Abstract

The SPICE/HeRALD collaboration is performing R&D to enable studies of sub-GeV dark matter models using a variety of target materials. Here we report our recent progress on instrumenting a superfluid 4^4He target mass with a transition-edge sensor based calorimeter to detect both atomic signals (e.g. scintillation) and 4^4He quasiparticle (phonon and roton) excitations. The sensitivity of HeRALD to the critical "quantum evaporation" signal from 4^4He quasiparticles requires us to block the superfluid film flow to the calorimeter. We have developed a heat-free film-blocking method employing an unoxidized Cs film, which we implemented in a prototype "HeRALD v0.1" detector of ∼\sim10~g target mass. This article reports initial studies of the atomic and quasiparticle signal channels. A key result of this work is the measurement of the quantum evaporation channel's gain of 0.15±0.0120.15 \pm 0.012, which will enable 4^4He-based dark matter experiments in the near term. With this gain the HeRALD detector reported here has an energy threshold of 145~eV at 5 sigma, which would be sensitive to dark matter masses down to 220~MeV/c2^2.Comment: 14 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions