A+
1 = [−1,−0.4]× [0.6, 1]× [−0.87, 1.58] ,

A+
2 = [0.3, 1]× [0, 0.7]× [−1.88, 1.54] .

The left plot in Figure 2 shows the original sets A1 and A2, while the right
plot shows the lifted sets A+

1 and A+
2 . Essentially, the lifting step uses bounds

on the control parameterization coefficients a0 and a1 in order to determine
bounds on the following coefficient a2 in a control parameterization of order
M = 2. Clearly, the resulting bounds on a2 in the lifted sets A+

1 and A+
2

depend on the particular geometry of the sets A1 and A2, respectively, as well
as on the geometry of the set Fu. In this example, the width of A+

1 along the
a2-axis turns out to be smaller than that of A+

2 . ⋄

The lifting step satisfies the following invariance property by construction.



22 Boris Houska, Benôıt Chachuat∗

0

1

-1 0 1

A1

A2

a1

a0 -2

0

2

-1 0 1

a1

a0

a2
A+
2

A+
1

Fig. 2 Visualization of the lifting operation. Left plot: Sets A1 and A2 on the (a0, a1)-space.
Right plot: Lifted sets A+

1 and A+
2 in the (a0, a1, a2)-space.

Proposition 5.2 Let A be a compact set and denote by A+ its lifted counter-
part. Then, UM (A) = UM+1(A

+) and, accordingly, V∗
M (A) = V∗

M+1(A
+).

It is important to be aware of the fact that the width of a lifted set A+ may
be larger than the width of its parent set A. Nonetheless, the width of the sets
A is uniformly bounded by the constant α that was introduced in Lemma 4.1.

Proposition 5.3 Let Assumption 4.1 and the blanket assumption A3 be sat-
isfied. Let also α <∞ denote the constant introduced in Lemma 4.1. Then, for
any compact set A, the width of the interval [aM+1,j(A), aM+1,j(A)] generated
by a lifting operation is bounded by α, i.e., we have

∀j ∈ {1, . . . , nu} , aM+1,j(A) − aM+1,j(A) ≤ α .

Proof The statement of the proposition follows immediately from Lemma 4.1
and by definition of the lifting operation. ⊓⊔

5.3 Branch-and-Lift Algorithm

The branch-and-lift algorithm is given in Algorithm 3 and detailed subse-
quently. The branching and fathoming operations are the same as those de-
fined earlier in Sect. 3.3 with the only difference that the bounds LM (A) and
UM (A) are now used instead of LM (A) and UM (A).

Initialization The branch-and-lift algorithm starts with M = 0. In the case
that Φ0(t) = 1, for instance, this corresponds to a constant control parame-
terization. The motivation here is that even a coarse parameterization might
already lead to the exclusion of certain parts of the control region that can-
not contain any global optima. A possible way of initializing the partition
A = {A0} is by noting that the interval [a0(∅), a0(∅)], as defined in (18),
encloses all possible values of the constant parameterization coefficient a0.
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Algorithm 3: Branch-and-lift algorithm for global optimal control

Input: Termination tolerance ε > 0; Lifting parameter ̺ > 0

Initialization:

1. Set M = 0 and A = {A0}, with A0 ⊇ D0 being an interval.

Repeat:

2. Select an interval A ∈ A.

3. Compute upper and lower bounds LM (A) ≤ V∗
M (A) ≤ UM (A) using Algo-

rithm 2.

4. Apply a fathoming operation.

5. If
(
minA∈A UM (A) −minA∈A LM (A)

)
≤ ε or A = ∅, stop.

6. If the condition

max
A∈A

diam
(
Y(t,A) ⊕ EM (t,A)

)
≤ (1 + ̺) max

A∈A
diam

(
EM (t, {mid(A)}

)

holds for all t ∈ [0, T ], apply a lifting operation for M ←M + 1.

7. Apply a branching operation, and return to step 2.

Output: Lower and upper bounds minA∈A LM (A) ≤ V ≤ minA∈A UM (A), or a proof of
infeasibility.

Lifting Condition Because branch-and-bound search is most efficient when
the control parameterization order M is small, the branch-and-lift strategy is
to increase M as infrequently as possible. Intuitively, it is desirable to apply
a lifting operation whenever the error associated with the control parame-
terization becomes of the same order of magnitude as the reachable set of
the original ODE (9) itself. The former can be evaluated as the diameter of
EM (t, {mid(A)}) as computed at the midpoint of A, whereas the later can be
over-approximated as the diameter of the set Y(t,A) ⊕ EM (t,A) . This leads
to the following lifting condition:

∀t ∈ [0, T ] , (19)

max
A∈A

diam
(

Y(t,A)⊕ EM (t,A)
)

≤ (1 + ̺) max
A∈A

diam
(

EM (t, {mid(A)})
)

,

where ̺ > 0 is a tuning parameter. Finite termination of the branch-and-lift
algorithm based on the lifting condition (19) is investigated in Sect. 5.4.

In the branch-and-lift algorithm, the decision whether to perform a normal
branching or to apply a lifting operation before branching based on (19) is
taken at each iteration. Moreover, a lifting operation is applied globally to all
of the parameter subsets in a current partition A; that is, all the subsets in A
share the same parameterization order, at any iteration. As a variant of the
branch-and-lift algorithm given in Algorithm 3, one could also imagine a family
of subsets that would have different parameterization orders by applying the
lifting condition locally instead.
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5.4 Finite Termination of Branch-and-Lift Algorithm

This section aims at investigating conditions under which Algorithm 3 finds an
ε-suboptimal solution of the optimal control problem (1) after a finite number
of iterations. The following assumptions on the convergence of the enclosure
functions Y(t, ·) and EM (t, ·) are introduced to carry out the analysis.

Assumption 5.1 There exists a constant CY <∞ such that

diam
(

Y(t,A)
)

≤ CY diam(A) , (20)

for all sets A with a sufficiently small diameter diam (A).

Assumption 5.2 There exist constants C0
E
∈ R, C1

E
∈ R++ and C2

E
∈ R+

such that

diam
(

EM (t, {mid (A)})
)

≤ exp
(

C0
E − C1

EM
)

, and (21)

diam
(

EM (t,A)
)

≤ diam
(

EM (t, {mid (A)})
)

+ C2
E diam(A) , (22)

for all compact sets A, and for all M ∈ N.

Note that Assumption 5.1 is automatically satisfied if standard tools from in-
terval arithmetics are applied to bound the state trajectory y(t, a), since the
function y(t, ·) is Lipschitz continuous. On the other hand, Assumption 5.2
requires that the bounds on the image set EM (t, a) inherit the exponential
convergence property established in Theorem 4.1. In particular, this assump-
tion is satisfied by applying the bounding procedure described in Appendix B.

In order to simplify the convergence argumentation, the case without state
constraints, i.e. Fx(t) = Rnx , is addressed first.

Lemma 5.1 Let Assumptions 5.1 and 5.2 as well as the blanket assumptions
A1, A2 and A4 be satisfied, and suppose that Fx(t) = Rnx . Then, for any finite
tolerance ε > 0, Algorithm 3 applies at most

M =

⌈

1

C1
E

(

log

(

LΨ (1 + ̺)

ε

)

+ C0
E

)⌉

(23)

lifting steps, where LΨ < ∞ stands for the Lipschitz constant of the Mayer
term Ψ .

Proof Let A be any compact set. Since Fx(t)⊖EM (t,A) = Rnx , we either have
UM (A) = LM (A) =∞, or we have

UM (A)− LM (A) ≤ LΨ diam
(

Y(T,A)⊕ EM (T,A)
)

. (24)

The former can only occur if A ∩ DM = ∅, in which case the set A would be
fathomed by Algorithm 3. Therefore, a lifting is only applied if

UM (A)− LM (A) ≤ LΨ (1 + ̺) max
A∈A

diam
(

EM (T, {mid (A)})
)

≤ LΨ (1 + ̺) exp(C0
E − C1

EM) ,
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which follows by substituting the lifting condition (19) in (24). Since
LΨ (1 + ̺) exp(C0

E
− C1

E
M) can be made as close to zero as desired by in-

creasing M and is independent of A, there exists M <∞ such that

UM (A)− LM (A) ≤ ε ,

for every compact set A with A∩DM 6= ∅. In particular, (23) yields an upper
bound on the number of lifting steps applied by Algorithm 3. ⊓⊔

Observe that Lemma 5.1 provides an upper bound on the number of lifting
operations applied by Algorithm 3 for a given tolerance ε > 0, but it does
not establish finite termination of Algorithm 3. This result is established in
the following theorem, under the additional assumption that the branching
operation is exhaustive for every given parameterization order M .

Theorem 5.1 Let Assumptions 5.1 and 5.2 as well as the blanket assumptions
A1, A2 and A4 be satisfied, and suppose that Fx(t) = Rnx . If the branching
operation is exhaustive for every given parameterization order M ∈ N, then
Algorithm 3 terminates finitely for any finite tolerance ε > 0 and any lifting
parameter ̺ > 0.

Proof By contradiction, assume that Algorithm 3 does not terminate finitely.
From Lemma 5.1, the maximum number M∗ of lifting operations applied by
Algorithm 3 is such that M∗ ≤ M ; that is, M∗ is attained after a finite
number of branching operations, and the algorithm then keeps branching for-
ever, so that the following conditions remain satisfied for an infinite number
of iterations:

A 6= ∅ and ε < min
A∈A

UM∗(A)−min
A∈A

LM∗(A) .

By Assumptions 5.1 and 5.2, it follows that

ε
(24)
< LΨ max

A∈A
diam

(

Y(T,A)⊕ EM∗(T,A)
)

≤ max
A∈A

LΨ (CY + C2
E ) diam (A) + LΨ max

A∈A
diam

(

EM∗(T, {mid(A)}
)

≤ max
A∈A

LΨ (CY + C2
E ) diam (A) + LΨ exp(C0

E − C1
EM

∗) .

Since the branching operation is exhaustive for any parameterization orderM ,
in particular M∗, we have that diam (A) = 0 in the limit and therefore

ε ≤ LΨ exp(C0
E − C1

EM
∗) ≤ LΨ exp(C0

E − C1
EM)

(23)

≤
ε

1 + ̺
.

Finally, since the inequality ε ≤ ε
1+̺ cannot be satisfied for both ε > 0 and

̺ > 0, we obtain a contradiction. ⊓⊔

While Theorem 5.1 is based solely on assumptions that are verifiable a priori,
the situation becomes more involved as soon as general state constraints are
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present. This is because the upper-bounding problem can fail to determine a
finite upper bound within a finite number of branch-and-lift iterations with
such constraints. Nonetheless, this problem is not specific to the proposed
branch-and-lift algorithm, but it is a known problem of branch-and-bound in
general, as discussed in [59–61].

In the following two subsections, we analyze the finite convergence of Algo-
rithm 3 in the presence of state constraints under the additional condition that
either a particular constraint qualification holds, or a reliable (local) optimal
control solver is available.

5.4.1 Finite Termination with General State Constraints via a Constraint
Qualification

A guarantee of finite termination with Algorithm 3 in the presence of general
state constraints can be obtained by enforcing a certain constraint qualifica-
tion. The following assumption is similar in essence to the constraint quali-
fication imposed by Bhattacharjee et al. [65] in the context of semi-infinite
programming.

Assumption 5.3 The optimal control problem (1) is strictly feasible in the
sense that there exists a sequence of feasible L2-integrable functions {ui}i∈N

such that

∀(t, i) ∈ [0, T ]× N , ui(t) ∈ Fu(t) and x(t, ui) ∈ int (Fx(t)) ,

and lim
i→∞

max
t∈[0,T ]

‖ ui(t)− u∗(t) ‖ = 0 ,

for at least one global minimizer u∗ of (1), where int (Fx(t)) denotes the inte-
rior of the set Fx(t).

It is important to note that such a constraint qualification fails to hold for
many optimal control problems in practice. In the case of optimal control prob-
lems with terminal equality constraints, for instance, one has int(Fx(T )) = ∅.
Nonetheless, the following finite-termination result can be established under
this assumption.

Corollary 5.1 Let Assumptions 5.1, 5.2 and 5.3 as well as the blanket as-
sumptions A1, A2, A3 and A4 be satisfied. If the branching operation is ex-
haustive for every given parameterization order M ∈ N, then Algorithm 3
terminates finitely.

Proof Assumption 5.3 implies that there exists a feasible ε-suboptimal solution
u∗
ε ∈ L2[0, T ]nu of (1) satisfying x(t, u∗

ε) ∈ int(Fx(t)) for all t ∈ [0, T ]. Since
diam

(

EM (t,A)
)

converges to zero for M → ∞ and diam (A) → 0 (Assump-
tion 5.2), it follows that for all sufficiently large M < ∞ and all sufficiently
small δ > 0 we have

Y(t,A) ⊆ Fx(t)⊖ EM (t,A) ,
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for all compact sets A satisfying diam (A) ≤ δ and

(

1
σ0
〈u∗

ε, Φ0〉
T

µ , . . . , 1
σM
〈u∗

ε, ΦM 〉
T

µ

)T

∈ A .

Consequently UM (A) <∞ for all sufficiently small sets A contained in a small
neighborhood of the Gram-Schmidt projection of u∗

ε, thereby allowing us to
transfer the proofs of Lemma 5.1 and Theorem 5.1 line-by-line to arrive at the
result. ⊓⊔

5.4.2 Finite Termination with General State Constraints based on a Reliable
Local Optimal Control Solver

An alternative way of obtaining a guarantee of finite termination with Algo-
rithm 3, which removes the need for the constraint qualification in Assump-
tion 5.3, is by assuming that a reliable local optimal control solver is available.

Definition 5.1 An optimal control solver is said to be locally reliable for
the problem (1) under a given control parameterization {Φi}i∈N if, for all
M ∈ N, there exists δ > 0 such that this solver returns a feasible solution of
problem (13) for all compact sets A with diam (A) ≤ δ and V∗

M (A) <∞.

Unfortunately, currently available implementations of local optimal control
solver do not come along with such local reliability guarantees and may fail to
find feasible solutions for certain degenerate state constraint geometries, such
as optimal control problems having a single feasible point. In the authors’
experience, however, local optimal control solvers work well for practical and
well-formulated optimal control problems, especially when initialized near a
locally optimal solution. The following finite-termination result holds under
the assumption that a reliable local optimal control solver is available.

Corollary 5.2 Let the optimal control problem (1) be feasible, and suppose
that a reliable local optimal control solver is available. For any compact set
A ∈ A with diam (A) ≤ δ and V∗

M (A) < ∞, let the inner-approximation
function Y(·,A) be obtained as

∀t ∈ [0, T ] Y(t,A) :=

{

y

(

t,
(

1
σ0
〈ū, Φ0〉

T

µ , . . . , 1
σM
〈ū, ΦM 〉

T

µ

)T
)}

,

where ū is a feasible solution of (13). Let also Assumptions 5.1 and 5.2 as well
as the blanket assumptions A1, A2, A3 and A4 be satisfied. If the branching
operation is exhaustive for every given parameterization order M ∈ N, then
Algorithm 3 terminates finitely.

Proof The proof of this statement is analogous to the proof of Theorem 5.1 to
the only difference that the convergence of the upper bound is now guaranteed
by the assumption of a reliable local optimal control solver. ⊓⊔
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As already mentioned, neither Corollary 5.1 nor Corollary 5.2 are entirely sat-
isfactory in that they rely on rather strong assumptions, which are not always
satisfied in practice and are difficult to check a priori. We reiterate that sim-
ilar problems can arise for finite-dimensional NLP problems too if suitable
constraint qualifications fail to hold or if a reliable local solver is unavail-
able [59–61]. As such, the development of optimal control solvers that would
come along with local reliability guarantees under preferably mild constraint
qualifications remains an important topic for future research.

Finally, we consider the more general case that the functions f and G in (1) are
locally, but not globally, Lipschitz continuous; that is, the solution trajectories
x(t, u) and y(t, a) may not exist on all of [0, T ] for certain choices of u and
a due to the presence of a finite escape time. We start by noting that state-
of-the-art enclosure methods for nonlinear ODEs can validate existence and
uniqueness of the solutions [66], thereby potentially providing a mechanism to
fathom control regions in which the ODEs have no solutions. But regardless,
a formal proof of convergence of the branch-and-lift algorithm can still be
obtained under the weaker assumptions that f and G are smooth, yet not
necessarily globally Lipschitz continuous. Consider the following assumption:

A2’: The functions f : Rnx → Rnx and G : Rnx → Rnx×nu are smooth, and
there exists δ > 0 and a global minimizer u∗ of the optimal control prob-
lem (1) such that the differential equation (9) admits a solution x(t, u) for all

u ∈ L2[0, T ]nu with
∫ T

0
‖u(t)− u(t∗)‖2 dt ≤ δ.

Then, the results in Theorem 5.1 and Corollaries 5.1 and 5.2 still hold upon
relaxing the blanket assumption A2 with A2’, and modifying Assumptions 5.1
and 5.2 so that (20)–(22) hold in a local neighborhood of u∗. This extension
is a direct consequence of the fact that, under assumption A2’, the solution
trajectories x(·, u) and y(·, a), and in turn the enclosure functions Y(·,A) and
EM (·,A), are guaranteed to exist for sufficiently large parameterization orders
M in a neighborhood of u∗.

6 Numerical Case Study: Optimal Control of a Bioreactor

Rather than providing a detailed numerical implementation or performance
assessment of the branch-and-lift algorithm, this section aims at demonstrating
its application on a practical case study. Our implementation of Algorithm 3
is based on the ACADO Toolkit [26] as the local optimal control solver—
see Sect. 5.4.2—and uses the library MC++ [58] to compute the required
nonlinearity bounds as well as the ODE enclosures based on Taylor models
combined with rigorous remainder estimates [49]. Note that this is a prototype
implementation and we do not report CPU times for this reason.

The fermentation control problem considered in this case study is based on a
process model that has been developed in [67, 68]. The dynamics are highly
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nonlinear and several operational strategies have been reported in the liter-
ature [68–70]. To the authors’ best knowledge, however, the application of a
generic deterministic global optimization algorithm to find ε-suboptimal solu-
tions has never been attempted for this problem.

Problem Definition Consider a continuous culture fermentation process de-
scribed by the following dynamic model [67–69]:

f(x) =













− 1
T Dx4

−Dx2 + µ(x3, x4)x2

−Dx3 −
µ(x3,x4)x2

YX/S

−Dx4 + (αµ(x3, x4) + β)x2

0













and G(x) =













0
0
D
0
1
T













,

with

µ(x3, x4) = µm

(

1− x4

Pm

)

x3

Km + x3 +
x2
3

Ki
,

and the initial value

x(0) = (0 , X0 , S0 , P0 , 0)
T .

The Mayer term in this problem is Ψ(x) = x1 and the set of feasible states is
given by

∀t ∈ [0, T ) , Fx(t) = R5 , and Fx(T ) =



















x ∈ R5

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 = X0

x3 = S0

x4 = P0

x5 = Sf



















.

Moreover, the feasible control set is

∀t ∈ [0, T ] , Fu(t) :=
{

u | Smin
f ≤ u ≤ Smax

f

}

,

and an isoperimetric constraint on the control input is defined such that

a0 =

∫ T

0

u(t) dt = Sf

(where a0 is the first coefficient in a control parameterization based on Leg-
endre polynomials.) All of the model parameters are reported in Table 1.

Optimal Control Solution Figure 3 displays the optimal control and response
for an ε-optimal solution, as determined by the proposed branch-and-lift al-
gorithm with optimality tolerance ε = 0.001 g h−1 L−1. We find that this
solution is identical to the one found in [70] by using local search methods,
with some good insight on how to initialize the search. A major difference here
is that the branch-and-lift algorithm comes along with a certificate that the
computed solution is within 0.001 g h−1 L−1 of the actual global solution.
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Table 1 Fermentation process parameters

Description Symbol Value
dilution rate D 0.15 h−1

substrate inhibition constant Ki 22 g L−1

substrate saturation constant Km 1.2 g L−1

product saturation constant Pm 50 g L−1

yield of the biomass YX/S 0.4
first product yield constant α 2.2
second product yield constant β 0.2 h−1

specific growth rate scale µm 0.48 h−1

average feed substrate concentration Sf 32.0 g L−1

minimum feed substrate concentration Smin
f 28.0 g L−1

maximum feed substrate concentration Smax
f 40.0 g L−1

duration of one period T 48 h
biomass initial condition X0 6.9521 g L−1

substrate initial condition S0 13.4166 g L−1

product initial condition P0 24.1566 g L−1

Fig. 3 The state trajectories “X = x2”, “S = x3”, and “P = x4” as well as the control
trajectory “Sf = u” corresponding to an ε-optimal solution of the fermentation process case
study, with accuracy ε = 0.001 g h−1 L−1.

Discussion The focus of the ensuing discussion is on the performance of the
branch-and-lift algorithm (Algorithm 3). The control parameterization at the
start of the algorithm being rather coarse, we find that two lifting operations
are applied during the first two branch-and-lift iterations; that is, the lift-
ing condition (19) happens to be satisfied for M = 0 and M = 1 without
branching. As the parameterization order is increased to M = 2, however, the
algorithm performs a number of branching operations and the fathoming test
successfully excludes a number of suboptimal control regions. The projection
onto the (a1, a2)-plane of the partition A at the order M = 2 is shown as
the grey-shaded area on the left plot in Figure 4—recall that a0 = Sf due
to the isoperimetric constraint. The intervals [a1, a1] and [a2, a2] reported on
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Fig. 4 Left plot: Projection of the partition A onto the (a1, a2)-plane (grey shaded area)
before the third lifting step is performed. Right plot: Projection of the partition A onto the
(a1, a2)-plane before the third, fourth, fifth and sixth lifting steps, i.e., for M ∈ {2, 3, 4, 5}.

this plot are those computed during the first and second lifting steps, and
the unshaded part of the box [a1, a1] × [a2, a2] shows the control subregion
that is excluded before the third lifting step—i.e., from M = 2 to M = 3—is
applied. Represented on the right plot in Figure 4 are the projections onto
the (a1, a2)-plane of the partition A before the third, fourth, fifth and sixth
lifting steps, with darker grey shades corresponding to more refined control
parameterizations. Observe, in particular, how the region in which the glob-
ally optimal control coefficients a1 and a2 belong progressively shrinks as the
control parameterization is refined.

Fig. 5 Left: The number of boxes in the set family A for M = 2, . . . , 7 before applying the
next lifting step. Right: The gap between upper and lower bound for M = 1, 2, . . . , 7.

The left plot in Figure 5 displays the cardinality of the partitionA immediately
before the next lifting operation is applied, here for parameterization orders
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M = 2, . . . , 7. Note that the partition size remains rather small, between 100-
200 subsets, and it even decreases for larger M . The right part of Figure 5
shows the decrease in the optimality gap (minA∈A UM (A) −minA∈A LM (A))
between the upper and the lower bound on the optimal value V as the param-
eterization order M is increased, until the desired tolerance ε is attained.

In this case study, Algorithm 3 stops after 810 iterations, taking approximately
2.5 hours to converge and finding the solution that is displayed in Figure 3.

7 Conclusions

This paper has presented a new branch-and-lift algorithm for solving nonlin-
ear optimal control problems with smooth nonlinear dynamics and nonconvex
objective and constraints to guaranteed global optimality. Particular emphasis
has been on the convergence properties of the image of the control parameter-
ization error in state space, which are summarized in Theorem 4.1. Another
principal contribution of this paper has been the introduction of a lifting op-
eration in Sect. 5, which adapts the control parameterization accuracy during
the global search. The most important result of this paper is that the proposed
branch-and-lift algorithm can find ε-suboptimal solutions of the continuous-
time optimal control problem (1) in a finite number of iterations, as proven
in Theorem 5.1 as well as Corollaries 5.1 and 5.2. As far as the authors are
aware, this algorithm is the first complete search method of its kind, apart
from algorithms based on dynamic programming. Finally, the performance of
the proposed branch-and-lift algorithm has been illustrated for the optimal
control of a periodic fermentation process.

Appendix A Proof of Theorem 4.1

This section aims at constructing convergent bounds on the set EM (t, a), thereby providing
a proof of Theorem 4.1. Recall the definition of the set EM (t, a) in Sect. 4 as

EM (t, a) := {x(t, u)− y(t, a) |u ∈ UM (a) } .

The blanket assumption A2 guarantees that the solution trajectories x and y are well-
defined, so that a sufficiently large and compact a priori enclosure Ẽ ⊆ Rnx can always be
found such that

∀t ∈ [0, T ] , EM (t, a) ⊆ Ẽ .

The focus here is on tightening the a priori enclosure Ẽ, which is crucial for analyzing the
convergence of the set EM (t, a). We start by defining the response defect

d(t, u, a) = x(t, u)− y(t, a) ,

which by construction satisfies an ODE of the form

∀t ∈ [0, T ] ,

ḋ(t, u, a)
(3,9)
= f(x(t, u))− f(y(t, a)) +G(x(t, u)) u(t)−G(y(t, a))

(
M∑

i=0

aiΦi(t)

)
, (25)

with d(0, u, a) = 0 .
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In order to bound the solution trajectory of (25), consider a Taylor expansion of the term
f(x(t, u))− f(y(t, a)) in the form

f(x(t, u)) − f(y(t, a)) =
∂f(y(t, a))

∂x
d(t, u, a) + Rf (t, u, a) d(t, u, a) ,

where the matrix Rf (t, u, a) ∈ Rnx×nx denotes a nonlinear remainder term. By the mean-
value theorem, Rf is bounded as

∀u ∈ UM (a) , ‖Rf (t, u, a)‖ ≤ max
d′,d′′∈Ẽ

∥∥∥∥
1

2

∂2f(y(t, a) + d′)

∂x2
d′′
∥∥∥∥ . (26)

Similarly, the mean-value theorem can be applied to the term [G(x(t, u))−G(y(t, a))] u(t),
giving

[G(x(t, u)) −G(y(t, a))] u(t) = RG(t, u, a)d(t, u, a) ,

where the nonlinear remainder term RG(t, u, a) is bounded by

∀u ∈ UM (a) , ‖RG(t, u, a)‖ ≤ max
u′∈Fu(t)

max
d′∈Ẽ

∥∥∥∥
∂G(y(t, a) + d′)

∂x
u′

∥∥∥∥ . (27)

In the following, we introduce the shorthand notation R(t, u, a) := Rf (t, u, a) +RG(t, u, a),
so that (25) can be written in the form

∀t ∈ [0, T ] ,

ḋ(t, u, a) =
∂f(y(t, a))

∂x
d(t, u, a) + R(t, u, a) d(t, u, a) +G(y(t, a))

[
u(t) −

M∑

i=0

aiΦi(t)

]
,

(28)
with d(0, u, a) = 0 .

A few remarks are in order regarding the previous ODE (28):

1. The Jacobian of f and the function G are evaluated at the point y(t, a). Therefore,
these matrices are independent of the control input u.

2. The matrix-valued remainder term R(t, u, a) depends on u in general, but standard
tools such as interval arithmetics can be applied to construct a bound R(t, a) < ∞
independent of u such that:

∀t ∈ [0, T ] ,

max
d′,d′′∈Ẽ

∥∥∥∥
∂2f(y(t, a) + d′)

∂x2

d′′

2

∥∥∥∥
2

+ max
u′∈Fu(t)

max
d′∈Ẽ

∥∥∥∥
∂G(y(t, a) + d′)

∂x
u′

∥∥∥∥
2

≤ R(t, a) . (29)

The validity of this bound follows from the inequalities (26) and (27):

∀u ∈ UM (a) , ‖R(t, u, a)‖2 ≤ R(t, a) .

However, the tightness of the bound R(t, a) depends strongly on the tightness of the a

priori enclosure Ẽ, and a tighter Ẽ will typically lead to a tighter bound on the norm
of the remainder term R.

3. The right-hand side of the ODE (28) also depends on the control parameterization defect

(u−
∑M

i=0 aiΦi). It follows by orthogonality of the Φi’s that the firstM+1Gram-Schmidt
coefficients of this defect are all equal to zero. Consequently, an enclosure WM (a) of the



34 Boris Houska, Benôıt Chachuat∗

control parameterization defect, which is independent of u and convex (Assumption A4),
is obtained as:

∀u ∈ UM (a) ,

u−
M∑

i=0

aiΦi ∈ WM (a) :=





w ∈ L2[0, T ]nu

∣∣∣∣∣∣∣∣∣∣

∀i ∈ {0, . . . ,M}, ∀t ∈ [0, t],

0 = 〈w, Φi〉µ

w(t) +
M∑

i=0

aiΦi(t) ∈ Fu(t)





. (30)

Summarizing the above considerations, the main idea is to regard the solution trajectory
of the differential equation (28) as a function of the remainder term and of the control
parameterization defect rather than as a function of the control function u. In order to
formalize this change of variable, let e(t, ∆, w) denote the solution of the ODE

ė(t, ∆,w) = [A(t) +∆(t)] e(t, ∆,w) + B(t)w(t) , with e(0, ∆,w) = 0, (31)

for any functions w ∈ L2[0, T ]nu and ∆ ∈ L2[0, T ]nx×nx , where we have introduced the

shorthand notations A(t) :=
∂f(y(t,a))

∂x
and B(t) := G(y(t, a)).

Proposition A.1 Let R(·, a) be a remainder bound satisfying (29), and let WM (a) be

defined by (30). Then,

∀(t, a) ∈ [0, T ]× DM , EM (t, a) ⊆

{
e(t, ∆,w)

∣∣∣∣∣
w ∈ WM (a)

∀τ ∈ [0, T ] ‖∆(τ)‖2 ≤ R(τ, a)

}
,

where e(·,∆, w) denotes the solution of (31).

Proof From the definition of the defect function d, we have

EM (t, a) = { d(t, u, a) | u ∈ UM (a) } .

Moreover, the function e is defined such that

d(t, u, a) = e

(
t, R(·, u, a), u−

M∑

i=0

aiΦi

)
.

Therefore, the result of the proposition follows by applying the change of variables

R(·, u, a) → ∆ and u−
M∑

i=0

aiΦi → w ,

and using that R(·, a) and WM (a) are bounds on the norm of the remainder term and on
the control parameterization defect, respectively. ⊓⊔

In order to understand the motivation behind Proposition A.1, it is helpful to interpret the
differential equation (31) as a low-pass filter with uncertain but bounded gain ∆, which
would filter high-frequency modes of the “noise” w. This interpretation is useful, as the
control parameterization defect w = u −

∑M
i=0 aiΦi is bounded by the set WM (a). For

example, if Φ0, Φ1, . . . denote the basis functions in a standard trigonometric Fourier ex-
pansion, the set WM (a) contains for large M only highly oscillatory functions, as the first
M + 1 Fourier coefficients of the control parameterization are zero in this case. The differ-
ential equation (31) can be expected to filter out these highly oscillating modes such that
e(t, ∆,w) ≈ 0. Having this interpretation in mind, intuition suggests that we should be able
to compute tight bounds on the function e(t, ∆,w), which converge for M →∞, even when
the uncertain gain ∆ is not known exactly.



Branch-and-Lift Algorithm for Global Optimal Control 35

The aim of the following considerations is to formalize this intuition by translating it into
a rigorous algorithm that computes convergent enclosures of the sets EM (·, a) on [0, T ]. To
do so, the function e(t, ∆,w) is decomposed into the sum of two functions eL(t, w) and
eN(t, ∆, v), such that

e(t, ∆,w) = eL(t, w) + eN(t, ∆, eL(·, w)).

Specifically, eL(·, w) and eN(·, ∆, v) are the solutions of the following auxiliary ODEs:

∀t ∈ [0, T ] ,

ėL(t, w) = A(t)eL(t, w) +B(t)w(t) , with eL(0, w) = 0 , (32)

ėN(t, ∆, v) = (A(t) +∆(t)) eN(t, ∆, v) +∆(t)v(t) , with eN(t, ∆, v) = 0 . (33)

Note that the output eL of the first ODE (32) becomes an input in the second ODE (33).
Moreover, we define the sets

EL
M (t, a) := { eL(t, w) |w ∈ WM (a) } , and

EN
M (t, a) :=

{
eN(t, ∆, v)

∣∣∣∣∣∀τ ∈ [0, t] ,
v(τ) ∈ EL

M (τ, a)

‖∆(τ)‖2 ≤ R(τ, a)

}
.

The following proposition is a direct consequence of Proposition A.1 and of the foregoing
decomposition.

Proposition A.2 The image set EM (t, a) is contained in the Minkowski sum of the sets

EL
M (t, a) and EN

M (t, a),

∀(t, a) ∈ [0, T ]× DM , EM (t, a) ⊆ EL
M (t, a) ⊕ EN

M (t, a) . (34)

The following lemma establishes that, in order to find a convergent bound on the diameter
of the set EM (t, a), it is sufficient to find a convergent bound on the diameter of the set
EL
M (t, a).

Lemma A.1 There exists a constant ℓ(t) <∞ such that

∀t ∈ [0, T ] , diam (EM (t, a)) ≤ ℓ(t) max
τ∈[0,T ]

diam
(
EL
M (τ, a)

)
.

Proof Since the uncertain gain ∆ is bounded, there exist constants ℓ1 and ℓ2 such that

‖A(t) +∆(t)‖2 ≤ ℓ1 and ‖∆(t)v(t)‖2 ≤ ℓ2
diam

(
EL
M (t, a)

)

2
,

for all v with v(t) ∈ EL
M (t, a), all ∆ with ‖∆(t)‖2 ≤ R(t, a), and all t ∈ [0, T ]. Applying

Gronwall’s lemma for bounding the norm of the solution of the differential equation (33)
yields the following bound on the diameter of EN

M (t, a):

diam
(
EN
M (t, a)

)
≤ exp (ℓ1t) ℓ2 max

τ∈[0,T ]
diam

(
EL
M (τ, a)

)
.

then follows from Proposition A.2 that

diam (EM (t, a)) ≤ diam
(
EL
M (t, a)

)
+ diam

(
EN
M (t, a)

)

≤ [1 + ℓ2 exp (ℓ1t)] max
τ∈[0,T ]

diam
(
EL
M (τ, a)

)
, (35)

and the result follows by defining ℓ(t) := 1 + ℓ2 exp (ℓ1t). ⊓⊔
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In the remainder of this appendix, the focus is on bounding the set EL
M (t, a). We start by

noting that the image sets EL
M (t, a) are both compact and convex. Compactness of EL

M (t, a)

follows from Filippov’s theorem [62]. Moreover, convexity of EL
M (t, a) follows from the fact

that linear transformations of convex sets are convex, recalling that the set WM (a) is convex
and that the functional eL(t, ·) is linear since the ODE (32) is itself linear; see also [71].
Because any compact and convex set is uniquely characterized by its support function [72],
we define the support function V (t, ·) : Rnx → R associated with the image set EL

M (t, a) by

∀c ∈ Rnx , V (t, c) := max
w∈WM (a)

cTeL(t, w) . (36)

It is not hard to see from (36) that

sup
c

V (t, c)

‖c‖2
≥

1

2
diam

(
EL
M (t, a)

)
,

thereby providing a means for bounding the diameter of EL
M (t, a). In expanded form, V (t, c)

reads

V (t, c) := max
w∈L2[0,T ]nu

cT
∫ t

0
Z(t, τ)B(τ)w(τ) dτ s.t.





∀i ∈ {0, . . . ,M} , ∀t ∈ [0, t] ,

0 = 〈w,Φi〉µ

w(t) +
M∑

i=0

aiΦi(t) ∈ Fu(t),

(37)

with Z : [0, T ] × [0, T ] → Rnx×nx the fundamental solution of the parametric linear ODE
(32), which satisfies

∀τ, t ∈ [0, T ] ,
∂

∂t
Z(t, τ) = A(t)Z(t, τ) , with Z(τ, τ) = I .

Since the sets Fu(t) are compact, one can always scale the dynamic system, and
we shall therefore restrict the analysis to those L2-integrable function w with
w(t) +

∑M
i=0 aiΦi(t) ∈ Fu(t) for all t ∈ [0, T ] and such that

‖w‖µ,2 :=

∫ T

0
w(t)Tw(t)µ(t) dt ≤ 1 .

Let the functions Ht : [0, T ]→ Rnx×nx and θ : [0, T ]× [0, T ]→ R be defined by

Ht(τ) :=
1

µ(τ)
Z(t, τ)B(τ)θ(t, τ) and θ(t, τ) :=

{
1 , if τ ≤ t ,

0 , otherwise ,

for all t, τ ∈ [0, T ]. The objective function in (37) can be written in the form

cT
∫ t

0
Z(t, τ)B(τ)w(τ) dτ = cT

∫ T

0

1

µ(τ)
Z(t, τ)B(τ)θ(t, τ)w(τ)µ(τ) dτ =

〈
cTHt , w

〉

µ
,

and an upper bound on the support function V (t, c) is given by

V (t, c) ≤ max
w

〈
cTHt , w

〉

µ
s.t.

{
0 = 〈w,Φi〉µ , ∀ i ∈ {0, . . . ,M} ,

‖w‖µ,2 ≤ 1 .
(38)

Associating with each equality constraint 0 = 〈w,Φi〉µ in (37) the scaled multipliers
cTDi ∈ Rnu , the dual of the convex problem (38) gives

V (t, c) ≤ inf
D

max
w

〈
cTHt, w

〉

µ
−

M∑

i=0

cTDi〈Φi, w〉µ s.t. ‖w‖µ,2 ≤ 1

= inf
D

∥∥∥∥∥c
T

(
Ht −

M∑

i=0

DiΦi

)∥∥∥∥∥
µ,2

=

∥∥∥∥∥c
T

(
Ht −

M∑

i=0

〈Ht, Φi〉µ

σi
Φi

)∥∥∥∥∥
µ,2

, (39)
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where the tight version of the Cauchy-Schwarz inequality for L2-scalar products has been
used in the last equality. At this point, it becomes clear that the derived bound on the
support function V (t, c) depends crucially on how accurately the function Ht can be ap-

proximated with the function
∑M

i=0 DiΦi. This observation is formalized in the following
theorem.

Theorem A.1 Let Assumption 4.1 and the blanket assumptions A2 and A4 be satisfied.

Then, there exist constants C
L,0
E ∈ R and C

L,1
E ∈ R++ such that the condition

∀(t, a) ∈ [0, T ]× DM , log
(
diam

(
EL
M (t, a)

) )
≤ C

L,0
E − C

L,1
E M

is satisfied for all M ∈ N.

Proof Since the function Ht is piecewise smooth and from Assumption 4.1, there exists a
sequence D0,D1, . . . ∈ Rnx×nu as well as constants C0

H ∈ R and C1
H ∈ R++ such that

log

(∥∥∥∥∥Ht(τ)−
M∑

i=0

DiΦi(τ)

∥∥∥∥∥

)
≤ C0

H − C1
HM , (40)

for almost all τ ∈ [0, T ], and for all M ∈ N. By combining (38) and (40), it follows that
there exists a constant Cµ ∈ R++ such that

log
(
diam

(
EL
M (t, a)

))
≤ log

(
2 sup

c

V (t, c)

‖c‖2

)
≤ 2Cµ

[
C0

H − C1
HM

]
, (41)

for almost all τ ∈ [0, T ] and for all M ∈ N. In the last step, we have used the Lebesgue
dominated convergence theorem (or alternatively Fatou’s lemma), which guarantees that
the Lebesgue zero measure of points τ ∈ [0, T ] at which the inequality (40) may be violated

does not contribute to the bound on the L2-norm of the function Ht −
∑M

i=0 DiΦi. The

statement of the theorem follows by taking C
L,0
E := 2CµC

0
H and C

L,1
E := 2CµC

1
H . ⊓⊔

Finally, a proof of Theorem 4.1 is obtained by combining the results in Theorem A.1 and
Lemma A.1.

Appendix B Computation of Convergent Enclosures EM(t,A)

Since the proof in Appendix A is essentially constructive, a line-by-line transcription of this
proof into a numerical bounding procedure that constructs an enclosure EM (t,A) satisfying
Assumption 5.2 is in principle possible, assuming that suitable interval tools are available.
For the implementation in this paper, we have used the bounding and relaxation techniques
available through the library MC++ [50, 58] and we have refined the procedure based on
the following observations:

1. From inequality (39), we know that the set EL
M (t, a) is enclosed by an ellipsoid of the

form E(Q(t, a)) with

Q(t, a) :=

∫ T

0

(
Ht(τ) −

M∑

i=0

〈Ht, Φi〉µ

σi
Φi(τ)

)(
Ht(τ)−

M∑

i=0

〈Ht, Φi〉µ

σi
Φi(τ)

)T

dτ .

By using standard tools from interval analysis for differential equations, a convergent
bounding matrix Q(t,A) ∈ Rnx×nx can be constructed such that Q(t, a) � Q(t,A) for
all a ∈ A and all t ∈ [0, T ]. In particular, if there exists a constant CQ such that

‖Q(t,A)− Q(t, {mid (A)}) ‖ ≤ CQ diam (A) ,
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then the enclosure E
L
M (t,A) := E(Q(t,A)) will satisfy the convergence conditions

log
(
diam

(
E
L
M (t, {mid (A)})

))
≤ C

L,0
E
− C

L,1
E

M , (42)

diam
(
E
L
M (t,A)

)
− diam

(
E
L
M (t, {mid (A)})

)
≤ C

L,2
E

diam (A) , (43)

for all compact sets A, for all M ∈ N, and for some constant C
L,0
E
∈ R, CL,1

E
∈ R++

and C
L,2
E
∈ R+.

2. The proof of Lemma A.1 is based on Gronwall’s lemma, which is known to provide
mathematically valid, yet typically conservative, bounds for practical purposes. Instead,
our implementation considers a modified version of state-of-the art reachable set enclo-
sure algorithms for bounding the solution of the differential equation (33), which prove
to be much less conservative than with Gronwall’s lemma.
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