Abstract

Forests have re-taken centre stage in global conversations about sustainability, climate and biodiversity. Here, we use a horizon scanning approach to identify five large-scale trends that are likely to have substantial medium- and long-term effects on forests and forest livelihoods: forest megadisturbances; changing rural demographics; the rise of the middle-class in low- and middle-income countries; increased availability, access and use of digital technologies; and large-scale infrastructure development. These trends represent human and environmental processes that are exceptionally large in geographical extent and magnitude, and difficult to reverse. They are creating new agricultural and urban frontiers, changing existing rural landscapes and practices, opening spaces for novel conservation priorities and facilitating an unprecedented development of monitoring and evaluation platforms that can be used by local communities, civil society organizations, governments and international donors. Understanding these larger-scale dynamics is key to support not only the critical role of forests in meeting livelihood aspirations locally, but also a range of other sustainability challenges more globally. We argue that a better understanding of these trends and the identification of levers for change requires that the research community not only continue to build on case studies that have dominated research efforts so far, but place a greater emphasis on causality and causal mechanisms, and generate a deeper understanding of how local, national and international geographical scales interact.This work was funded by the UK’s Department for International Development (grant number 203516-102) and governed by the University of Michigan’s Institutional Review Board (HUM00092191). JAO acknowledges the 520 support of a European Union FP7 Marie Curie international outgoing fellowship (FORCONEPAL). LVR was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement No. 853222 FORESTDIET). AJB acknowledges the support of an Australian Research Council Australia Laureate Fellowship (grant number 525 FL160100072). LBF acknowledges support from the European Union Marie Curie global fellowship (CONRICONF). PM was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No 677140 MIDLAND)

    Similar works