474 research outputs found

    Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    Get PDF
    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations

    Sol-gel based oxidation catalyst and coating system using same

    Get PDF
    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state

    Testing of the Crew Exploration Vehicle in NASA Langley's Unitary Plan Wind Tunnel

    Get PDF
    As part of a strategic, multi-facility test program, subscale testing of NASA s Crew Exploration Vehicle was conducted in both legs of NASA Langley s Unitary Plan Wind Tunnel. The objectives of these tests were to generate aerodynamic and surface pressure data over a range of supersonic Mach numbers and reentry angles of attack for experimental and computational validation and aerodynamic database development. To provide initial information on boundary layer transition at supersonic test conditions, transition studies were conducted using temperature sensitive paint and infrared thermography optical techniques. To support implementation of these optical diagnostics in the Unitary Wind Tunnel, the experiment was first modeled using the Virtual Diagnostics Interface software. For reentry orientations of 140 to 170 degrees (heat shield forward), windward surface flow was entirely laminar for freestream unit Reynolds numbers equal to or less than 3 million per foot. Optical techniques showed qualitative evidence of forced transition on the windward heat shield with application of both distributed grit and discreet trip dots. Longitudinal static force and moment data showed the largest differences with Mach number and angle of attack variations. Differences associated with Reynolds number variation and/or laminar versus turbulent flow on the heat shield were very small. Static surface pressure data supported the aforementioned trends with Mach number, Reynolds number, and angle of attack

    Carbon nanotube-based sensor and method for detection of crack growth in a structure

    Get PDF
    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure

    Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    Get PDF
    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages

    Support and Assessment for Fall Emergency Referrals (SAFER) 2: a cluster randomised trial and systematic review of clinical effectiveness and cost-effectiveness of new protocols for emergency ambulance paramedics to assess older people following a fall with referral to community-based care when appropriate.

    Get PDF
    BACKGROUND: Emergency calls are frequently made to ambulance services for older people who have fallen, but ambulance crews often leave patients at the scene without any ongoing care. We evaluated a new clinical protocol which allowed paramedics to assess older people who had fallen and, if appropriate, refer them to community-based falls services. OBJECTIVES: To compare outcomes, processes and costs of care between intervention and control groups; and to understand factors which facilitate or hinder use. DESIGN: Cluster randomised controlled trial. PARTICIPANTS: Participating paramedics at three ambulance services in England and Wales were based at stations randomised to intervention or control arms. Participants were aged 65 years and over, attended by a study paramedic for a fall-related emergency service call, and resident in the trial catchment areas. INTERVENTIONS: Intervention paramedics received a clinical protocol with referral pathway, training and support to change practice. Control paramedics continued practice as normal. OUTCOMES: The primary outcome comprised subsequent emergency health-care contacts (emergency admissions, emergency department attendances, emergency service calls) or death at 1 month and 6 months. Secondary outcomes included pathway of care, ambulance service operational indicators, self-reported outcomes and costs of care. Those assessing outcomes remained blinded to group allocation. RESULTS: Across sites, 3073 eligible patients attended by 105 paramedics from 14 ambulance stations were randomly allocated to the intervention group, and 2841 eligible patients attended by 110 paramedics from 11 stations were randomly allocated to the control group. After excluding dissenting and unmatched patients, 2391 intervention group patients and 2264 control group patients were included in primary outcome analyses. We did not find an effect on our overall primary outcome at 1 month or 6 months. However, further emergency service calls were reduced at both 1 month and 6 months; a smaller proportion of patients had made further emergency service calls at 1 month (18.5% vs. 21.8%) and the rate per patient-day at risk at 6 months was lower in the intervention group (0.013 vs. 0.017). Rate of conveyance to emergency department at index incident was similar between groups. Eight per cent of trial eligible patients in the intervention arm were referred to falls services by attending paramedics, compared with 1% in the control arm. The proportion of patients left at scene without further care was lower in the intervention group than in the control group (22.6% vs. 30.3%). We found no differences in duration of episode of care or job cycle. No adverse events were reported. Mean cost of the intervention was £17.30 per patient. There were no significant differences in mean resource utilisation, utilities at 1 month or 6 months or quality-adjusted life-years. In total, 58 patients, 25 paramedics and 31 stakeholders participated in focus groups or interviews. Patients were very satisfied with assessments carried out by paramedics. Paramedics reported that the intervention had increased their confidence to leave patients at home, but barriers to referral included patients' social situations and autonomy. CONCLUSIONS: Findings indicate that this new pathway may be introduced by ambulance services at modest cost, without risk of harm and with some reductions in further emergency calls. However, we did not find evidence of improved health outcomes or reductions in overall NHS emergency workload. Further research is necessary to understand issues in implementation, the costs and benefits of e-trials and the performance of the modified Falls Efficacy Scale. TRIAL REGISTRATION: Current Controlled Trials ISRCTN60481756 and PROSPERO CRD42013006418. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 13. See the NIHR Journals Library website for further project information

    Forest-linked livelihoods in a globalized world.

    Get PDF
    Forests have re-taken centre stage in global conversations about sustainability, climate and biodiversity. Here, we use a horizon scanning approach to identify five large-scale trends that are likely to have substantial medium- and long-term effects on forests and forest livelihoods: forest megadisturbances; changing rural demographics; the rise of the middle-class in low- and middle-income countries; increased availability, access and use of digital technologies; and large-scale infrastructure development. These trends represent human and environmental processes that are exceptionally large in geographical extent and magnitude, and difficult to reverse. They are creating new agricultural and urban frontiers, changing existing rural landscapes and practices, opening spaces for novel conservation priorities and facilitating an unprecedented development of monitoring and evaluation platforms that can be used by local communities, civil society organizations, governments and international donors. Understanding these larger-scale dynamics is key to support not only the critical role of forests in meeting livelihood aspirations locally, but also a range of other sustainability challenges more globally. We argue that a better understanding of these trends and the identification of levers for change requires that the research community not only continue to build on case studies that have dominated research efforts so far, but place a greater emphasis on causality and causal mechanisms, and generate a deeper understanding of how local, national and international geographical scales interact.This work was funded by the UK’s Department for International Development (grant number 203516-102) and governed by the University of Michigan’s Institutional Review Board (HUM00092191). JAO acknowledges the 520 support of a European Union FP7 Marie Curie international outgoing fellowship (FORCONEPAL). LVR was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement No. 853222 FORESTDIET). AJB acknowledges the support of an Australian Research Council Australia Laureate Fellowship (grant number 525 FL160100072). LBF acknowledges support from the European Union Marie Curie global fellowship (CONRICONF). PM was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No 677140 MIDLAND)

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Applying Superfluid Helium to Light Dark Matter Searches: Demonstration of the HeRALD Detector Concept

    Full text link
    The SPICE/HeRALD collaboration is performing R&D to enable studies of sub-GeV dark matter models using a variety of target materials. Here we report our recent progress on instrumenting a superfluid 4^4He target mass with a transition-edge sensor based calorimeter to detect both atomic signals (e.g. scintillation) and 4^4He quasiparticle (phonon and roton) excitations. The sensitivity of HeRALD to the critical "quantum evaporation" signal from 4^4He quasiparticles requires us to block the superfluid film flow to the calorimeter. We have developed a heat-free film-blocking method employing an unoxidized Cs film, which we implemented in a prototype "HeRALD v0.1" detector of \sim10~g target mass. This article reports initial studies of the atomic and quasiparticle signal channels. A key result of this work is the measurement of the quantum evaporation channel's gain of 0.15±0.0120.15 \pm 0.012, which will enable 4^4He-based dark matter experiments in the near term. With this gain the HeRALD detector reported here has an energy threshold of 145~eV at 5 sigma, which would be sensitive to dark matter masses down to 220~MeV/c2^2.Comment: 14 pages, 9 figure

    Updated guidance on the management of COVID-19:from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020)

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome-coronavirus-2. Consensus suggestions can standardise care, thereby improving outcomes and facilitating future research. METHODS: An International Task Force was composed and agreement regarding courses of action was measured using the Convergence of Opinion on Recommendations and Evidence (CORE) process. 70% agreement was necessary to make a consensus suggestion. RESULTS: The Task Force made consensus suggestions to treat patients with acute COVID-19 pneumonia with remdesivir and dexamethasone but suggested against hydroxychloroquine except in the context of a clinical trial; these are revisions of prior suggestions resulting from the interim publication of several randomised trials. It also suggested that COVID-19 patients with a venous thromboembolic event be treated with therapeutic anticoagulant therapy for 3 months. The Task Force was unable to reach sufficient agreement to yield consensus suggestions for the post-hospital care of COVID-19 survivors. The Task Force fell one vote shy of suggesting routine screening for depression, anxiety and post-traumatic stress disorder. CONCLUSIONS: The Task Force addressed questions related to pharmacotherapy in patients with COVID-19 and the post-hospital care of survivors, yielding several consensus suggestions. Management options for which there is insufficient agreement to formulate a suggestion represent research priorities.status: Published onlin
    corecore