30 research outputs found

    Field evaluation of controlled traffic farming in central Europe using commercially available machinery

    Get PDF
    The progressive increase in the size and weight of farm machinery causes concerns due to the increased risk of soil compaction that arises from non-organized vehicle traffic. Controlled traffic farming (CTF) offers an effective means to manage compaction by confining all load-bearing wheels to the least possible area of permanent traffic lanes. Although CTF is relatively well-established in Australia and in some countries in Northern Europe, its benefits and suitability for Central European conditions have not been demonstrated. A long-term experimental site was established in 2010 in Nitra, Slovakia, using a 6 m 'OutTrac-CTF' system with shallow non-inversion tillage practices. The 16 ha experimental field of loam soil is representative of land used for arable cropping in Central Europe. Four traffic intensities (non-trafficked, one traffic event per year with a single pass, multiple passes with permanent traffic lanes, and random traffic) were evaluated using two traffic systems: controlled (CTF) and non-controlled traffic farming (referred to as random traffic farming or RTF). This article reports the findings derived from the first four years of the project and focuses on the effects of traffic systems on yields observed in cereal crops (winter wheat, spring barley, and maize) grown at the site in a rotation cycle. Significant differences (p < 0.1) in yield are reported due to the heterogeneity of the field and the seasonal effect of weather. The results of this investigation suggest that CTF systems have potential to increase production sustainably in arable farming systems in Central Europe. Well-designed CTF systems using commercially available machinery allow for reductions in the area affected by traffic of up to 50% compared with random, non-organized traffic systems. Results also show that in years when soil moisture was not limiting, the yield penalty from a single (annual) machine pass was relatively small (~5%). However, in dry years, compaction caused by multiple machinery passes may lead to yield losses of up to 33%. When considering the ratio of non-trafficked to trafficked area within the different CTF systems evaluated in this study, yield improvements of up to 0.5 t ha-1 for cereals are possible when converting from RTF to CTF. Given the assumptions made in the analyses, such yield increases translate into increased revenues of up to 117 USD ha-1 (1 Euro= 1.1 USD). For Central European farming systems, the main benefit of CTF appears to be improved efficiency and enhanced agronomic stability, especially in dry seasons, where the significant yield penalty from machinery passes is likely

    Advances in Respiratory Monitoring: A Comprehensive Review of Wearable and Remote Technologies

    No full text
    This article explores the importance of wearable and remote technologies in healthcare. The focus highlights its potential in continuous monitoring, examines the specificity of the issue, and offers a view of proactive healthcare. Our research describes a wide range of device types and scientific methodologies, starting from traditional chest belts to their modern alternatives and cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also investigated innovative technologies such as the monitoring of thorax micromovements based on the principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive overview of different approaches to respiratory monitoring. The topic of monitoring respiration with wearable and remote electronics is currently the center of attention of researchers, which is also reflected by the growing number of publications. In our manuscript, we offer an overview of the most interesting ones

    Ecological determinants of pathogen infection in howler monkeys

    No full text
    Infectious diseases caused by pathogens are now recognized as one of the most important threats to primate conservation. The fact that howler monkeys (Alouatta spp.) are widely distributed from Southern Mexico to Northern Argentina, inhabit a diverse array of habitats, and are considered pioneers, particularly adapted to exploit marginal habitats, provides an opportunity to explore general trends of parasitism and evaluate the dynamics of infectious diseases in this genus. We take a meta-analysis approach to examine the effect of ecological and environmental variables on parasitic infection using data from 7 howler monkey species at more than 35 sites throughout their distribution. We found that different factors including precipitation, latitude, altitude, and human proximity may infl uence parasite infection depending on the parasite type. We also found that parasites infecting howler monkeys followed a right-skewed distribution, suggesting that only a few individuals harbor infections. This result highlights the importance of collecting large sample sizes when developing these kinds of studies. We suggest that future studies should focus on obtaining fi ne-grained measurements of ecological and microclimate changes to provide better insights into the proximate factors that promote parasitism.Fil: Martinez Mota, Rodolfo. University of Illinois at Urbana-Champaign; Estados UnidosFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Gillespie, Thomas R.. Emory University; Estados Unido
    corecore