10 research outputs found

    Meta-analysis of multidecadal biodiversity trends in Europe

    Get PDF
    Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising similar to 6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe. The global biodiversity decline might conceal complex local and group-specific trends. Here the authors report a quantitative synthesis of longterm biodiversity trends across Europe, showing how, despite overall increase in biodiversity metric and stability in abundance, trends differ between regions, ecosystem types, and taxa.peerReviewe

    Environmental benefits of leaving offshore infrastructure in the ocean

    Get PDF
    The removal of thousands of structures associated with oil and gas development from the world's oceans is well underway, yet the environmental impacts of this decommissioning practice remain unknown. Similar impacts will be associated with the eventual removal of offshore wind turbines. We conducted a global survey of environmental experts to guide best decommissioning practices in the North Sea, a region with a substantial removal burden. In contrast to current regulations, 94.7% of experts (36 out of 38) agreed that a more flexible case‐by‐case approach to decommissioning could benefit the North Sea environment. Partial removal options were considered to deliver better environmental outcomes than complete removal for platforms, but both approaches were equally supported for wind turbines. Key considerations identified for decommissioning were biodiversity enhancement, provision of reef habitat, and protection from bottom trawling, all of which are negatively affected by complete removal. We provide recommendations to guide the revision of offshore decommissioning policy, including a temporary suspension of obligatory removal

    Meta-analysis of multidecadal biodiversity trends in Europe

    No full text
    Abstract Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15–91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Abstract Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL

    BioTIME:a database of biodiversity time series for the Anthropocene

    No full text
    Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of two, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology andcontextual information about each record.Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1 000 000 000 000 cm2).Time period and grain: BioTIME records span from 1874 to 2016. The minimum temporal grain across all datasets in BioTIME is year.Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton, and terrestrial invertebrates to small and large vertebrates.Software format: .csv and .SQ
    corecore