76 research outputs found

    Catching VY Sculptoris in a low state

    Get PDF
    Context. In the context of a large campaign to determine the system parameters of high mass transfer cataclysmic variables, we found VY Scl in a low state in 2008. Aims. Making use of this low state, we study the stellar components of the binary with little influence of the normally dominating accretion disc. Methods. Time-resolved spectroscopy and photometry of VY Scl taken during the low state are presented. We analysed the light-curve and radial velocity curve and use time-resolved spectroscopy to calculate Doppler maps of the dominant emission lines. Results. The spectra show narrow emission lines of Halpha, Hbeta, HeI, NaID, and FeII, as well as faint TiO absorption bands that trace the motion of the irradiated secondary star, and Halpha and HeI emission line wings that trace the motion of the white dwarf. From these radial velocities, we find an orbital period of 3.84 h, and put constraints on binary parameters such as the mass ratio M2/M1 of 0.43 and the inclination of 15 deg. With a secondary's mass between 0.3 and 0.35 Msol, we derive the mass for the white dwarf as M1 = 0.6-0.1 Msol.Comment: 8 pages, 9 figures, accepted for publication in A&

    In-situ measurement of texture development rate in CaIrO₃ post-perovskite

    Get PDF
    The rate of crystallographic preferred orientation (CPO) development during deformation of post-perovskite is crucial in interpreting seismic anisotropy in the lowermost mantle but the stability field of MgSiO3 post-perovskite prevents high-strain deformation experiments being performed on it. Therefore, to constrain the rate of CPO development in post-perovskite, we deformed CaIrO3, a low-pressure analogue of MgSiO3 post-perovskite, in simple shear at 3.2GPa and 400○C to a shear strain (γ) of 0.81. From X-ray diffraction patterns acquired during deformation, we invert for CPO as a function of strain. By comparing the CPO that develops with visco-plastic self-consistent (VPSC) models we constrain the critical resolved shear stresses (CRSS) of the non-primary slip-systems in CaIrO3 to be of order 6 times stronger than the primary [100](010) slip system. This value is significantly less than has been assumed by previous studies and if applicable to MgSiO3 implies that seismic anisotropy in the D′ layer develops slower than has previously been assumed

    A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma

    Get PDF
    Despite advances in clinical management, 5-year survival rate in patients with late-stage head and neck squamous cell carcinoma (HNSCC) has not improved significantly over the past decade. Targeted therapies have emerged as one of the most promising approaches to treat several malignancies. Though tyrosine phosphorylation accounts for a minority of total phosphorylation, it is critical for activation of signaling pathways and plays a significant role in driving cancers. To identify activated tyrosine kinase signaling pathways in HNSCC, we compared the phosphotyrosine profiles of a panel of HNSCC cell lines to a normal oral keratinocyte cell line. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) was one of the kinases hyperphosphorylated at Tyr-321 in all HNSCC cell lines. Inhibition of DYRK1A resulted in an increased apoptosis and decrease in invasion and colony formation ability of HNSCC cell lines. Further, administration of the small molecular inhibitor against DYRK1A in mice bearing HNSCC xenograft tumors induced regression of tumor growth. Immunohistochemical labeling of DYRK1A in primary tumor tissues using tissue microarrays revealed strong to moderate staining of DYRK1A in 97.5% (39/40) of HNSCC tissues analyzed. Taken together our results suggest that DYRK1A could be a novel therapeutic target in HNSCC

    Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples

    Get PDF
    We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error. SNAP eliminates those errors by calculating the correct deflection sensitivity based on spring constants determined with a vibrometer. The procedure was validated within a large network of European laboratories by measuring the elastic properties of gels and living cells, showing that its application reduces the variability in elastic moduli of hydrogels down to 1%, and increased the consistency of living cells elasticity measurements by a factor of two. The high reproducibility of elasticity measurements provided by SNAP could improve significantly the applicability of cell mechanics as a quantitative marker to discriminate between cell types and conditions

    Ambient pressure laser desorption and laser-induced acoustic desorption ion mobility spectrometry detection of explosives.

    No full text
    The development of fast, mobile, and sensitive detection systems for security-relevant substances is of enormous importance. Because of the low vapor pressures of explosives and improvised explosive devices, adequate sampling procedures are crucial. Ion mobility spectrometers (IMSs) are fast and sensitive instruments that are used as detection systems for explosives. Ambient pressure laser desorption (APLD) and ambient pressure laser-induced acoustic desorption (AP-LIAD) are new tools suitable to evaporate explosives in order to detect them in the vapor phase. Indeed, the most important advantage of APLD or AP-LIAD is the capability to sample directly from the surface of interest without any transfer of the analyte to other surfaces such as wipe pads. A much more gentle desorption, compared to classical thermal-based desorption, is possible with laser-based desorption using very short laser pulses. With this approach the analyte molecules are evaporated in a very fast process, comparable to a shock wave. The thermal intake is reduced considerably. The functionality of APLD and AP-LIAD techniques combined with a hand-held IMS system is shown for a wide range of common explosives such as EGDN (ethylene glycol dinitrate), urea nitrate, PETN (pentaerythritol tetranitrate), HMTD (hexamethylene triperoxide diamine), RDX (hexogen), tetryl (2,4,6-trinitrophenylmethylnitramine), and TNT (trinitrotoluene). Detection limits down to the low nanogram range are obtained. The successful combination of IMS detection and APLD/AP-LIAD sampling is shown

    Transient simulation of moving ion clouds in time-of-flight ion mobility spectrometers operating with DC and AC fields

    Get PDF
    Ion mobility spectrometers can be divided by their principle of ion separation. For example, classical drift tube time-of-flight Ion Mobility Spectrometers (IMS) separate ions by the absolute value of their low field ion mobility; Field Asymmetric Ion Mobility Spectrometers (FAIMS) separate ions by the field dependence of their ion mobility. However, the low field mobilities and the field dependence of the mobility vary only within a limited range for different ions, leading to a limited peak capacity of stand-alone drift tube IMS and FAIMS. Combining both types leads to orthogonal data and thus enhances the selectivity in comparison with stand-alone devices. In this work, a new approach of enhancing the separation power of a classical drift tube IMS by integrating a field asymmetric waveform ion separation region in longitudinal direction into the drift tube is discussed. This additional separation region is realized by superimposing the constant drift field of a drift tube IMS with an asymmetric parallel AC field using two additional grids inside the drift tube. Since the ions are exposed alternately to high field and low field strengths on their way through the additional separation region, the resulting drift time is affected. Hence, two ion species having the same low-field mobility, but showing a different field dependence of the mobility have different drift times in the enhanced IMS. In order to analyze the ion movement inside such a modified ion mobility spectrometer, the finite element method (FEM) software Comsol Multiphysics is used. Therefore, an existing drift tube IMS model which perfectly agrees with experimental results and considers field inhomogenieties, diffusion, Coulomb repulsion and ion losses at metallic surfaces, is expanded in order to simulate the ion movement in AC fields. This enhanced model provides visualization of the location and shape of the ion cloud during DC/AC operation. Particular attention is given to the increased broadening of the ion cloud due to field inhomogenieties in the additional AC field. Furthermore, ion losses inside the drift tube caused by the AC field and the additional grids are considered. In this work, simulations are used to theoretically investigate our new separation approach to give a first impression of the possible analytical performance. The final publication is available at Springer via https://doi.org/10.1007/s12127-015-0179-7

    Simultaneous on-line vacuum single- and multi-photon ionization on an orthogonal acceleration time-of-flight mass spectrometer platform.

    No full text
    The development of orthogonal acceleration time-of-flight (oa-tof) technology is driven forward due to higher mass accuracy and resolving power than conventional linear/reflectron tof instruments. This is achieved with a more accurate definition of starting energies and coordinates of ions by spatial separation of ion generation and orthogonal ion extraction. Consequently, the ability to cover the whole mass spectral range without scanning is not given anymore. Therefore, continuous ion sources are favored for ensuring high duty cycles and thus high temporal resolution. For pulsed ion sources, high repetition rates are mandatory for covering large m/z ranges without losing their high temporal resolution. We have combined an oa-tof with deuterium lamp single-photon ionization (SPI) as a continuous ion source together with a pulsed 2000 Hz excimer (KrF) laser for resonance enhanced multi-photon ionization (REMPI). These two ionization techniques can be used simultaneously. To the best of our knowledge, this system is the first of its kind in combining a vacuum pulsed ionization source with an oa-tof instrument without any other ion storage hardware. The combination of a soft broadband ionization for organics (SPI) in combination with a very sensitive and selective soft ionization (REMPI) can be used for covering the whole mass range or in targeted on-line monitoring cases one or several smaller mass ranges. To demonstrate the simultaneous SPI/REMPI-oa-tof technique, two applicative areas are explored: on-line monitoring of coffee roast gas emissions and e-cigarette vapor. The complementary information from SPI and REMPI signals are combined in a way to exploit the advantages of both ionization types. In a further development step, a second data acquisition card is built into the system. This modification allows the independent storage of data from both ionization methods without mixing. For demonstration, a third example with a GC measurement is provided. The last example shows the possibility of modified sensitivities for different mass regions in REMPI data acquisition without affecting the SPI channel. The newly developed system shows high robustness in terms of measurements in real industrial environments. The simultaneous measurement technique provides a higher density of information in a single measurement, saving time and resources
    corecore