1,484 research outputs found

    Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    Get PDF
    Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i) which animal taxa are being studied; ii) if any taxonomic biases are the same in temperate and tropical regions; iii) whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv) the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v) the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects) in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries with larger economies, and for a given level of species or threatened species, tropical countries were understudied relative to temperate countries. Finally, biodiversity research is disproportionately authored by researchers from wealthier countries, with studies less likely to be carried out by scientists in lower-GDP nations. Our results highlight the need for a more systematic and directed evaluation of biodiversity studies, perhaps informing more targeted research towards those areas and taxa most depauperate in research. Only by doing so can we ensure that biodiversity research yields results that are relevant and applicable to all regions and that the information necessary for the conservation of threatened species is available to conservation practitioners

    Image-based analyses from an online repository provide rich information on long-term changes in morphology and human perceptions of rhinos

    Get PDF
    Online image repositories can offer a freely accessible, information-rich and cost-effective alternative to museum collections for studying long-term changes in human interactions with nature and ecological and evolutionary change. The Rhino Resource Center (RRC) is one example, curated by experts and holding a collection of >4000 rhino images, including both artistic portrayals (1481-2021) and photographs (taken between 1862-2021), and representing a potentially valuable case study to investigate the utility of online image repositories for research into large vertebrates and, potentially, other well-recorded smaller taxa. The five extant species of rhino are all threatened by habitat loss and human hunting and therefore are an important focus for conservation research. We used the RRC for two separate research approaches: (i) assessing the changing representations and human interactions with rhinos using 3158 images (1531 pieces of artwork and 1627 photographs); and (ii) determining to what extent morphological data can be extracted from photographs to assess changes in horn length over time, using a sample size of 80 photographs of rhinos taken in profile view. We found that African rhino species have become more commonly depicted in images, compared to Asian rhino species over time. During the age of European imperialism (between the 16th and 20th centuries), rhinos were commonly portrayed as hunting trophies, but since the mid-20th century, they have been increasingly portrayed in a conservation context, reflecting a change in emphasis from a more to less consumptive relationship between humans and rhinos. Finally, we found evidence for declining horn length over time across species, perhaps related to selective pressure of hunting, and indicating a utility for image-based approaches in understanding societal perceptions of large vertebrates and trait evolution. Read the free Plain Language Summary for this article on the Journal blog.Peer reviewe

    Whole-ecosystem experimental manipulations of tropical forests.

    Get PDF
    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of 'whole-ecosystem' experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the system in its natural state or to understand responses to anthropogenic impacts. We survey the current range of whole-ecosystem manipulations, which include those targeting weather and climate, nutrients, biotic interactions, human impacts, and habitat restoration. Finally we describe the unique challenges and opportunities presented by such projects and suggest directions for future experiments.This review was initiated during a symposium on ‘The effects of large scale manipulations of tropical forests on arthropod assemblages’ at the INTECOL 2013 congress, London 18–23 August 2013. T.M.F. is funded by the Australian Research Council (DP140101541), T.M.F. and R.M.E. by Yayasan Sime Darby, TMF and Y.B. by the project Biodiversity of Forest Ecosystems (CZ.1.07/2.3.00/20.0064) co-financed by the European Social Fund and the state budget of the Czech Republic, and T.M.F. Y.B. and V.N. by the Czech Science Foundation (GACR 14-32302S, 14-36098G, 14-04258S respectively). Y.B. is also supported by the Sistema Nacional de Investigacio´n of Panama. E.C.T. is supported by funds from PT SMART Research Institute and the Isaac Newton Trust, Cambridge. R.M.E. is supported by European Research Council Project number 281986. We are grateful to Maureen Fayle, Andrew Hector, Jan Leps, Scott Miller, Kalsum M. Yusah, Paul Craze, and two anonymous reviewers for advice during the drafting of the manuscript, and Jennifer Balch for additional information regarding her burning experiments.This is the final published version. It first appeared at http://www.cell.com/trends/ecology-evolution/abstract/S0169-5347%2815%2900069-5

    Fast and accurate frequency-dependent radiation transport for hydrodynamics simulations in massive star formation

    Full text link
    Context: Radiative feedback plays a crucial role in the formation of massive stars. The implementation of a fast and accurate description of the proceeding thermodynamics in pre-stellar cores and evolving accretion disks is therefore a main effort in current hydrodynamics simulations. Aims: We introduce our newly implemented three-dimensional frequency dependent radiation transport algorithm for hydrodynamics simulations of spatial configurations with a dominant central source. Methods: The module combines the advantage of the speed of an approximate Flux Limited Diffusion (FLD) solver with the high accuracy of a frequency dependent first order ray-tracing routine. Results: We prove the viability of the scheme in a standard radiation benchmark test compared to a full frequency dependent Monte-Carlo based radiative transfer code. The setup includes a central star, a circumstellar flared disk, as well as an envelope. The test is performed for different optical depths. Considering the frequency dependence of the stellar irradiation, the temperature distributions can be described precisely in the optically thin, thick, and irradiated transition regions. Resulting radiative forces onto dust grains are reproduced with high accuracy. The achievable parallel speedup of the method imposes no restriction on further radiative (magneto-) hydrodynamics simulations. Conclusions: The proposed approximate radiation transport method enables frequency dependent radiation hydrodynamics studies of the evolution of pre-stellar cores and circumstellar accretion disks around an evolving massive star in a highly efficient and accurate manner.Comment: 16 pages, 11 figure

    Shock Speed, Cosmic Ray Pressure, and Gas Temperature in the Cygnus Loop

    Full text link
    Upper limits on the shock speeds in supernova remnants can be combined with post-shock temperatures to obtain upper limits on the ratio of cosmic ray to gas pressure (P_CR / P_G) behind the shocks. We constrain shock speeds from proper motions and distance estimates, and we derive temperatures from X-ray spectra. The shock waves are observed as faint H-alpha filaments stretching around the Cygnus Loop supernova remnant in two epochs of the Palomar Observatory Sky Survey (POSS) separated by 39.1 years. We measured proper motions of 18 non-radiative filaments and derived shock velocity limits based on a limit to the Cygnus Loop distance of 576 +/- 61 pc given by Blair et al. for a background star. The PSPC instrument on-board ROSAT observed the X-ray emission of the post-shock gas along the perimeter of the Cygnus Loop, and we measure post-shock electron temperature from spectral fits. Proper motions range from 2.7 arcseconds to 5.4 arcseconds over the POSS epochs and post-shock temperatures range from kT ~ 100-200 eV. Our analysis suggests a cosmic ray to post-shock gas pressure consistent with zero, and in some positions P_CR is formally smaller than zero. We conclude that the distance to the Cygnus Loop is close to the upper limit given by the distance to the background star and that either the electron temperatures are lower than those measured from ROSAT PSPC X-ray spectral fits or an additional heat input for the electrons, possibly due to thermal conduction, is required.Comment: Submitted to ApJ, 7 color figure

    Simplifying understory complexity in oil palm plantations is associated with a reduction in the density of a cleptoparasitic spider, Argyrodes miniaceus (Araneae: Theridiidae), in host (Araneae: Nephilinae) webs.

    Get PDF
    Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp. spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co-occupy the webs of Nephila spp. females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp. webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications: Maintenance of understory vegetation complexity contributes to the preservation of spider host-cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical agroecosystems
    corecore